Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.238
Filter
1.
Commun Biol ; 7(1): 805, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38961245

ABSTRACT

Precise epitope determination of therapeutic antibodies is of great value as it allows for further comprehension of mechanism of action, therapeutic responsiveness prediction, avoidance of unwanted cross reactivity, and vaccine design. The golden standard for discontinuous epitope determination is the laborious X-ray crystallography method. Here, we present a combinatorial method for rapid mapping of discontinuous epitopes by mammalian antigen display, eliminating the need for protein expression and purification. The method is facilitated by automated workflows and tailored software for antigen analysis and oligonucleotide design. These oligos are used in automated mutagenesis to generate an antigen receptor library displayed on mammalian cells for direct binding analysis by flow cytometry. Through automated analysis of 33930 primers an optimized single condition cloning reaction was defined allowing for mutation of all surface-exposed residues of the receptor binding domain of SARS-CoV-2. All variants were functionally expressed, and two reference binders validated the method. Furthermore, epitopes of three novel therapeutic antibodies were successfully determined followed by evaluation of binding also towards SARS-CoV-2 Omicron BA.2. We find the method to be highly relevant for rapid construction of antigen libraries and determination of antibody epitopes, especially for the development of therapeutic interventions against novel pathogens.


Subject(s)
COVID-19 , Epitope Mapping , Epitopes , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Humans , SARS-CoV-2/immunology , SARS-CoV-2/genetics , Epitope Mapping/methods , Epitopes/immunology , Epitopes/genetics , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/metabolism , COVID-19/immunology , COVID-19/virology , Peptide Library , Antibodies, Viral/immunology , Animals , HEK293 Cells , Cell Surface Display Techniques/methods , Gene Library
2.
Nat Commun ; 15(1): 5833, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38992033

ABSTRACT

Arthropod-borne viruses represent a crucial public health threat. Current arboviral serology assays are either labor intensive or incapable of distinguishing closely related viruses, and many zoonotic arboviruses that may transition to humans lack any serologic assays. In this study, we present a programmable phage display platform, ArboScan, that evaluates antibody binding to overlapping peptides that represent the proteomes of 691 human and zoonotic arboviruses. We confirm that ArboScan provides detailed antibody binding information from animal sera, human sera, and an arthropod blood meal. ArboScan identifies distinguishing features of antibody responses based on exposure history in a Colombian cohort of Zika patients. Finally, ArboScan details epitope level information that rapidly identifies candidate epitopes with potential protective significance. ArboScan thus represents a resource for characterizing human and animal arbovirus antibody responses at cohort scale.


Subject(s)
Antibodies, Viral , Arboviruses , Humans , Arboviruses/immunology , Arboviruses/isolation & purification , Animals , Antibodies, Viral/immunology , Antibodies, Viral/blood , Peptides/immunology , Peptides/chemistry , Zika Virus Infection/virology , Zika Virus Infection/immunology , Zika Virus Infection/blood , Zika Virus/immunology , Epitopes/immunology , Serologic Tests/methods , Arbovirus Infections/virology , Arbovirus Infections/immunology , Proteome , Colombia , Female , Peptide Library , Cell Surface Display Techniques , Male
3.
Microb Biotechnol ; 17(7): e14518, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38953907

ABSTRACT

Porcine epidemic diarrhoea virus (PEDV) infects pigs of all ages by invading small intestine, causing acute diarrhoea, vomiting, and dehydration with high morbidity and mortality among newborn piglets. However, current PEDV vaccines are not effective to protect the pigs from field epidemic strains because of poor mucosal immune response and strain variation. Therefore, it is indispensable to develop a novel oral vaccine based on epidemic strains. Bacillus subtilis spores are attractive delivery vehicles for oral vaccination on account of the safety, high stability, and low cost. In this study, a chimeric gene CotC-Linker-COE (CLE), comprising of the B. subtilis spore coat gene cotC fused to the core neutralizing epitope CO-26 K equivalent (COE) of the epidemic strain PEDV-AJ1102 spike protein gene, was constructed. Then recombinant B. subtilis displaying the CLE on the spore surface was developed by homologous recombination. Mice were immunized by oral route with B. subtilis 168-CLE, B. subtilis 168, or phosphate-buffered saline (PBS) as control. Results showed that the IgG antibodies and cytokine (IL-4, IFN-γ) levels in the B. subtilis 168-CLE group were significantly higher than the control groups. This study demonstrates that B. subtilis 168-CLE can generate specific systemic immune and mucosal immune responses and is a potential vaccine candidate against PEDV infection.


Subject(s)
Antibodies, Viral , Bacillus subtilis , Porcine epidemic diarrhea virus , Spores, Bacterial , Porcine epidemic diarrhea virus/genetics , Porcine epidemic diarrhea virus/immunology , Animals , Bacillus subtilis/genetics , Bacillus subtilis/immunology , Spores, Bacterial/genetics , Spores, Bacterial/immunology , Mice , Antibodies, Viral/blood , Swine , Viral Vaccines/immunology , Viral Vaccines/genetics , Viral Vaccines/administration & dosage , Coronavirus Infections/veterinary , Coronavirus Infections/prevention & control , Swine Diseases/prevention & control , Swine Diseases/virology , Swine Diseases/microbiology , Swine Diseases/immunology , Antigens, Viral/genetics , Antigens, Viral/immunology , Administration, Oral , Cytokines/metabolism , Immunoglobulin G/blood , Mice, Inbred BALB C , Female , Cell Surface Display Techniques , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology
4.
Appl Microbiol Biotechnol ; 108(1): 412, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38985354

ABSTRACT

The filamentous bacteriophage M13KO7 (M13) is the most used in phage display (PD) technology and, like other phages, has been applied in several areas of medicine, agriculture, and in the food industry. One of the advantages is that they can modulate the immune response in the presence of pathogenic microorganisms, such as bacteria and viruses. This study evaluated the use of phage M13 in the chicken embryos model. We inoculated 13-day-old chicken embryos with Salmonella Pullorum (SP) and then evaluated survival for the presence of phage M13 or E. coli ER2738 (ECR) infected with M13. We found that the ECR bacterium inhibits SP multiplication in 0.32 (M13-infected ECR) or 0.44 log UFC/mL (M13-uninfected ECR) and that the ECR-free phage M13 from the PD library can be used in chicken embryo models. This work provides the use of the chicken embryo as a model to study systemic infection and can be employed as an analysis tool for various peptides that M13 can express from PD selection. KEY POINTS: • SP-infected chicken embryo can be a helpful model of systemic infection for different tests. • Phage M13 does not lead to embryonic mortality or cause serious injury to embryos. • Phage M13 from the PD library can be used in chicken embryo model tests.


Subject(s)
Bacteriophage M13 , Escherichia coli , Animals , Chick Embryo , Escherichia coli/virology , Escherichia coli/genetics , Bacteriophage M13/genetics , Cell Surface Display Techniques/methods , Salmonella , Chickens , Poultry Diseases/virology , Poultry Diseases/microbiology
5.
Biochem Biophys Res Commun ; 727: 150321, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-38954982

ABSTRACT

Vascular endothelial growth factor (VEGF) is a pleiotropic growth factor that binds a broad spectrum of cell types and regulates diverse cellular processes, including angiogenesis, growth and survival. However, it is technically difficult to quantify VEGF-cell binding activity because of reversible nature of ligand-receptor interactions. Here we used T7 bacteriophage display to quantify and compare binding activity of three human VEGF-A (hVEGF) isoforms, including hVEGF111, 165 and 206. All three isoforms bound equally well to immobilized aflibercept, a decoy VEGF receptor. hVEGF111-Phage exhibited minimal binding to immobilized heparan sulfate, whereas hVEGF206-Phage and hVEGF165-Phage had the highest and intermediate binding to heparan, respectively. In vitro studies revealed that all three isoforms bound to human umbilical vein endothelial cells (HUVECs), HEK293 epithelial and SK-N-AS neuronal cells. hVEGF111-Phage has the lowest binding activity, while hVEGF206-Phage has the highest binding. hVEGF206-Phage was the most sensitive to detect VEGF-cell binding, albeit with the highest background binding to SK-N-AS cells. These results suggest that hVEGF206-Phage is the best-suited isoform to quantify VEGF-cell binding even though VEGF165 is the most biologically active. Furthermore, this study demonstrates the utility of T7 phage display as a platform for rapid and convenient ligand-cell binding quantification with pros and cons discussed.


Subject(s)
Human Umbilical Vein Endothelial Cells , Protein Binding , Vascular Endothelial Growth Factor A , Humans , Vascular Endothelial Growth Factor A/metabolism , Human Umbilical Vein Endothelial Cells/metabolism , HEK293 Cells , Protein Isoforms/metabolism , Receptors, Vascular Endothelial Growth Factor/metabolism , Bacteriophage T7/metabolism , Bacteriophage T7/genetics , Cell Surface Display Techniques/methods , Heparitin Sulfate/metabolism , Recombinant Fusion Proteins
6.
Molecules ; 29(13)2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38998954

ABSTRACT

In recent years, phage display technology has become vital in clinical research. It helps create antibodies that can specifically bind to complex antigens, which is crucial for identifying biomarkers and improving diagnostics and treatments. However, existing reviews often overlook its importance in areas outside cancer research. This review aims to fill that gap by explaining the basics of phage display and its applications in detecting and treating various non-cancerous diseases. We focus especially on its role in degenerative diseases, inflammatory and autoimmune diseases, and chronic non-communicable diseases, showing how it is changing the way we diagnose and treat illnesses. By highlighting important discoveries and future possibilities, we hope to emphasize the significance of phage display in modern healthcare.


Subject(s)
Biomarkers , Cell Surface Display Techniques , Humans , Noncommunicable Diseases/epidemiology , Peptide Library , Autoimmune Diseases/diagnosis , Autoimmune Diseases/metabolism
7.
Sci Rep ; 14(1): 13437, 2024 06 11.
Article in English | MEDLINE | ID: mdl-38862601

ABSTRACT

The primary hurdles for small interference RNA (siRNA) in clinical use are targeted and cytosolic delivery. To overcome both challenges, we have established a novel platform based on phage display, called NNJA. In this approach, a lysosomal cathepsin substrate is engineered within the flexible loops of PIII, that is displaying a unique random sequence at its N-terminus. NNJA library selection targeting cell-expressed targets should yield specific peptides localized in the cytoplasm. That is because phage internalization and subsequent localization to lysosome, upon peptide binding to the cell expressed target, will result in cleavage of PIII, rendering phage non-infective. Such phage will be eliminated from the selected pool and only peptide-phage that escapes lysosomes will advance to the next round. Proof of concept studies with the NNJA library demonstrated cytosolic localization of selected peptide-phage and peptide-siRNA, confirmed through confocal microscopy. More importantly, conjugation of siHPRT to monomeric or multimeric NNJA peptides resulted in significant reduction in HPRT mRNA in various cell types without significant cytotoxicity. Sequence similarity and clustering analysis from NGS dataset provide insights into sequence composition facilitating cell penetration. NNJA platform offers a highly efficient peptide discovery engine for targeted delivery of oligonucleotides to cytosol.


Subject(s)
Cell-Penetrating Peptides , Peptide Library , RNA, Small Interfering , Cell-Penetrating Peptides/metabolism , Cell-Penetrating Peptides/chemistry , Humans , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Lysosomes/metabolism , Cell Surface Display Techniques/methods , Cytosol/metabolism
8.
Viruses ; 16(6)2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38932260

ABSTRACT

Soon after its birth in 1985, following a short lag period [...].


Subject(s)
Neoplasms , Humans , Neoplasms/therapy , Neoplasms/genetics , Cell Surface Display Techniques/methods , Peptide Library , Animals
9.
MAbs ; 16(1): 2365891, 2024.
Article in English | MEDLINE | ID: mdl-38889315

ABSTRACT

Integrins are cell surface receptors that mediate the interactions of cells with their surroundings and play essential roles in cell adhesion, migration, and homeostasis. Eight of the 24 integrins bind to the tripeptide Arg-Gly-Asp (RGD) motif in their extracellular ligands, comprising the RGD-binding integrin subfamily. Despite similarity in recognizing the RGD motif and some redundancy, these integrins can selectively recognize RGD-containing ligands to fulfill specific functions in cellular processes. Antibodies against individual RGD-binding integrins are desirable for investigating their specific functions, and were selected here from a synthetic yeast-displayed Fab library. We discovered 11 antibodies that exhibit high specificity and affinity toward their target integrins, i.e. αVß3, αVß5, αVß6, αVß8, and α5ß1. Of these, six are function-blocking antibodies and contain a ligand-mimetic R(G/L/T)D motif in their CDR3 sequences. We report antibody-binding specificity, kinetics, and binding affinity for purified integrin ectodomains, as well as intact integrins on the cell surface. We further used these antibodies to reveal binding preferences of the αV subunit for its 5 ß-subunit partners: ß6 = ß8 > ß3 > ß1 = ß5.


Subject(s)
Saccharomyces cerevisiae , Humans , Saccharomyces cerevisiae/genetics , Integrin beta Chains/immunology , Integrin beta Chains/chemistry , Integrin beta Chains/metabolism , Integrin beta Chains/genetics , Integrin alphaV/immunology , Integrin alphaV/metabolism , Integrins/immunology , Integrins/metabolism , Peptide Library , Cell Surface Display Techniques , Protein Binding , Antibody Specificity
10.
Int Immunopharmacol ; 137: 112371, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-38852516

ABSTRACT

IL-23 is a double-subunit cytokine that plays an important role in shaping the immune response. IL-23 was found to be associated with several autoinflammatory diseases by generating sustained inflammatory loops that lead to tissue damage. Antibody neutralization of IL-23 was proven to be effective in ameliorating associated diseases. However, antibodies as large proteins have limited tissue penetration and tend to elicit anti-drug antibodies. Additionally, anti-IL-23 antibodies target only one subunit of IL-23 leaving the other one unneutralized. Here, we attempted to isolate a recycling single domain antibody by phage display. One of IL-23 subunits, p19, was expressed in E. coli fused to Gamillus protein to stabilize the α-helix-only p19. To remove Gamillus binders, two biopanning methods were investigated, first, preselection with Gamillus and second, challenge with IL-23 then on the subsequent round challenge with p19-Gam. The isolation of calcium-dependent and pH-dependent recycling binders was performed with EDTA and citrate buffers respectively. Both methods of panning failed to isolate high-affinity and specific p19 recycling binders, while from the second panning method, a high affinity and specific p19 standard binder, namely H11, was successfully isolated. H11 significantly inhibited the gene expression of IL-17 and IL-22 in IL-23-challenged PBMCs indicating H11 specificity and neutralizing ability for IL-23. The new binder due to its small size can overcome antibodies limitations, also, it can be further engineered in the future for antigen clearance such as fusing it to cell penetrating peptides, granting H11 the ability to clear excess IL-23 and enhancing its potential therapeutic effect.


Subject(s)
Interleukin-23 Subunit p19 , Single-Domain Antibodies , Humans , Interleukin-23 Subunit p19/immunology , Interleukin-23 Subunit p19/genetics , Single-Domain Antibodies/immunology , Inflammation/immunology , Cell Surface Display Techniques , Escherichia coli/genetics , Interleukin-23/immunology , Interleukin-23/metabolism , Peptide Library
11.
Front Immunol ; 15: 1402862, 2024.
Article in English | MEDLINE | ID: mdl-38863706

ABSTRACT

Ovarian cancer, ranking as the seventh most prevalent malignancy among women globally, faces significant challenges in diagnosis and therapeutic intervention. The difficulties in early detection are amplified by the limitations and inefficacies inherent in current screening methodologies, highlighting a pressing need for more efficacious diagnostic and treatment strategies. Phage display technology emerges as a pivotal innovation in this context, utilizing extensive phage-peptide libraries to identify ligands with specificity for cancer cell markers, thus enabling precision-targeted therapeutic strategies. This technology promises a paradigm shift in ovarian cancer management, concentrating on targeted drug delivery systems to improve treatment accuracy and efficacy while minimizing adverse effects. Through a meticulous review, this paper evaluates the revolutionary potential of phage display in enhancing ovarian cancer therapy, representing a significant advancement in combating this challenging disease. Phage display technology is heralded as an essential instrument for developing effective immunodiagnostic and therapeutic approaches in ovarian cancer, facilitating early detection, precision-targeted medication, and the implementation of customized treatment plans.


Subject(s)
Cell Surface Display Techniques , Ovarian Neoplasms , Peptide Library , Female , Humans , Ovarian Neoplasms/therapy , Ovarian Neoplasms/diagnosis , Ovarian Neoplasms/immunology , Biomarkers, Tumor , Animals , Immunotherapy/methods
12.
Infect Immun ; 92(7): e0021524, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38884473

ABSTRACT

Human babesiosis is a malaria-like illness caused by protozoan parasites of the genus Babesia. Babesia microti is responsible for most cases of human babesiosis in the United States, particularly in the Northeast and the Upper Midwest. Babesia microti is primarily transmitted to humans through the bite of infected deer ticks but also through the transfusion of blood components, particularly red blood cells. There is a high risk of severe and even fatal disease in immunocompromised patients. To date, serology testing relies on an indirect immunofluorescence assay that uses the whole Babesia microti antigen. Here, we report the construction of phage display cDNA libraries from Babesia microti-infected erythrocytes as well as human reticulocytes obtained from donors with hereditary hemochromatosis. Plasma samples were obtained from patients who were or had been infected with Babesia microti. The non-specific antibody reactivity of these plasma samples was minimized by pre-exposure to the human reticulocyte library. Using this novel experimental strategy, immunoreactive segments were identified in three Babesia microti antigens termed BmSA1 (also called BMN1-9; BmGPI12), BMN1-20 (BMN1-17; Bm32), and BM4.12 (N1-15). Moreover, our findings indicate that the major immunoreactive segment of BmSA1 does not overlap with the segment that mediates BmSA1 binding to mature erythrocytes. When used in combination, the three immunoreactive segments form the basis of a sensitive and comprehensive diagnostic immunoassay for human babesiosis, with implications for vaccine development.


Subject(s)
Antigens, Protozoan , Babesia microti , Babesiosis , Gene Library , Babesia microti/immunology , Babesia microti/genetics , Humans , Antigens, Protozoan/immunology , Antigens, Protozoan/genetics , Babesiosis/immunology , Babesiosis/parasitology , Antibodies, Protozoan/immunology , Antibodies, Protozoan/blood , Erythrocytes/parasitology , Erythrocytes/immunology , Cell Surface Display Techniques , Animals
13.
Biochem Biophys Res Commun ; 721: 150146, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-38781660

ABSTRACT

To enable an efficient bacterial cell surface display with effective protein expression and cell surface loading ability via autotransporter for potential vaccine development applications, the inner membrane protein translocation efficiency was investigated via a trial-and-error strategy by replacing the original unusual long signal peptide of E. coli Ag43 with 11 different signal peptides. The receptor-binding domain (RBD) of coronavirus was used as a neutral display substrate to optimize the expression conditions, and the results showed that signal peptides from PelB, OmpC, OmpF, and PhoA protein enhance the bacterial cell surface display efficiency of RBD. In addition, the temperature has also a significant effect on the autodisplay efficiency of RBD. Our data provide further technical basis for the biotechnological application of Ag43 as a bacterial surface display carrier system and further potential application in vaccine development.


Subject(s)
Escherichia coli , Protein Domains , Protein Sorting Signals , Escherichia coli/metabolism , Escherichia coli/genetics , Escherichia coli Proteins/metabolism , Escherichia coli Proteins/chemistry , Cell Surface Display Techniques , Protein Binding , Cell Membrane/metabolism
14.
Immunity ; 57(6): 1428-1441.e8, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38723638

ABSTRACT

Induction of commensal-specific immunity contributes to tissue homeostasis, yet the mechanisms underlying induction of commensal-specific B cells remain poorly understood in part due to a lack of tools to identify these cells. Using phage display, we identified segmented filamentous bacteria (SFB) antigens targeted by serum and intestinal antibodies and generated B cell tetramers to track SFB-specific B cells in gut-associated lymphoid tissues. We revealed a compartmentalized response in SFB-specific B cell activation, with a gradient of immunoglobulin A (IgA), IgG1, and IgG2b isotype production along Peyer's patches contrasted by selective production of IgG2b within mesenteric lymph nodes. V(D)J sequencing and monoclonal antibody generation identified somatic hypermutation driven affinity maturation to SFB antigens under homeostatic conditions. Combining phage display and B cell tetramers will enable investigation of the ontogeny and function of commensal-specific B cell responses in tissue immunity, inflammation, and repair.


Subject(s)
B-Lymphocytes , Animals , B-Lymphocytes/immunology , Mice , Mice, Inbred C57BL , Peyer's Patches/immunology , Lymphocyte Activation/immunology , Antigens, Bacterial/immunology , Somatic Hypermutation, Immunoglobulin , Peptide Library , Lymph Nodes/immunology , Cell Surface Display Techniques , Symbiosis/immunology , Immunoglobulin G/immunology , Immunoglobulin A/immunology
15.
Sci Rep ; 14(1): 12177, 2024 05 28.
Article in English | MEDLINE | ID: mdl-38806609

ABSTRACT

Heart failure remains a leading cause of mortality. Therapeutic intervention for heart failure would benefit from targeted delivery to the damaged heart tissue. Here, we applied in vivo peptide phage display coupled with high-throughput Next-Generation Sequencing (NGS) and identified peptides specifically targeting damaged cardiac tissue. We established a bioinformatics pipeline for the identification of cardiac targeting peptides. Hit peptides demonstrated preferential uptake by human induced pluripotent stem cell (iPSC)-derived cardiomyocytes and immortalized mouse HL1 cardiomyocytes, without substantial uptake in human liver HepG2 cells. These novel peptides hold promise for use in targeted drug delivery and regenerative strategies and open new avenues in cardiovascular research and clinical practice.


Subject(s)
Induced Pluripotent Stem Cells , Myocytes, Cardiac , Peptides , Humans , Animals , Mice , Myocytes, Cardiac/metabolism , Peptides/metabolism , Induced Pluripotent Stem Cells/metabolism , Induced Pluripotent Stem Cells/cytology , Peptide Library , Hep G2 Cells , Cell Surface Display Techniques/methods , Drug Delivery Systems , High-Throughput Nucleotide Sequencing , Heart Failure/metabolism , Heart Failure/therapy
16.
Food Chem ; 452: 139522, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38723568

ABSTRACT

ß-lactoglobulin (ß-Lg) is a major food allergen, there is an urgent need to develop a rapid method for detecting ß-Lg in order to avoid contact or ingestion by allergic patients. Peptide aptamers have high affinity, specificity, and stability, and have broad prospects in the field of rapid detection. Using ß-Lg as the target, this study screened 11 peptides (P1-11) from a phage display library. Using molecular docking technology to predict binding energy and binding mode of proteins and peptides. Select the peptides with the best binding ability to ß-Lg (P5, P7, P8) through ELISA. Combining them with whey protein, casein, and bovine serum protein, it was found that P7 has the best specificity for ß-Lg, with an inhibition rate of 87.99%. Verified by molecular dynamics that P7 binds well with ß-Lg. Therefore, this peptide can be used for the recognition of ß-Lg, becoming a new recognition element for detecting ß-Lg.


Subject(s)
Lactoglobulins , Molecular Docking Simulation , Peptides , Lactoglobulins/chemistry , Peptides/chemistry , Animals , Protein Binding , Peptide Library , Cattle , Cell Surface Display Techniques , Enzyme-Linked Immunosorbent Assay , Allergens/chemistry , Allergens/immunology , Humans
17.
Infect Immun ; 92(6): e0054023, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38727242

ABSTRACT

Anaplasma marginale is an obligate, intracellular, tick-borne bacterial pathogen that causes bovine anaplasmosis, an often severe, production-limiting disease of cattle found worldwide. Methods to control this disease are lacking, in large part due to major knowledge gaps in our understanding of the molecular underpinnings of basic host-pathogen interactions. For example, the surface proteins that serve as adhesins and, thus, likely play a role in pathogen entry into tick cells are largely unknown. To address this knowledge gap, we developed a phage display library and screened 66 A. marginale proteins for their ability to adhere to Dermacentor andersoni tick cells. From this screen, 17 candidate adhesins were identified, including OmpA and multiple members of the Msp1 family, including Msp1b, Mlp3, and Mlp4. We then measured the transcript of ompA and all members of the msp1 gene family through time, and determined that msp1b, mlp2, and mlp4 have increased transcript during tick cell infection, suggesting a possible role in host cell binding or entry. Finally, Msp1a, Msp1b, Mlp3, and OmpA were expressed as recombinant protein. When added to cultured tick cells prior to A. marginale infection, all proteins except the C-terminus of Msp1a reduced A. marginale entry by 2.2- to 4.7-fold. Except OmpA, these adhesins lack orthologs in related pathogens of humans and animals, including Anaplasma phagocytophilum and the Ehrlichia spp., thus limiting their utility in a universal tick transmission-blocking vaccine. However, this work greatly advances efforts toward developing methods to control bovine anaplasmosis and, thus, may help improve global food security.


Subject(s)
Adhesins, Bacterial , Anaplasma marginale , Dermacentor , Animals , Anaplasma marginale/genetics , Adhesins, Bacterial/metabolism , Adhesins, Bacterial/genetics , Dermacentor/microbiology , Cattle , Bacterial Adhesion/physiology , Anaplasmosis/microbiology , Bacterial Outer Membrane Proteins/metabolism , Bacterial Outer Membrane Proteins/genetics , Cell Surface Display Techniques , Host-Pathogen Interactions , Cattle Diseases/microbiology
18.
Parasite Immunol ; 46(5): e13037, 2024 May.
Article in English | MEDLINE | ID: mdl-38720446

ABSTRACT

The treatment for visceral leishmaniasis (VL) causes toxicity in patients, entails high cost and/or leads to the emergence of resistant strains. No human vaccine exists, and diagnosis presents problems related to the sensitivity or specificity of the tests. Here, we tested two phage clones, B1 and D11, which were shown to be protective against Leishmania infantum infection in a murine model as immunotherapeutics to treat mice infected with this parasite species. The phages were used alone or with amphotericin B (AmpB), while other mice received saline, AmpB, a wild-type phage (WTP) or WTP/AmpB. Results showed that the B1/AmpB and D11/AmpB combinations induced polarised Th1-type cellular and humoral responses, which were primed by high levels of parasite-specific IFN-γ, IL-12, TNF-α, nitrite and IgG2a antibodies, which reflected in significant reductions in the parasite load in distinct organs of the animals when analyses were performed 1 and 30 days after the treatments. Reduced organic toxicity was also found in these animals, as compared with the controls. In conclusion, preliminary data suggest the potential of the B1/AmpB and D11/AmpB combinations as immunotherapeutics against L. infantum infection.


Subject(s)
Amphotericin B , Antibodies, Protozoan , Immunotherapy , Leishmania infantum , Leishmaniasis, Visceral , Mice, Inbred BALB C , Leishmaniasis, Visceral/immunology , Leishmaniasis, Visceral/drug therapy , Animals , Amphotericin B/therapeutic use , Amphotericin B/administration & dosage , Antibodies, Protozoan/blood , Leishmania infantum/immunology , Leishmania infantum/drug effects , Mice , Immunotherapy/methods , Female , Antiprotozoal Agents/therapeutic use , Antiprotozoal Agents/administration & dosage , Immunoglobulin G/blood , Parasite Load , Disease Models, Animal , Cell Surface Display Techniques , Cytokines/metabolism , Th1 Cells/immunology
19.
Viruses ; 16(5)2024 04 26.
Article in English | MEDLINE | ID: mdl-38793567

ABSTRACT

Directed evolution is a pivotal strategy for new antibody discovery, which allowed the generation of high-affinity Fabs against gliadin from two antibody libraries in our previous studies. One of the libraries was exclusively derived from celiac patients' mRNA (immune library) while the other was obtained through a protein engineering approach (semi-immune library). Recent advances in high-throughput DNA sequencing techniques are revolutionizing research across genomics, epigenomics, and transcriptomics. In the present work, an Oxford Nanopore in-lab sequencing device was used to comprehensively characterize the composition of the constructed libraries, both at the beginning and throughout the phage-mediated selection processes against gliadin. A customized analysis pipeline was used to select high-quality reads, annotate chain distribution, perform sequence analysis, and conduct statistical comparisons between the different selection rounds. Some immunological attributes of the most representative phage variants after the selection process were also determined. Sequencing results revealed the successful transfer of the celiac immune response features to the immune library and the antibodies derived from it, suggesting the crucial role of these features in guiding the selection of high-affinity recombinant Fabs against gliadin. In summary, high-throughput DNA sequencing has improved our understanding of the selection processes aimed at generating molecular binders against gliadin.


Subject(s)
Gliadin , High-Throughput Nucleotide Sequencing , Immunoglobulin Fab Fragments , Nanopore Sequencing , Peptide Library , Gliadin/immunology , Gliadin/genetics , Humans , High-Throughput Nucleotide Sequencing/methods , Nanopore Sequencing/methods , Immunoglobulin Fab Fragments/genetics , Immunoglobulin Fab Fragments/immunology , Celiac Disease/immunology , Celiac Disease/genetics , Cell Surface Display Techniques/methods
20.
Int J Mol Sci ; 25(9)2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38732011

ABSTRACT

Immunoglobulin G-based monoclonal antibodies (mAbs) have been effective in treating various diseases, but their large molecular size can limit their penetration of tissue and efficacy in multifactorial diseases, necessitating the exploration of alternative forms. In this study, we constructed a phage display library comprising single-domain antibodies (sdAbs; or "VHHs"), known for their small size and remarkable stability, using a total of 1.6 × 109 lymphocytes collected from 20 different alpacas, resulting in approximately 7.16 × 1010 colonies. To assess the quality of the constructed library, next-generation sequencing-based high-throughput profiling was performed, analyzing approximately 5.65 × 106 full-length VHH sequences, revealing 92% uniqueness and confirming the library's diverse composition. Systematic characterization of the library revealed multiple sdAbs with high affinity for three therapeutically relevant antigens. In conclusion, our alpaca sdAb phage display library provides a versatile resource for diagnostics and therapeutics. Furthermore, the library's vast natural VHH antibody repertoire offers insights for generating humanized synthetic sdAb libraries, further advancing sdAb-based therapeutics.


Subject(s)
Camelids, New World , Peptide Library , Single-Domain Antibodies , Single-Domain Antibodies/genetics , Single-Domain Antibodies/immunology , Single-Domain Antibodies/chemistry , Animals , Camelids, New World/immunology , High-Throughput Nucleotide Sequencing , Humans , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/genetics , High-Throughput Screening Assays/methods , Antibody Affinity , Cell Surface Display Techniques/methods
SELECTION OF CITATIONS
SEARCH DETAIL