Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.082
Filter
1.
Biomaterials ; 313: 122796, 2025 Feb.
Article in English | MEDLINE | ID: mdl-39226654

ABSTRACT

Chemotherapy-induced cellular senescence leads to an increased proportion of cancer stem cells (CSCs) in breast cancer (BC), contributing to recurrence and metastasis, while effective means to clear them are currently lacking. Herein, we aim to develop new approaches for selectively killing senescent-escape CSCs. High CD276 (95.60%) expression in multidrug-resistant BC cells, facilitates immune evasion by low-immunogenic senescent escape CSCs. CALD1, upregulated in ADR-resistant BC, promoting senescent-escape of CSCs with an anti-apoptosis state and upregulating CD276, PD-L1 to promote chemoresistance and immune escape. We have developed a controlled-released thermosensitive hydrogel containing pH- responsive anti-CD276 scFV engineered biomimetic nanovesicles to overcome BC in primary, recurrent, metastatic and abscopal humanized mice models. Nanovesicles coated anti-CD276 scFV selectively fuses with cell membrane of senescent-escape CSCs, then sequentially delivers siCALD1 and ADR due to pH-responsive MnP shell. siCALD1 together with ADR effectively induce apoptosis of CSCs, decrease expression of CD276 and PD-L1, and upregulate MHC I combined with Mn2+ to overcome chemoresistance and promote CD8+T cells infiltration. This combined therapeutic approach reveals insights into immune surveillance evasion by senescent-escape CSCs, offering a promising strategy to immunotherapy effectiveness in cancer therapy.


Subject(s)
Breast Neoplasms , Cellular Senescence , Drug Resistance, Neoplasm , Neoplastic Stem Cells , Humans , Animals , Breast Neoplasms/pathology , Breast Neoplasms/drug therapy , Breast Neoplasms/therapy , Drug Resistance, Neoplasm/drug effects , Female , Neoplastic Stem Cells/drug effects , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Cellular Senescence/drug effects , Cell Line, Tumor , Mice , Biomimetic Materials/chemistry , Biomimetic Materials/pharmacology , Genetic Engineering/methods , Doxorubicin/pharmacology , Doxorubicin/therapeutic use , Nanoparticles/chemistry , Single-Chain Antibodies/chemistry , Tumor Escape/drug effects , B7-H1 Antigen/metabolism , Apoptosis/drug effects , Biomimetics/methods , B7 Antigens
2.
Int J Nanomedicine ; 19: 8797-8813, 2024.
Article in English | MEDLINE | ID: mdl-39220198

ABSTRACT

Aging is an inevitable process in the human body, and cellular senescence refers to irreversible cell cycle arrest caused by external aging-promoting mechanisms. Moreover, as age increases, the accumulation of senescent cells limits both the health of the body and lifespan and even accelerates the occurrence and progression of age-related diseases. Therefore, it is crucial to delay the periodic irreversible arrest and continuous accumulation of senescent cells to address the issue of aging. The fundamental solution is targeted therapy focused on eliminating senescent cells or reducing the senescence-associated secretory phenotype. Over the past few decades, the remarkable development of nanomaterials has revolutionized clinical drug delivery pathways. Their unique optical, magnetic, and electrical properties effectively compensate for the shortcomings of traditional drugs, such as low stability and short half-life, thereby maximizing the bioavailability and minimizing the toxicity of drug delivery. This article provides an overview of how nanomedicine systems control drug release and achieve effective diagnosis. By presenting and analyzing recent advances in nanotherapy for targeting senescent cells, the underlying mechanisms of nanomedicine for senolytic and senomorphic therapy are clarified, providing great potential for targeting senescent cells.


Subject(s)
Cellular Senescence , Nanomedicine , Humans , Cellular Senescence/drug effects , Animals , Drug Delivery Systems/methods , Aging/drug effects , Aging/physiology , Nanoparticles/chemistry
3.
J Drugs Dermatol ; 23(9): 748-756, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-39231083

ABSTRACT

BACKGROUND: Dermatoporosis (DP) is a condition associated with thinning skin layers and resultant fragility. Much of the thinning is related to fibroblast dysfunction, production of destructive inflammatory cytokines, breakdown of the extracellular matrix (ECM), and weakening of the dermo-epidermal junction. A major contributor to this change in the ECM milieu, previously under-considered, is cellular senescence, particularly involving the papillary dermal fibroblasts. METHODS: A series of experiments were undertaken to explore the impact of a combination of known actives on senescent cell status. Human keratinocytes and fibroblasts were cultured, and cytotoxicity tests were performed to determine the ideal concentration to avoid cell toxicity. Microdoses of Centella asiatica (0.005%) and mandelic acid (0.05%) were found to be ideal in avoiding any cytotoxicity. However, the challenge was then to assess the efficacy of these actives in this microdosed form. After exposing the cells to the compounds, RNA was isolated and sequenced. Moreover, a well-described ex vivo model using photodamaged skin was subjected to immunofluorescence to identify senescent cells (via p16INK4a), particularly in the papillary dermis, using the microdose formulation compared to untreated skin. In addition, JAG/NOTCH expression in the epidermal basal cells was evaluated to further understand the cellular senescence signaling mechanism. RESULTS: Microdosing these two well-known agents had surprisingly significant synergistic effects in vitro, decreasing senescence-associated secretory phenotype (SASP) cytokines and the associated inflammation involved in the process. The ex vivo model revealed a significant (P<0.05) decrease in senescent cells in the papillary dermis and a significant increase (P<0.001) of JAG/NOTCH expression in the basal cells of the epidermis. CONCLUSION: Using microdoses of two known agents, a novel approach produced an unexpected effect of reversal of dermal senescent cells and promoting an anti-inflammatory milieu. A gene expression analysis of the individual and combined actives validated these observations, followed by full formulation testing in an ex vivo model. The approach of limiting cellular senescence in dermal fibroblasts for managing DP is novel and provides an exciting new direction to address dermatoporosis. Clinical studies will follow. J Drugs Dermatol. 2024;23(9):748-756. doi:10.36849/JDD.8388.


Subject(s)
Cellular Senescence , Fibroblasts , Keratinocytes , Skin Aging , Humans , Cellular Senescence/drug effects , Skin Aging/drug effects , Keratinocytes/drug effects , Keratinocytes/metabolism , Fibroblasts/metabolism , Fibroblasts/drug effects , Triterpenes/pharmacology , Plant Extracts/pharmacology , Plant Extracts/administration & dosage , Centella , Cells, Cultured , Cyclin-Dependent Kinase Inhibitor p16/metabolism
4.
Sci Rep ; 14(1): 21852, 2024 09 19.
Article in English | MEDLINE | ID: mdl-39300121

ABSTRACT

5-Fluorouracil (5-FU) is used as a standard first-line drug for colorectal cancer malignancy (CRC), but it brings a series of side effects such as severe diarrhea and intestinal damage. Our previous study found that a large number of senescent cells increased while 5-Fu induced intestinal damage, and anti-senescence drugs can alleviate its side effects of inflammatory damage. Oleanolic acid (OA) is a common pentacyclic triterpenoid mainly derived from food fungi and medicinal plants, and studies have shown that it mainly possesses hepatoprotective, enzyme-lowering, anti-inflammatory, and anti-tumor effects. But its role in senescence is still unclear. In the present study, we demonstrated for the first time that OA ameliorated 5-Fu-induced human umbilical vein endothelial cells (HUVECs) and human normal intestinal epithelial cells (NCM460) in a 5-Fu-induced cellular senescence model by decreasing the activity of SA-ß-gal-positive cells, and the expression of senescence-associated proteins (p16), senescence-associated genes (p53 and p21), and senescence-associated secretory phenotypes (SASPs: IL-1ß, IL-6, IL-8, IFN-γ and TNF-α). Meanwhile, in this study, in a BALB/c mouse model, we demonstrated that 5-FU induced intestinal inflammatory response and injury, which was also found to be closely related to the increase of senescent cells, and that OA treatment was effective in ameliorating these adverse phenomena. Furthermore, our in vivo and in vitro studies showed that OA could alleviate senescence by inhibiting mTOR. In colon cancer cell models, OA also enhanced the ability of 5-FU to kill HCT116 cells and SW480 cells. Overall, this study demonstrates for the first time the potential role of OA in counteracting the side effects of 5-FU chemotherapy, providing a new option for the treatment of colorectal cancer to progressively achieve the goal of high efficacy and low toxicity of chemotherapy.


Subject(s)
Cellular Senescence , Fluorouracil , Human Umbilical Vein Endothelial Cells , Inflammation , Oleanolic Acid , Oleanolic Acid/pharmacology , Fluorouracil/adverse effects , Fluorouracil/pharmacology , Humans , Cellular Senescence/drug effects , Animals , Mice , Inflammation/drug therapy , Inflammation/pathology , Inflammation/metabolism , Human Umbilical Vein Endothelial Cells/drug effects , Intestinal Mucosa/drug effects , Intestinal Mucosa/metabolism , Intestinal Mucosa/pathology , Mice, Inbred BALB C , Intestines/drug effects , Intestines/pathology , Male , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology
5.
Int J Biol Sci ; 20(11): 4314-4340, 2024.
Article in English | MEDLINE | ID: mdl-39247818

ABSTRACT

Background: Cellular senescence has emerged as a pivotal focus in cardiovascular research. This study investigates the previously unrecognized role of cellular senescence in septic cardiomyopathy (SCM) and evaluates senomorphic therapy using ruxolitinib (Rux) as a potential treatment option. Methods: We employed lipopolysaccharide (LPS)-induced neonatal rat cardiomyocytes (NRCMs) and two mouse models-LPS-induced and cecal ligation and puncture (CLP)-induced SCM models-to assess Rux's effects. RNA sequencing, western blotting (WB), quantitative polymerase chain reaction (qPCR), immunofluorescence, immunohistochemistry, senescence-associated ß-galactosidase (SA-ß-gal) assay, and other techniques were utilized to investigate underlying mechanisms. Results: Senescence-associated secretory phenotype (SASP) and cellular senescence markers were markedly elevated in LPS-induced NRCMs and SCM animal models, confirmed by the SA-ß-gal assay. Rux treatment attenuated SASP in vitro and in vivo, alongside downregulation of senescence markers. Moreover, Rux-based senomorphic therapy mitigated mitochondrial-mediated apoptosis, improved cardiac function in SCM mice, restored the balance of antioxidant system, and reduced reactive oxygen species (ROS) levels. Rux treatment restored mitochondrial membrane potential, mitigated mitochondrial morphological damage, and upregulated mitochondrial complex-related gene expression, thereby enhancing mitochondrial function. Additionally, Rux treatment ameliorated SCM-induced mitochondrial dynamic dysfunction and endoplasmic reticulum stress. Mechanistically, Rux inhibited JAK2-STAT3 signaling activation both in vitro and in vivo. Notably, low-dose Rux and ABT263 showed comparable efficacy in mitigating SCM. Conclusions: This study highlighted the potential significance of cellular senescence in SCM pathogenesis and suggested Rux-based senomorphic therapy as a promising therapeutic approach for SCM.


Subject(s)
Cardiomyopathies , Cellular Senescence , Janus Kinase 2 , Myocytes, Cardiac , Nitriles , Pyrazoles , Pyrimidines , STAT3 Transcription Factor , Signal Transduction , Animals , Janus Kinase 2/metabolism , STAT3 Transcription Factor/metabolism , Cellular Senescence/drug effects , Signal Transduction/drug effects , Mice , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/drug effects , Cardiomyopathies/metabolism , Cardiomyopathies/drug therapy , Nitriles/therapeutic use , Nitriles/pharmacology , Rats , Pyrimidines/pharmacology , Pyrimidines/therapeutic use , Pyrazoles/pharmacology , Pyrazoles/therapeutic use , Male , Mice, Inbred C57BL , Sepsis/metabolism , Sepsis/drug therapy , Rats, Sprague-Dawley , Lipopolysaccharides , Disease Models, Animal
6.
Nat Commun ; 15(1): 7712, 2024 Sep 04.
Article in English | MEDLINE | ID: mdl-39231947

ABSTRACT

Osteoarthritis is a degenerative joint disease with joint pain as the main symptom, caused by fibrosis and loss of articular cartilage. Due to the complexity and heterogeneity of osteoarthritis, there is a lack of effective individualized disease-modifying osteoarthritis drugs in clinical practice. Chondrocyte senescence is reported to participate in occurrence and progression of osteoarthritis. Here we show that small molecule 10-hydroxy-2-decenoic acid suppresses cartilage degeneration and relieves pain in the chondrocytes, cartilage explants from osteoarthritis patients, surgery-induced medial meniscus destabilization or naturally aged male mice. We further confirm that 10-hydroxy-2-decenoic acid exerts a protective effect by targeting the glycosylation site in the Asp_Arg_Hydrox domain of aspartyl ß-hydroxylase. Mechanistically, 10-hydroxy-2-decenoic acid alleviate cellular senescence through the ERK/p53/p21 and GSK3ß/p16 pathways in the chondrocytes. Our study uncovers that 10-hydroxy-2-decenoic acid modulate cartilage metabolism by targeting aspartyl ß-hydroxylase to inhibit chondrocyte senescence in osteoarthritis. 10-hydroxy-2-decenoic acid may be a promising therapeutic drug against osteoarthritis.


Subject(s)
Cartilage, Articular , Cellular Senescence , Chondrocytes , Fatty Acids, Monounsaturated , Osteoarthritis , Animals , Chondrocytes/drug effects , Chondrocytes/metabolism , Chondrocytes/pathology , Male , Osteoarthritis/metabolism , Osteoarthritis/pathology , Osteoarthritis/drug therapy , Osteoarthritis/prevention & control , Mice , Cellular Senescence/drug effects , Humans , Fatty Acids, Monounsaturated/pharmacology , Cartilage, Articular/drug effects , Cartilage, Articular/metabolism , Cartilage, Articular/pathology , Mice, Inbred C57BL , Disease Models, Animal , Female
7.
J Transl Med ; 22(1): 834, 2024 Sep 11.
Article in English | MEDLINE | ID: mdl-39261935

ABSTRACT

BACKGROUND: Premature ovarian insufficiency (POI) is a condition characterized by a substantial decline or loss of ovarian function in women before the age of 40. However, the pathogenesis of POI remains to be further elucidated, and specific targeted drugs which could delay or reverse ovarian reserve decline are urgently needed. Abnormal DNA damage repair (DDR) and cell senescence in granulosa cells are pathogenic mechanisms of POI. Ubiquitin-specific protease 14 (USP14) is a key enzyme that regulates the deubiquitylation of DDR-related proteins, but whether USP14 participates in the pathogenesis of POI remains unclear. METHODS: We measured USP14 mRNA expression in granulosa cells from biochemical POI (bPOI) patients. In KGN cells, we used IU1 and siRNA-USP14 to specifically inhibit USP14 and constructed a cell line stably overexpressing USP14 to examine its effects on DDR function and cellular senescence in granulosa cells. Next, we explored the therapeutic potential of IU1 in POI mouse models induced by D-galactose. RESULTS: USP14 expression in the granulosa cells of bPOI patients was significantly upregulated. In KGN cells, IU1 treatment and siUSP14 transfection decreased etoposide-induced DNA damage levels, promoted DDR function, and inhibited cell senescence. USP14 overexpression increased DNA damage, impaired DDR function, and promoted cell senescence. Moreover, IU1 treatment and siUSP14 transfection increased nonhomologous end joining (NHEJ), upregulated RNF168, Ku70, and DDB1, and increased ubiquitinated DDB1 levels in KGN cells. Conversely, USP14 overexpression had the opposite effects. Intraperitoneal IU1 injection alleviated etoposide-induced DNA damage in granulosa cells, ameliorated the D-galactose-induced POI phenotype, promoted DDR, and inhibited cell senescence in ovarian granulosa cells in vivo. CONCLUSIONS: Upregulated USP14 in ovarian granulosa cells may play a role in POI pathogenesis, and targeting USP14 may be a potential POI treatment strategy. Our study provides new insights into the pathogenesis of POI and a novel POI treatment strategy.


Subject(s)
Cellular Senescence , DNA Damage , DNA Repair , Granulosa Cells , Primary Ovarian Insufficiency , Ubiquitin Thiolesterase , Female , Primary Ovarian Insufficiency/pathology , Primary Ovarian Insufficiency/metabolism , Primary Ovarian Insufficiency/genetics , Granulosa Cells/metabolism , Granulosa Cells/drug effects , Granulosa Cells/pathology , Cellular Senescence/drug effects , Animals , Humans , Ubiquitin Thiolesterase/metabolism , Ubiquitin Thiolesterase/genetics , DNA Repair/drug effects , Mice , Adult , Mice, Inbred C57BL , Cell Line
8.
Cells ; 13(17)2024 Sep 01.
Article in English | MEDLINE | ID: mdl-39273040

ABSTRACT

Aging is an inevitable biological process that contributes to the onset of age-related diseases, often as a result of mitochondrial dysfunction. Understanding the mechanisms behind aging is crucial for developing therapeutic interventions. This study investigates the effects of curcumin on postmitotic cellular lifespan (PoMiCL) during chronological aging in yeast, a widely used model for human postmitotic cellular aging. Our findings reveal that curcumin significantly prolongs the PoMiCL of wildtype yeast cells, with the most pronounced effects observed at lower concentrations, indicating a hormetic response. Importantly, curcumin also extends the lifespan of postmitotic cells with mitochondrial deficiencies, although the hormetic effect is absent in these defective cells. Mechanistically, curcumin inhibits TORC1 activity, enhances ATP levels, and induces oxidative stress. These results suggest that curcumin has the potential to modulate aging and offer therapeutic insights into age-related diseases, highlighting the importance of context in its effects.


Subject(s)
Curcumin , Mitochondria , Saccharomyces cerevisiae , Curcumin/pharmacology , Mitochondria/drug effects , Mitochondria/metabolism , Saccharomyces cerevisiae/drug effects , Saccharomyces cerevisiae/metabolism , Oxidative Stress/drug effects , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/genetics , Adenosine Triphosphate/metabolism , Humans , Cellular Senescence/drug effects , Mechanistic Target of Rapamycin Complex 1/metabolism , Transcription Factors
9.
Molecules ; 29(17)2024 Sep 04.
Article in English | MEDLINE | ID: mdl-39275030

ABSTRACT

As cellular senescence, reactive oxygen species (ROS) accumulate excessively, causing cellular damage. Flavonoids derived from natural products are known for their antioxidant effects and their ability to delay cellular senescence. Previous studies have attempted to mitigate cellular senescence using flavonoids from natural sources. However, the detailed mechanisms and regulatory targets of some flavonoids exhibiting antioxidant effects have not been fully elucidated. Therefore, we screened a library of flavonoids for antioxidant properties. Isoschaftoside, a glycosidic flavonoid, significantly reduced ROS levels in senescent cells. It was found that mitochondrial function was restored, and dependence on glycolysis was reduced in senescent cells treated with isoschaftoside. Additionally, we identified that isoschaftoside suppresses ROS by reducing the expression of RAC2 and LINC00294 in senescent cells. Taken together, this study establishes a novel mechanism for ROS inhibition and the regulation of cellular senescence by isoschaftoside. Our findings contribute important insights to antioxidant and anti-senescence research.


Subject(s)
Antioxidants , Cellular Senescence , RAC2 GTP-Binding Protein , Reactive Oxygen Species , rac GTP-Binding Proteins , Cellular Senescence/drug effects , Humans , Reactive Oxygen Species/metabolism , rac GTP-Binding Proteins/metabolism , rac GTP-Binding Proteins/genetics , Antioxidants/pharmacology , Antioxidants/chemistry , Mitochondria/metabolism , Mitochondria/drug effects , Glycosides/pharmacology , Glycosides/chemistry , Flavonoids/pharmacology , Flavonoids/chemistry , Cell Line
10.
Nutrients ; 16(17)2024 Aug 26.
Article in English | MEDLINE | ID: mdl-39275168

ABSTRACT

Obesity has been associated with a chronic increase in sympathetic nerve activity, which can lead to hypertension and other cardiovascular diseases. Preliminary studies from our lab found that oxidative stress and neuroinflammation in the brainstem contribute to sympathetic overactivity in high-fat-diet-induced obese mice. However, with glial cells emerging as significant contributors to various physiological processes, their role in causing these changes in obesity remains unknown. In this study, we wanted to determine the role of palmitic acid, a major form of saturated fatty acid in the high-fat diet, in regulating sympathetic outflow. Human brainstem astrocytes (HBAs) were used as a cell culture model since astrocytes are the most abundant glial cells and are more closely associated with the regulation of neurons and, hence, sympathetic nerve activity. In the current study, we hypothesized that palmitic acid-mediated oxidative stress induces senescence and downregulates glutamate reuptake transporters in HBAs. HBAs were treated with palmitic acid (25 µM for 24 h) in three separate experiments. After the treatment period, the cells were collected for gene expression and protein analysis. Our results showed that palmitic acid treatment led to a significant increase in the mRNA expression of oxidative stress markers (NQO1, SOD2, and CAT), cellular senescence markers (p21 and p53), SASP factors (TNFα, IL-6, MCP-1, and CXCL10), and a downregulation in the expression of glutamate reuptake transporters (EAAT1 and EAAT2) in the HBAs. Protein levels of Gamma H2AX, p16, and p21 were also significantly upregulated in the treatment group compared to the control. Our results showed that palmitic acid increased oxidative stress, DNA damage, cellular senescence, and SASP factors, and downregulated the expression of glutamate reuptake transporters in HBAs. These findings suggest the possibility of excitotoxicity in the neurons of the brainstem, sympathoexcitation, and increased risk for cardiovascular diseases in obesity.


Subject(s)
Astrocytes , Brain Stem , Cellular Senescence , Down-Regulation , Obesity , Oxidative Stress , Palmitic Acid , Palmitic Acid/pharmacology , Oxidative Stress/drug effects , Humans , Astrocytes/metabolism , Astrocytes/drug effects , Obesity/metabolism , Cellular Senescence/drug effects , Brain Stem/metabolism , Brain Stem/drug effects , Amino Acid Transport System X-AG/metabolism , Sympathetic Nervous System/drug effects , Sympathetic Nervous System/metabolism , Cells, Cultured
11.
BMC Med ; 22(1): 376, 2024 Sep 11.
Article in English | MEDLINE | ID: mdl-39256772

ABSTRACT

BACKGROUND: Neurogenic erectile dysfunction, characterized by neurological repair disorders and progressive corpus cavernosum fibrosis (CCF), is an unbearable disease with limited treatment success. IL-17A exhibits a complex role in tissue remodelling. Nevertheless, the precise role and underlying mechanisms of IL-17A in CCF under denervation remain unclear. METHODS: PCR array was employed to identified differentially expressed genes between neurogenic ED and normal rats. IL-17A expression and its main target cells were analyzed using Western blotting, immunofluorescence and immunohistochemistry. The phenotypic regulation of IL-17A on corpus cavernosum smooth muscle cells (CSMCs) was evaluated by cell cycle experiments and SA-ß-Gal staining. The mechanism of IL-17A was elucidated using non-target metabolomics and siRNA technique. Finally, IL-17A antagonist and ABT-263 (an inhibitor of B-cell lymphoma 2/w/xL) were utilized to enhance the therapeutic effect in a rat model of neurogenic ED. RESULTS: IL-17A emerged as the most significantly upregulated gene in the corpus cavernosum of model rats. It augmented the senescence transformation and fibrotic response of CSMCs, and exhibited a strong correlation with CCF. Mechanistically, IL-17A facilitated CCF by activating the mTORC2-ACACA signalling pathway, upregulating of CSMCs lipid synthesis and senescence transition, and increasing the secretion of fibro-matrix proteins. In vivo, the blockade of IL-17A-senescence signalling improved erectile function and alleviated CCF in neurogenic ED. CONCLUSIONS: IL-17A assumes a pivotal role in denervated CCF by activating the mTORC2-ACACA signalling pathway, presenting itself as a potential therapeutic target for effectively overcoming CCF and erection rehabilitation in neurogenic ED.


Subject(s)
Erectile Dysfunction , Fibrosis , Interleukin-17 , Penis , Signal Transduction , Animals , Male , Erectile Dysfunction/drug therapy , Interleukin-17/metabolism , Rats , Signal Transduction/drug effects , Penis/innervation , Penis/pathology , Mechanistic Target of Rapamycin Complex 2/metabolism , Rats, Sprague-Dawley , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/drug effects , Cellular Senescence/drug effects , Disease Models, Animal
12.
Biomater Adv ; 165: 214010, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39222592

ABSTRACT

The application of biomaterials in bone regeneration is a prevalent clinical practice. However, its efficacy in elderly patients remains suboptimal, necessitating further advancements. While biomaterial properties are known to orchestrate macrophage (MΦ) polarization and local immune responses, the role of biomaterial cues, specifically stiffness, in directing the senescent macrophage (S-MΦ) is still poorly understood. This study aimed to elucidate the role of substrate stiffness in modulating the immunomodulatory properties of S-MΦ and their role in osteo-immunomodulation. Our results demonstrated that employing collagen-coated polyacrylamide hydrogels with varying stiffness values (18, 76, and 295 kPa) as model materials, the high-stiffness hydrogel (295 kPa) steered S-MΦs towards a pro-inflammatory M1 phenotype, while hydrogels with lower stiffness (18 and 76 kPa) promoted an anti-inflammatory M2 phenotype. The immune microenvironment created by S-MΦs promoted the bioactivities of senescent endothelial cells (S-ECs) and senescent bone marrow mesenchymal stem cells BMSCs (S-BMSCs). Furthermore, the M2 S-MΦs, particularly incubated on the 76 kPa hydrogel matrices, significantly enhanced the ability of angiogenesis of S-ECs and osteogenic differentiation of S-BMSCs, which are crucial and interrelated processes in bone healing. This modulation aided in reducing the accumulation of reactive oxygen species in S-ECs and S-BMSCs, thereby significantly contributing to the repair and regeneration of aged bone tissue.


Subject(s)
Bone Regeneration , Hydrogels , Immunomodulation , Macrophages , Mesenchymal Stem Cells , Osteogenesis , Bone Regeneration/drug effects , Macrophages/immunology , Macrophages/drug effects , Macrophages/metabolism , Hydrogels/chemistry , Osteogenesis/drug effects , Mesenchymal Stem Cells/immunology , Animals , Cellular Senescence/drug effects , Humans , Cell Differentiation , Neovascularization, Physiologic/drug effects , Acrylic Resins/chemistry , Acrylic Resins/pharmacology , Biocompatible Materials/pharmacology , Surface Properties , Collagen/metabolism
13.
Int J Mol Sci ; 25(17)2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39273228

ABSTRACT

Vascular aging is an important factor leading to cardiovascular diseases such as hypertension and atherosclerosis. Hyperlipidemia or fat accumulation may play an important role in vascular aging and cardiovascular disease. Isopropyl 3-(3,4-dihydroxyphenyl)-2-hydroxypropanoate (IDHP) has biological activity and can exert cardiovascular protection, which may be related to ferroptosis. However, the exact mechanism remains undefined. We hypothesized that IDHP may have a protective effect on blood vessels by regulating vascular aging caused by hyperlipidemia or vascular wall fat accumulation. The aim of this study is to investigate the protective effect and mechanism of IDHP on palmitic acid-induced human umbilical vein endothelial cells (HUVEC) based on senescence and ferroptosis. We found that IDHP could delay vascular aging, reduce the degree of ferrous ion accumulation and lipid peroxidation, and protect vascular cells from injury. These effects may be achieved by attenuating excessive reactive oxygen species (ROS) and ferroptosis signaling pathways generated in vascular endothelial cells. In short, our study identified IDHP as one of the antioxidant agents to slow down lipotoxicity-induced vascular senescence through the ROS/ferroptosis pathway. IDHP has new medicinal value and provides a new therapeutic idea for delaying vascular aging in patients with dyslipidemia.


Subject(s)
Cellular Senescence , Ferroptosis , Human Umbilical Vein Endothelial Cells , Palmitic Acid , Reactive Oxygen Species , Signal Transduction , Humans , Human Umbilical Vein Endothelial Cells/metabolism , Human Umbilical Vein Endothelial Cells/drug effects , Reactive Oxygen Species/metabolism , Palmitic Acid/pharmacology , Cellular Senescence/drug effects , Ferroptosis/drug effects , Signal Transduction/drug effects , Lipid Peroxidation/drug effects , Antioxidants/pharmacology
14.
Theranostics ; 14(12): 4730-4746, 2024.
Article in English | MEDLINE | ID: mdl-39239523

ABSTRACT

Rationale: Mechanical force plays crucial roles in extracellular vesicle biogenesis, release, composition and activity. However, it is unknown whether mechanical force regulates apoptotic vesicle (apoV) production. Methods: The effects of mechanical unloading on extracellular vesicles of bone marrow were evaluated through morphology, size distribution, yield, and protein mass spectrometry analysis using hindlimb unloading (HU) mouse model. Apoptosis resistance and aging related phenotype were assessed using HU mouse model in vivo and cell microgravity model in vitro. The therapeutic effects of apoVs on HU mouse model were assessed by using microcomputed tomography, histochemical and immunohistochemical, as well as histomorphometry analyses. SiRNA and chemicals were used for gain and loss-of-function assay. Results: In this study, we show that loss of mechanical force led to cellular apoptotic resistance and aging related phenotype, thus reducing the number of apoVs in the circulation due to down-regulated expression of Piezo1 and reduced calcium influx. And systemic infusion of apoVs was able to rescue Piezo1 expression and calcium influx, thereby, rescuing mechanical unloading-induced cellular apoptotic resistance, senescent cell accumulation. Conclusions: This study identified a previously unknown role of mechanical force in maintaining apoptotic homeostasis and eliminating senescent cells. Systemic infusion of mesenchymal stem cell-derived apoVs can effectively rescue apoptotic resistance and eliminate senescent cells in mechanical unloading mice.


Subject(s)
Apoptosis , Cellular Senescence , Extracellular Vesicles , Animals , Mice , Apoptosis/drug effects , Extracellular Vesicles/metabolism , Cellular Senescence/drug effects , Senotherapeutics/pharmacology , Ion Channels/metabolism , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/drug effects , Mice, Inbred C57BL , Hindlimb Suspension , Calcium/metabolism , Male , Stress, Mechanical
15.
Cells ; 13(17)2024 Sep 02.
Article in English | MEDLINE | ID: mdl-39273045

ABSTRACT

Cisplatin is a potent chemotherapy medication that is used to treat various types of cancer. However, it can cause nephrotoxic side effects, which lead to acute kidney injury (AKI) and subsequent chronic kidney disease (CKD). Although a clinically relevant in vitro model of CKD induced by repeated administration of low-dose cisplatin (RAC) has been established, its underlying mechanisms remain poorly understood. Here, we compared single administration of high-dose cisplatin (SAC) to repeated administration of low-dose cisplatin (RAC) in myofibroblast transformation and cellular morphology in a normal rat kidney fibroblast NRK-49F cell line. RAC instead of SAC transformed the fibroblasts into myofibroblasts as determined by α-smooth muscle actin, enlarged cell size as represented by F-actin staining, and increased cell flattening as expressed by the semidiameter ratio of attached cells to floated cells. Those phenomena, as well as cellular senescence, were significantly detected from the time right before the second administration of cisplatin. Interestingly, inhibition of the interaction between Yes-associated protein (YAP) and the transcriptional enhanced associated domain (TEAD) using Verteporfin remarkedly reduced cell size, cellular senescence, and myofibroblast transformation during RAC. These findings collectively suggest that YAP activation is indispensable for cellular hypertrophy, senescence, and myofibroblast transformation during RAC in kidney fibroblasts.


Subject(s)
Cisplatin , Fibroblasts , Kidney , Myofibroblasts , YAP-Signaling Proteins , Cisplatin/pharmacology , Animals , YAP-Signaling Proteins/metabolism , Myofibroblasts/metabolism , Myofibroblasts/drug effects , Myofibroblasts/pathology , Rats , Fibroblasts/metabolism , Fibroblasts/drug effects , Kidney/drug effects , Kidney/pathology , Kidney/metabolism , Cell Line , Cellular Senescence/drug effects , Verteporfin/pharmacology , TEA Domain Transcription Factors , Adaptor Proteins, Signal Transducing/metabolism
16.
Phytomedicine ; 134: 155982, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39244941

ABSTRACT

BACKGROUND: Aging-induced decline in ciliary muscle function is an important factor in visual accommodative deficits in elderly adults. With this study, we provide an innovative investigation of the interaction between ciliary muscle aging and oxidative stress. METHODS: Tricolor guinea pigs were used for the experiments in vivo and primary guinea pig ciliary smooth muscle cells were used for the experiments in vitro. RESULTS: We enriched for genes associated with muscle-aging-lutein relationship using bioinformatics, including Nuclear factor-erythroid 2-related factor-2 (Nrf2), Glutathione Peroxidase (GPx) gene family, Superoxide Dismutase (SOD) gene family, NAD(P)H: Quinone Oxidoreductase 1 (NQO1) and Heme Oxygenase-1 (HO-1). After gavage to aged guinea pigs, lutein reduced Reactive Oxygen Species (ROS) and P21 levels in senescent ciliary muscle; lutein decreased refractive error and restored accommodation of the eye. In addition, lutein increased GPx, SOD, and Catalase (CAT) levels in serum; lutein increased GPx and CAT levels in ciliary bodies. Lutein regulated the expression of proteins such as Nrf2, Kelch-like ECH-associated protein 1 (Keap1), and downstream proteins in senescent ciliary bodies. Similarly, guinea pig ciliary muscle cell senescence was associated with oxidative stress. In vitro, 100 µM lutein reversed the damage caused by 800 µM H2O2; it reduced Senescence-Associated ß-galactosidase (SA-ß-Gal) and ROS activites, cell apoptosis and cell migration. Also, lutein increased the expression of smooth muscle contractile proteins. Lutein also increased the expression of Nrf2, GPx2, NQO1 and HO-1, decreased the expression of Keap1. A reduction in Nrf2 activity led to a reduction in the ability of lutein to activate antioxidant enzymes in the cells, thus reducing its inhibitory effect on cell senescence. CONCLUSION: lutein improved resistance to oxidative stress in senescent ciliary muscle in vivo and in vitro by regulating the Keap1/Nrf2/Antioxidant Response Element pathway. We have innovatively demonstrated the molecular pharmacological mechanism by which lutein reverse age-related ciliary muscle systolic and diastolic deficits.


Subject(s)
Kelch-Like ECH-Associated Protein 1 , Lutein , NF-E2-Related Factor 2 , Oxidative Stress , Animals , Guinea Pigs , Oxidative Stress/drug effects , NF-E2-Related Factor 2/metabolism , Kelch-Like ECH-Associated Protein 1/metabolism , Lutein/pharmacology , Reactive Oxygen Species/metabolism , Male , Signal Transduction/drug effects , Ciliary Body/drug effects , Aging/drug effects , Antioxidant Response Elements/drug effects , Antioxidants/pharmacology , Cellular Senescence/drug effects
17.
Cell Death Dis ; 15(9): 680, 2024 Sep 17.
Article in English | MEDLINE | ID: mdl-39289337

ABSTRACT

Iron overload and cellular senescence have been implicated in liver fibrosis, but their possible mechanistic connection has not been explored. To address this, we have delved into the role of iron and senescence in an experimental model of chronic liver injury, analyzing whether an iron chelator would prevent liver fibrosis by decreasing hepatocyte senescence. The model of carbon tetrachloride (CCl4) in mice was used as an experimental model of liver fibrosis. Results demonstrated that during the progression of liver fibrosis, accumulation of iron occurs, concomitant with the appearance of fibrotic areas and cells undergoing senescence. Isolated parenchymal hepatocytes from CCl4-treated mice present a gene transcriptomic signature compatible with iron accumulation and senescence, which correlates with induction of Reactive Oxygen Species (ROS)-related genes, activation of the Transforming Growth Factor-beta (TGF-ß) pathway and inhibition of oxidative metabolism. Analysis of the iron-related gene signature in a published single-cell RNA-seq dataset from CCl4-treated livers showed iron accumulation correlating with senescence in other non-parenchymal liver cells. Treatment with deferiprone, an iron chelator, attenuated iron accumulation, fibrosis and senescence, concomitant with relevant changes in the senescent-associated secretome (SASP), which switched toward a more anti-inflammatory profile of cytokines. In vitro experiments in human hepatocyte HH4 cells demonstrated that iron accumulates in response to a senescence-inducing reagent, doxorubicin, being deferiprone able to prevent senescence and SASP, attenuating growth arrest and cell death. However, deferiprone did not significantly affect senescence induced by two different agents (doxorubicin and deoxycholic acid) or activation markers in human hepatic stellate LX-2 cells. Transcriptomic data from patients with different etiologies demonstrated the relevance of iron accumulation in the progression of liver chronic damage and fibrosis, correlating with a SASP-related gene signature and pivotal hallmarks of fibrotic changes. Altogether, our study establishes iron accumulation as a clinically exploitable driver to attenuate pathological senescence in hepatocytes.


Subject(s)
Cellular Senescence , Iron Chelating Agents , Liver Cirrhosis , Liver Cirrhosis/pathology , Liver Cirrhosis/metabolism , Liver Cirrhosis/drug therapy , Animals , Cellular Senescence/drug effects , Iron Chelating Agents/pharmacology , Humans , Mice , Male , Disease Progression , Iron/metabolism , Hepatocytes/metabolism , Hepatocytes/drug effects , Hepatocytes/pathology , Mice, Inbred C57BL , Carbon Tetrachloride , Deferiprone/pharmacology , Reactive Oxygen Species/metabolism , Disease Models, Animal
18.
Lipids Health Dis ; 23(1): 282, 2024 Sep 04.
Article in English | MEDLINE | ID: mdl-39232759

ABSTRACT

OBJECTIVE: This study aimed to reveal the role and mechanism of MG-132 in delaying hyperlipidemia-induced senescence of vascular smooth muscle cells (VSMCs). METHODS: Immunohistochemistry and hematoxylin-eosin staining confirmed the therapeutic effect of MG-132 on arterial senescence in vivo and its possible mechanism. Subsequently, VSMCs were treated with sodium palmitate (PA), an activator (Recilisib) or an inhibitor (Pictilisib) to activate or inhibit PI3K, and CCK-8 and EdU staining, wound healing assays, Transwell cell migration assays, autophagy staining assays, reactive oxygen species assays, senescence-associated ß-galactosidase staining, and Western blotting were performed to determine the molecular mechanism by which MG-132 inhibits VSMC senescence. Validation of the interaction between MG-132 and PI3K using molecular docking. RESULTS: Increased expression of p-PI3K, a key protein of the autophagy regulatory system, and decreased expression of the autophagy-associated proteins Beclin 1 and ULK1 were observed in the aortas of C57BL/6J mice fed a high-fat diet (HFD), and autophagy was inhibited in aortic smooth muscle. MG-132 inhibits atherosclerosis by activating autophagy in VSMCs to counteract PA-induced cell proliferation, migration, oxidative stress, and senescence, thereby inhibiting VSMC senescence in the aorta. This process is achieved through the PI3K/AKT/mTOR signaling pathway. CONCLUSION: MG-132 activates autophagy by inhibiting the PI3K/AKT/mTOR pathway, thereby inhibiting palmitate-induced proliferation, migration, and oxidative stress in vascular smooth muscle cells and suppressing their senescence.


Subject(s)
Autophagy , Cellular Senescence , Leupeptins , Muscle, Smooth, Vascular , Myocytes, Smooth Muscle , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Signal Transduction , TOR Serine-Threonine Kinases , Autophagy/drug effects , Muscle, Smooth, Vascular/drug effects , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/cytology , TOR Serine-Threonine Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Animals , Cellular Senescence/drug effects , Humans , Phosphatidylinositol 3-Kinases/metabolism , Mice , Signal Transduction/drug effects , Myocytes, Smooth Muscle/drug effects , Myocytes, Smooth Muscle/metabolism , Leupeptins/pharmacology , Male , Mice, Inbred C57BL , Palmitic Acid/pharmacology , Cell Proliferation/drug effects , Cell Movement/drug effects , Diet, High-Fat/adverse effects
19.
FASEB J ; 38(15): e23878, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39120551

ABSTRACT

The ciliary muscle constitutes a crucial element in refractive regulation. Investigating the pathophysiological mechanisms within the ciliary muscle during excessive contraction holds significance in treating ciliary muscle dysfunction. A guinea pig model of excessive contraction of the ciliary muscle induced by drops pilocarpine was employed, alongside the primary ciliary muscle cells was employed in in vitro experiments. The results of the ophthalmic examination showed that pilocarpine did not significantly change refraction and axial length during the experiment, but had adverse effects on the regulatory power of the ciliary muscle. The current data reveal notable alterations in the expression profiles of hypoxia inducible factor 1 (HIF-1α), ATP2A2, P53, α-SMA, Caspase-3, and BAX within the ciliary muscle of animals subjected to pilocarpine exposure, alongside corresponding changes observed in cultured cells treated with pilocarpine. Augmented levels of ROS were detected in both tissue specimens and cells, culminating in a significant increase in cell apoptosis in in vivo and in vitro experiments. Further examination revealed that pilocarpine induced an increase in intracellular Ca2+ levels and disrupted MMP, as evidenced by mitochondrial swelling and diminished cristae density compared to control conditions, concomitant with a noteworthy decline in antioxidant enzyme activity. However, subsequent blockade of Ca2+ channels in cells resulted in downregulation of HIF-1α, ATP2A2, P53, α-SMA, Caspase-3, and BAX expression, alongside ameliorated mitochondrial function and morphology. The inhibition of Ca2+ channels presents a viable approach to mitigate ciliary cells damage and sustain proper ciliary muscle function by curtailing the mitochondrial damage induced by excessive contractions.


Subject(s)
Apoptosis , Calcium , Cellular Senescence , Pilocarpine , Animals , Pilocarpine/pharmacology , Guinea Pigs , Apoptosis/drug effects , Calcium/metabolism , Cellular Senescence/drug effects , Ciliary Body/metabolism , Male , Cells, Cultured , Reactive Oxygen Species/metabolism
20.
Biol Res ; 57(1): 51, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39118171

ABSTRACT

Obesity, a global health crisis, disrupts multiple systemic processes, contributing to a cascade of metabolic dysfunctions by promoting the pathological expansion of visceral adipose tissue (VAT). This expansion is characterized by impaired differentiation of pre-adipocytes and an increase in senescent cells, leading to a pro-inflammatory state and exacerbated oxidative stress. Particularly, the senescence-associated secretory phenotype (SASP) and adipose tissue hypoxia further impair cellular function, promoting chronic disease development. This review delves into the potential of autophagy modulation and the therapeutic application of senolytics and senomorphics as novel strategies to mitigate adipose tissue senescence. By exploring the intricate mechanisms underlying adipocyte dysfunction and the emerging role of natural compounds in senescence modulation, we underscore the promising horizon of senotherapeutics in restoring adipose health. This approach not only offers a pathway to combat the metabolic complications of obesity, but also opens new avenues for enhancing life quality and managing the global burden of obesity-related conditions. Our analysis aims to bridge the gap between current scientific progress and clinical application, offering new perspectives on preventing and treating obesity-induced adipose dysfunction.


Subject(s)
Adipose Tissue , Autophagy , Cellular Senescence , Obesity , Senotherapeutics , Humans , Obesity/drug therapy , Cellular Senescence/physiology , Cellular Senescence/drug effects , Autophagy/physiology , Autophagy/drug effects , Senotherapeutics/pharmacology , Animals , Adipocytes
SELECTION OF CITATIONS
SEARCH DETAIL