Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.511
Filter
1.
Carbohydr Polym ; 342: 122384, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-39048195

ABSTRACT

As the most abundant renewable resource, cellulose fibers are potential candidates for use in health-protective clothing. Herein, we demonstrate a novel strategy for preparing cellulose fiber with prominent antibacterial and antiviral performance by the synergistic effect of amino groups and sulfonic acid groups. Specifically, guanylated chitosan oligosaccharide (GCOS) and N-sulfopropyl chitosan oligosaccharide (SCOS) were synthesized and chemically grafted onto cellulose fibers (CFs) to endow the fibers with antibacterial and antiviral properties. Moreover, a compounding strategy was applied to make the fibers with simultaneously high antibacterial and antiviral activity, especially in short contact time. The bacteriostatic rate (against S. aureus: 95.81 %, against E. coli: 92.07 %, 1 h) of the compounded fibers improved substantially when a few GCOS-CFs were mixed with SCOS-CFs; especially, it was much higher than both the individual GCOS-CFs and SCOS-CFs. By contrast, the improvement of the antiviral properties was less dramatic; however, even a few SCOS-CFs was mixed, the antiviral properties increased pronouncedly. Although the electrostatic interaction between SCOS and GCOS can make the SCOS-GCOS mixture lose some extent of antibacterial activity, the long chains of cellulose restrain the electrostatic interaction between sulfonic and amino groups, leading to their synergistic action and eventually superior antibacterial and antiviral effects.


Subject(s)
Anti-Bacterial Agents , Antiviral Agents , Cellulose , Chitosan , Escherichia coli , Staphylococcus aureus , Sulfonic Acids , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Chitosan/chemistry , Chitosan/pharmacology , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Cellulose/chemistry , Cellulose/pharmacology , Cellulose/analogs & derivatives , Escherichia coli/drug effects , Staphylococcus aureus/drug effects , Sulfonic Acids/chemistry , Oligosaccharides/chemistry , Oligosaccharides/pharmacology , Microbial Sensitivity Tests , Drug Synergism , Humans
2.
J Nanobiotechnology ; 22(1): 337, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38886712

ABSTRACT

BACKGROUND: Molybdenum disulfide (MoS2) has excellent physical and chemical properties. Further, chiral MoS2 (CMS) exhibits excellent chiroptical and enantioselective effects, and the enantioselective properties of CMS have been studied for the treatment of neurodegenerative diseases. Intriguingly, left- and right-handed materials have different effects on promoting the differentiation of neural stem cells into neurons. However, the effect of the enantioselectivity of chiral materials on peripheral nerve regeneration remains unclear. METHODS: In this study, CMS@bacterial cellulose (BC) scaffolds were fabricated using a hydrothermal approach. The CMS@BC films synthesized with L-2-amino-3-phenyl-1-propanol was defined as L-CMS. The CMS@BC films synthesized with D-2-amino-3-phenyl-1-propanol was defined as D-CMS. The biocompatibility of CMS@BC scaffolds and their effect on Schwann cells (SCs) were validated by cellular experiments. In addition, these scaffolds were implanted in rat sciatic nerve defect sites for three months. RESULTS: These chiral scaffolds displayed high hydrophilicity, good mechanical properties, and low cytotoxicity. Further, we found that the L-CMS scaffolds were superior to the D-CMS scaffolds in promoting SCs proliferation. After three months, the scaffolds showed good biocompatibility in vivo, and the nerve conducting velocities of the L-CMS and D-CMS scaffolds were 51.2 m/s and 26.8 m/s, respectively. The L-CMS scaffolds showed a better regenerative effect than the D-CMS scaffolds. Similarly, the sciatic nerve function index and effects on the motor and electrophysiological functions were higher for the L-CMS scaffolds than the D-CMS scaffolds. Finally, the axon diameter and myelin sheath thickness of the regenerated nerves were improved in the L-CMS group. CONCLUSION: We found that the CMS@BC can promote peripheral nerve regeneration, and in general, the L-CMS group exhibited superior repair performance. Overall, the findings of this study reveal that CMS@BC can be used as a chiral nanomaterial nerve scaffold for peripheral nerve repair.


Subject(s)
Cellulose , Disulfides , Molybdenum , Nerve Regeneration , Schwann Cells , Tissue Scaffolds , Nerve Regeneration/drug effects , Animals , Rats , Tissue Scaffolds/chemistry , Disulfides/chemistry , Disulfides/pharmacology , Schwann Cells/drug effects , Molybdenum/chemistry , Molybdenum/pharmacology , Cellulose/chemistry , Cellulose/pharmacology , Cellulose/analogs & derivatives , Rats, Sprague-Dawley , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Sciatic Nerve/drug effects , Sciatic Nerve/physiology , Cell Proliferation/drug effects , Tissue Engineering/methods , Male , Peripheral Nerve Injuries , Stereoisomerism
3.
Int J Biol Macromol ; 272(Pt 2): 132883, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38838898

ABSTRACT

Glycyrrhiza glabra extract is widely known for its antioxidant and anti-inflammatory properties and can improve the wound healing process. The aim of this work was to shorten the time of the healing process by using an eco-sustainable wound dressing based on Spanish broom flexible cellulosic fabric by impregnation with G. glabra extract-loaded ethosomes. Chemical analysis of G. glabra extract was performed by LC-DAD-MS/MS and its encapsulation into ethosomes was obtained using the ethanol injection method. Lipid vesicles were characterized in terms of size, polydispersity index, entrapment efficiency, zeta potential, and stability. In vitro release studies, biocompatibility, and scratch test on 3T3 fibroblasts were performed. Moreover, the structure of Spanish broom dressing and its ability to absorb wound exudate was characterized by Synchrotron X-ray phase contrast microtomography (SR-PCmicroCT). Ethosomes showed a good entrapment efficiency, nanometric size, good stability over time and a slow release of polyphenols compared to the free extract, and were not cytotoxic. Lastly, the results revealed that Spanish broom wound dressing loaded with G. glabra ethosomes is able to accelerate wound closure by reducing wound healing time. To sum up, Spanish broom wound dressing could be a potential new green tool for biomedical applications.


Subject(s)
Bandages , Cellulose , Glycyrrhiza , Plant Extracts , Spartium , Wound Healing , Animals , Mice , Glycyrrhiza/chemistry , Plant Extracts/chemistry , Plant Extracts/pharmacology , Wound Healing/drug effects , Cellulose/chemistry , Cellulose/pharmacology , Spartium/chemistry , 3T3 Cells
4.
Int J Biol Macromol ; 272(Pt 1): 132848, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38830491

ABSTRACT

Collagen-based (COL) hydrogels could be a promising treatment option for injuries to the articular cartilage (AC) becuase of their similarity to AC native extra extracellular matrix. However, the high hydration of COL hydrogels poses challenges for AC's mechanical properties. To address this, we developed a hydrogel platform that incorporating cellulose nanocrystals (CNCs) within COL and followed by plastic compression (PC) procedure to expel the excessive fluid out. This approach significantly improved the mechanical properties of the hydrogels and enhanced the chondrogenic differentiation of mesenchymal stem cells (MSCs). Radially confined PC resulted in higher collagen fibrillar densities together with reducing fibril-fibril distances. Compressed hydrogels containing CNCs exhibited the highest compressive modulus and toughness. MSCs encapsulated in these hydrogels were initially affected by PC, but their viability improved after 7 days. Furthermore, the morphology of the cells and their secretion of glycosaminoglycans (GAGs) were positively influenced by the compressed COL-CNC hydrogel. Our findings shed light on the combined effects of PC and CNCs in improving the physical and mechanical properties of COL and their role in promoting chondrogenesis.


Subject(s)
Cell Differentiation , Cellulose , Chondrogenesis , Collagen , Hydrogels , Mesenchymal Stem Cells , Nanoparticles , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/metabolism , Cellulose/chemistry , Cellulose/pharmacology , Chondrogenesis/drug effects , Cell Differentiation/drug effects , Nanoparticles/chemistry , Collagen/chemistry , Collagen/pharmacology , Hydrogels/chemistry , Hydrogels/pharmacology , Animals , Plastics/chemistry , Plastics/pharmacology , Cell Survival/drug effects , Glycosaminoglycans/metabolism , Cartilage/cytology , Cartilage/drug effects
5.
Int J Biol Macromol ; 272(Pt 1): 132893, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38838883

ABSTRACT

Foodborne pathogens result in a great harm to human, which is an urgent problem to be addressed. Herein, a novel cellulose-based packaging films with excellent anti-bacterial properties under visible light were prepared. A porphyrin-based covalent organic polymer (Por-COPs) was constructed, then covalently grafted onto dialdehyde cellulose (DAC). The addition of Por-COPs enhanced the mechanical, hydrophobicity, and water resistance of the DAC-based composite films. DAC/Por-COP-2.5 film exhibited outstanding properties for the photodynamic inactivation of bacteria under visible light irradiation, delivering inactivation efficiencies of 99.90 % and 99.45 % towards Staphylococcus aureus and Escherichia coli within 20 min. The DAC/Por-COPs films efficiently generated •O2- and 1O2 under visible light, thereby causing oxidative stress to cell membranes for bacterial inactivation. The prepared composite film forms a protective barrier against bacterial contamination. Results guide the development of high performance and more sustainable packaging films for the food sector.


Subject(s)
Cellulose , Escherichia coli , Porphyrins , Staphylococcus aureus , Cellulose/chemistry , Cellulose/analogs & derivatives , Cellulose/pharmacology , Porphyrins/chemistry , Porphyrins/pharmacology , Escherichia coli/drug effects , Staphylococcus aureus/drug effects , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Light , Food Packaging/methods , Polymers/chemistry , Polymers/pharmacology , Sterilization/methods , Photosensitizing Agents/chemistry , Photosensitizing Agents/pharmacology
6.
Nanotechnology ; 35(38)2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38906121

ABSTRACT

In the present study, pyroligneous acid, also known as wood vinegar, has been employed as reducing and stabilizing agent in the synthesis of silver nanoparticles (AgNPs) anchored on nanocellulose (NC). The idea is to confer the latter bactericidal properties for its typical uses such as in cosmetics and food-packing. It has been demonstrated that AgNPs can be directly produced onto NC in one-pot fashion while dramatically enhancing the kinetics of AgNPs synthesis (2 h for reaction completion) in comparison to the NC-less counterpart (10 days for reaction completion). Furthermore, NC allowed for a narrower size distribution of AgNPs. NC-supported and non-supported AgNPs had sizes of 5.1 ± 1.6 nm and 16.7 ± 4.62 nm, respectively. Immortalized human keratinocytes (HaCat) cells were then employed as model to evaluate the cytotoxicity of the AgNPs-NC compound. The latter was found not to impact cell proliferation at any formulation, while decreasing the viability by only 6.8% after 72 h. This study contributes to the development of more environmentally benign routes to produce nanomaterials and to the understanding of their impact on cells.


Subject(s)
Cell Survival , Cellulose , HaCaT Cells , Metal Nanoparticles , Silver , Humans , Silver/chemistry , Metal Nanoparticles/chemistry , Cellulose/chemistry , Cellulose/pharmacology , Cell Survival/drug effects , Keratinocytes/drug effects , Keratinocytes/cytology , Particle Size , Cell Proliferation/drug effects , Acetic Acid/chemistry , Acetic Acid/pharmacology
7.
Spectrochim Acta A Mol Biomol Spectrosc ; 320: 124646, 2024 Nov 05.
Article in English | MEDLINE | ID: mdl-38875926

ABSTRACT

In this research, we fabricated a functional conductive nanocomposite with valuable properties through a chitin (CH) and cellulose (CE) polymerization process, incorporating ZnO/(0.1, 0.2, 0.3 mol.%) CuO bioactive nanoparticles. These bioactive nanoparticles, synthesized through sol-gel and polymerization interactions, greatly enhanced the structural, dielectric, and antimicrobial characteristics of CH-CE@ZnO/CuO conductive nanocomposites. The morphological analysis revealed that these nanoparticles, with diameters ranging from 11-25 nm, formed covalent bonds with the membrane matrix, bolstering the conductive nanocomposites ' structural integrity and dielectric performance. The dielectric properties of the conductive nanocomposites were significantly enhanced by the even distribution of ZnO/CuO nanoparticles within the CH-CE composite. Additionally, antimicrobial assessments demonstrated that the CH-CE@ZnO/CuO conductive nanocomposites displayed significant antibacterial properties against the Escherichia coli and Staphylococcus aureus, showcasing their potential as active packaging materials for electronic, biosensors, and sustainable applications.


Subject(s)
Cellulose , Chitin , Copper , Electric Conductivity , Escherichia coli , Microbial Sensitivity Tests , Nanocomposites , Staphylococcus aureus , Zinc Oxide , Zinc Oxide/chemistry , Zinc Oxide/pharmacology , Nanocomposites/chemistry , Cellulose/chemistry , Cellulose/pharmacology , Copper/chemistry , Copper/pharmacology , Chitin/chemistry , Chitin/pharmacology , Staphylococcus aureus/drug effects , Escherichia coli/drug effects , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Spectroscopy, Fourier Transform Infrared , Dielectric Spectroscopy , X-Ray Diffraction
8.
Int J Biol Macromol ; 273(Pt 2): 133091, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38878924

ABSTRACT

The increasing significance of biopolymer-based food packaging can be attributed to its biodegradability and independence from petroleum-derived materials. Concurrently, metal oxide nanoparticles (NPs) have gained prominence as effective antimicrobial agents against both wild-type and antibiotic-resistant microbes. In this study, cerium oxide or ceria, CeO2, nanoparticles with an average diameter of 50 nm were synthesized via a green method utilizing Vibrio sp. VLC cell lysate supernatant. The synthesized CeO2 NPs displayed remarkable antimicrobial properties, inhibiting the growth of Escherichia coli and Staphylococcus aureus by 93.7 % and 98 %, respectively. To enhance the potential of bacterial cellulose (BC) for advanced applications, we developed a BC/xanthan/CeO2 nanocomposite using both ex situ and in situ techniques. The integration of CeO2 NPs within the nanocomposite structure not only improved the inherent properties of BC, but also rendered it suitable for use in active food packaging systems. The nanocomposite exhibited no significant cytotoxicity on the human dermal fibroblast (HDF) cells, confirming its safety. Nanocomposites containing biogenically synthesized CeO2 NPs demonstrated exceptional efficacy for reducing microbial contamination. Bread samples coated with nanocomposite films displayed no signs of microbial growth. These results support the application of BC/xanthan/CeO2 nanocomposites as suitable and effective coating materials for antimicrobial food packaging applications.


Subject(s)
Anti-Bacterial Agents , Cellulose , Cerium , Food Packaging , Nanocomposites , Polysaccharides, Bacterial , Cellulose/chemistry , Cellulose/pharmacology , Food Packaging/methods , Cerium/chemistry , Cerium/pharmacology , Nanocomposites/chemistry , Polysaccharides, Bacterial/chemistry , Polysaccharides, Bacterial/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Humans , Staphylococcus aureus/drug effects , Escherichia coli/drug effects , Escherichia coli/growth & development , Microbial Sensitivity Tests , Metal Nanoparticles/chemistry
9.
Int J Biol Macromol ; 273(Pt 2): 133191, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38880455

ABSTRACT

Abdominal hernia mesh is a common product which is used for prevention of abdominal adhesion and repairing abdominal wall defect. Currently, designing and preparing a novel bio-mesh material with prevention of adhesion, promoting repair and good biocompatibility simultaneously remain a great bottleneck. In this study, a novel siloxane-modified bacterial cellulose (BC) was designed and fabricated by chemical vapor deposition silylation, then the effects of different alkyl chains length of siloxane on surface properties and cell behaviors were explored. The effect of preventing of abdominal adhesion and repairing abdominal wall defect in rats with the siloxane-modified BC was evaluated. As the grafted alkyl chains become longer, the surface of the siloxane-modified BC can be transformed from super hydrophilic to hydrophobic. In vivo results showed that BC-C16 had good long-term anti-adhesion effect, good tissue adaptability and histocompatibility, which is expected to be used as a new anti-adhesion hernia repair material in clinic.


Subject(s)
Cellulose , Animals , Cellulose/chemistry , Cellulose/pharmacology , Rats , Tissue Adhesions/prevention & control , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Male , Abdominal Wall/surgery , Abdominal Wall/pathology , Hydrophobic and Hydrophilic Interactions , Mice , Surface Properties , Hernia, Abdominal/prevention & control , Surgical Mesh , Rats, Sprague-Dawley
10.
Int J Biol Macromol ; 274(Pt 1): 133047, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38857722

ABSTRACT

Bacterial cellulose (BC) has been found extensive applications in diverse domains for its exceptional attributes. However, the lack of antibacterial properties hampers its utilization in food and biomedical sectors. Leucocin, a bacteriocin belonging to class IIa, is synthesized by Leuconostoc that demonstrates potent efficacy against the foodborne pathogen, Listeria monocytogenes. In the current study, co-culturing strategy involving Kosakonia oryzendophytica FY-07 and Leuconostoc carnosum 4010 was used to confer anti-listerial activity to BC, which resulted in the generation of leucocin-containing BC (BC-L). The physical characteristics of BC-L, as determined by X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), and thermogravimetric analysis (TGA), were similar to the physical characteristics of BC. Notably, the experimental results of disc diffusion and growth curve indicated that the BC-L film exhibited a potent inhibitory effect against L. monocytogenes. Scanning electron microscopy (SEM) showed that BC-L exerts its bactericidal activity by forming pores on the bacterial cell wall. Despite the BC-L antibacterial mechanism, which involves pore formation, the mammalian cell viability remained unaffected by the BC-L film. The measurement results of zeta potential indicated that the properties of BC changed after being loaded with leucocin. Based on these findings, the anti-listerial BC-L generated through this co-culture system holds promise as a novel effective antimicrobial agent for applications in meat product preservation and packaging.


Subject(s)
Anti-Bacterial Agents , Cellulose , Listeria monocytogenes , Listeria monocytogenes/drug effects , Listeria monocytogenes/growth & development , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Cellulose/chemistry , Cellulose/pharmacology , Cellulose/biosynthesis , Coculture Techniques , Microbial Sensitivity Tests , Leuconostoc/metabolism , Bacteriocins/pharmacology , Bacteriocins/chemistry
11.
Int J Biol Macromol ; 273(Pt 1): 133030, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38857730

ABSTRACT

Skin wound healing and regeneration is very challenging across the world as simple or acute wounds can be transformed into chronic wounds or ulcers due to foreign body invasion, or diseases like diabetes or cancer. The study was designed to develop a novel bioactive scaffold, by loading aloesin to chitosan-coated cellulose scaffold, to cure full-thickness skin wounds. The physiochemical characterization of the scaffold was carried out using scanning electron microscopy (SEM) facilitated by energy-dispersive spectrophotometer (EDS), atomic force microscopy (AFM), and Fourier transform infrared spectroscopy (FTIR). The results indicated the successful coating of chitosan and aloesin on cellulose without any physical damage. The drug release kinetics confirmed the sustained release of aloesin by showing a cumulative release of up to 88 % over 24 h. The biocompatibility of the aloesin-loaded chitosan/cellulose (AlCsCFp) scaffold was evaluated by the WST-8 assay that confirmed the significantly increased adherence and proliferation of fibroblasts on the AlCsCFp scaffold. The in vivo wound healing study showed that both 0.05 % and 0.025 % AlCsCFp scaffolds have significantly higher wound closure rates (i.e. 88.2 % and 95.6 % approximately) as compared to other groups. This showed that novel composite scaffold has a wound healing ability. Furthermore, histological and gene expression analysis demonstrated that the scaffold also induced cell migration, angiogenesis, re-epithelialization, collagen deposition, and tissue granulation formation. Thus, it is concluded that the aloesin-loaded chitosan/cellulose-based scaffold has great therapeutic potential for being used in wound healing applications in the clinical setting in the future.


Subject(s)
Cellulose , Chitosan , Regeneration , Skin , Tissue Scaffolds , Wound Healing , Chitosan/chemistry , Chitosan/pharmacology , Cellulose/chemistry , Cellulose/pharmacology , Wound Healing/drug effects , Skin/drug effects , Animals , Tissue Scaffolds/chemistry , Regeneration/drug effects , Rats , Fibroblasts/drug effects , Mice , Cell Proliferation/drug effects , Drug Liberation , Male , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology
12.
Int J Biol Macromol ; 270(Pt 2): 132419, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38759859

ABSTRACT

Bacterial infection is a serious challenge in the treatment of open bone defects, and reliance on antibiotic therapy may contribute to the emergence of drug-resistant bacteria. To solve this problem, this study developed a mineralized hydrogel (PVA-Ag-PHA) with excellent antibacterial properties and osteogenic capabilities. Silver nanoparticles (CNC/TA@AgNPs) were greenly synthesized using natural macromolecular cellulose nanocrystals (CNC) and plant polyphenolic tannins (TA) as stabilizers and reducing agents respectively, and then introduced into polyvinyl alcohol (PVA) and polydopamine-modified hydroxyapatite (PDA@HAP) hydrogel. The experimental results indicate that the PVA-Ag-PHA hydrogel, benefiting from the excellent antibacterial properties of CNC/TA@AgNPs, can not only eliminate Staphylococcus aureus and Escherichia coli, but also maintain a sustained sterile environment. At the same time, the HAP modified by PDA is uniformly dispersed within the hydrogel, thus releasing and maintaining stable concentrations of Ca2+ and PO43- ions in the local environment. The porous structure of the hydrogel with excellent biocompatibility creates a suitable bioactive environment that facilitates cell adhesion and bone regeneration. The experimental results in the rat critical-sized calvarial defect model indicate that the PVA-Ag-PHA hydrogel can effectively accelerate the bone healing process. Thus, this mussel-inspired hydrogel with antibacterial properties provides a feasible solution for the repair of open bone defects, demonstrating the considerable potential for diverse applications in bone repair.


Subject(s)
Bone Regeneration , Cellulose , Hydrogels , Metal Nanoparticles , Silver , Skull , Tannins , Silver/chemistry , Silver/pharmacology , Animals , Bone Regeneration/drug effects , Cellulose/chemistry , Cellulose/pharmacology , Metal Nanoparticles/chemistry , Rats , Hydrogels/chemistry , Hydrogels/pharmacology , Skull/drug effects , Skull/injuries , Tannins/chemistry , Tannins/pharmacology , Bivalvia/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Polyvinyl Alcohol/chemistry , Staphylococcus aureus/drug effects , Durapatite/chemistry , Durapatite/pharmacology , Rats, Sprague-Dawley , Escherichia coli/drug effects
13.
Environ Res ; 252(Pt 3): 119068, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38705452

ABSTRACT

Cellulose acetate membranes exhibit a potential to be applied in hemodialysis. However, their performance is limited by membrane fouling and a lack of antibacterial properties. In this research, copper oxide (I) nanoparticles were fabricated in situ into a cellulose acetate matrix in the presence of polyvinylpyrrolidone (pore-forming agent) and sulfobetaine (stabilising agent) to reduce the leakage of copper ions from nano-enhanced membranes. The influence of nanoparticles on the membrane structure and their antibacterial and antifouling properties were investigated. The results showed that incorporating Cu2O NPs imparted significant antibacterial properties against Staphylococcus aureus and fouling resistance under physiological conditions. The Cu2O NPs-modified membrane could pave the way for potential dialysis applications.


Subject(s)
Anti-Bacterial Agents , Biofouling , Cellulose , Copper , Membranes, Artificial , Staphylococcus aureus , Cellulose/analogs & derivatives , Cellulose/chemistry , Cellulose/pharmacology , Copper/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Staphylococcus aureus/drug effects , Biofouling/prevention & control , Nanoparticles/chemistry , Metal Nanoparticles/chemistry , Povidone/chemistry , Povidone/analogs & derivatives
14.
J Biomater Appl ; 39(2): 83-95, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38768480

ABSTRACT

Tissue adhesives and sealants offer promising alternatives to traditional wound closure methods, but the existing trade-off between biocompatibility and strength is still a challenge. The current study explores the potential of a gelatin-alginate-based hydrogel, cross-linked with a carbodiimide, and loaded with two functional fillers, the hemostatic agent kaolin and cellulose fibres, to improve the hydrogel's mechanical strength and hemostatic properties for use as a sealant. The effect of the formulation parameters on the mechanical and physical properties was studied, as well as the biocompatibility and microstructure. The incorporation of the two functional fillers resulted in a dual micro-composite structure, with uniform dispersion of both fillers within the hydrogel, and excellent adhesion between the fillers and the hydrogel matrix. This enabled to strongly increase the sealing ability and the tensile strength and modulus of the hydrogel. The fibres' contribution to the enhanced mechanical properties is more dominant than that of kaolin. A combined synergistic effect of both fillers resulted in enhanced sealing ability (247%), tensile strength (400%), and Young's modulus (437%), compared to the unloaded hydrogel formulation. While the incorporation of kaolin almost did not affect the physical properties of the hydrogel, the incorporation of the fibres strongly increased the viscosity and decreased the gelation time and swelling degree. The cytotoxicity tests indicated that all studied formulations exhibited high cell viability. Hence, the studied new dual micro-composite hydrogels may be suitable for medical sealing applications, especially when it is needed to get a high sealing effect within a short time. The desired hemostatic effect is obtained due to kaolin incorporation without affecting the physical properties of the sealant. Understanding the effects of the formulation parameters on the hydrogel's properties enables the fitting of optimal formulations for various medical sealing applications.


Subject(s)
Alginates , Cellulose , Hemostatics , Hydrogels , Kaolin , Materials Testing , Tensile Strength , Tissue Adhesives , Cellulose/chemistry , Cellulose/pharmacology , Hemostatics/chemistry , Hemostatics/pharmacology , Tissue Adhesives/chemistry , Tissue Adhesives/pharmacology , Hydrogels/chemistry , Hydrogels/pharmacology , Alginates/chemistry , Kaolin/chemistry , Kaolin/pharmacology , Humans , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Elastic Modulus , Viscosity , Animals , Gelatin/chemistry , Mice , Cell Survival/drug effects
15.
Int J Biol Macromol ; 272(Pt 2): 132772, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38821299

ABSTRACT

Bacteria and virus infections have posed a great threat to public health and personnel safety. For realizing rapid sterilization of the bacteria and virus, electrical stimulation sterilization was adopted to endow cellulose fibers with instantaneous antibacterial and antiviral properties. In the proposed strategy, the fiber is fluffed by mechanical refining, and then by means of the hydrogen bond between hydroxyl and aniline, the polyaniline (PANI) directionally grows vertically along the fine fibers via in-situ oxidative polymerization. Benefiting from the conductive polyaniline nanorod arrays on the fiber stem, the paper made from PANI modified refined fibers (PANI/BCF/P) exhibited excellent antibacterial and antiviral activity, the inhibition rates against S. aureus, E. coli, and bacteriophage MS2 can up to 100 %, 100 %, and 99.89 %, respectively when a weak voltage (2.5 V) was applied within 20 min. This study provides a feasible path for plant fiber to achieve efficient antibacterial and antiviral activity with electrical stimulation, which is of great significance for the preparation of electroactive antibacterial and antiviral green health products.


Subject(s)
Aniline Compounds , Anti-Bacterial Agents , Cellulose , Aniline Compounds/chemistry , Aniline Compounds/pharmacology , Cellulose/chemistry , Cellulose/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Electric Stimulation , Sterilization/methods , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Escherichia coli/drug effects , Escherichia coli/growth & development , Staphylococcus aureus/drug effects , Levivirus/drug effects
16.
Int J Biol Macromol ; 271(Pt 1): 132335, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38768923

ABSTRACT

Development of renewable and biodegradable plastics with good properties, such as the gas barrier, UV-shielding, solvent resistance, and antibacterial activity, remains a challenge. Herein, cellulose/ZnO based bioplastics were fabricated by dissolving cellulose carbamate in an aqueous solution of NaOH/Zn(OH)42-, followed by coagulation in aqueous Na2SO4 solution, and subsequent hot-pressing. The carbamate groups detached from cellulose, and ZnO which transformed from cosolvent to nanofiller was uniformly immobilized in the cellulose matrix during the dissolution/regeneration process. The appropriate addition of ZnO (below 10.67 wt%) not only improved the mechanical properties but also enhanced the water and oxygen barrier properties of the material. Additionally, our cellulose/ZnO based bioplastic demonstrated excellent UV-blocking capabilities, increased water contact angle, and enhanced antibacterial activity against S. aureus and E. coli, deriving from the incorporation of ZnO nanoparticles. Furthermore, the material exhibited resistance to organic solvents such as acetone, THF, and toluene. Indeed, the herein developed cellulose/ZnO based bioplastic presents a promising candidate to replace petrochemical plastics in various applications, such as plastic toys, anti-UV guardrails, window shades, and oil storage containers, offering a combination of favorable mechanical, gas barrier, UV-blocking, antibacterial, and solvent-resistant properties.


Subject(s)
Anti-Bacterial Agents , Cellulose , Escherichia coli , Staphylococcus aureus , Ultraviolet Rays , Zinc Oxide , Zinc Oxide/chemistry , Zinc Oxide/pharmacology , Cellulose/chemistry , Cellulose/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Staphylococcus aureus/drug effects , Escherichia coli/drug effects , Biodegradable Plastics/chemistry , Biodegradable Plastics/pharmacology , Gases/chemistry , Solvents/chemistry
17.
Int J Biol Macromol ; 271(Pt 2): 132679, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38801854

ABSTRACT

Uncontrollable bleeding caused by severe trauma is life-threatening. Therefore, it is of great significance to develop hemostatic materials that meet the rapid hemostasis of wounds. In this study, a water-triggered shape memory carboxylated cellulose nanofiber/sodium alginate/montmorillonite (CNSAMMTCa) composite hemostatic sponge was prepared, which can promote coagulation by concentrating the blood and activating intrinsic pathway. The anisotropic three-dimensional porous structure formed by directional freeze-drying technology improved the performance of composite sponges which showed good prospects in rapid hemostasis. The results showed that CNSAMMTCa composite sponge had good porous structure, water absorption ability, cytocompatibility and blood cell aggregation capacity. Simultaneously, we confirmed that CNSA3MMT2Ca has best coagulation performance in the mouse censored bleeding model and liver rupture bleeding model. Therefore, CNSAMMTCa composite hemostatic sponge is a safe and efficient rapid hemostatic material which is expected to become an alternative material for clinical hemostatic materials.


Subject(s)
Alginates , Bentonite , Cellulose , Hemostasis , Hemostatics , Water , Animals , Bentonite/chemistry , Alginates/chemistry , Alginates/pharmacology , Mice , Cellulose/chemistry , Cellulose/pharmacology , Hemostatics/pharmacology , Hemostatics/chemistry , Hemostasis/drug effects , Water/chemistry , Hemorrhage/drug therapy , Porosity , Blood Coagulation/drug effects
18.
Int J Biol Macromol ; 269(Pt 2): 131957, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38692544

ABSTRACT

In this study, graphene oxide (GO) was chemically modified utilizing concentrated nitric acid to produce a nitrated graphene oxide derivative (NGO) with enhanced oxidation level, improved dispersibility, and increased antibacterial activity. A double-layer composite hydrogel material (BC/PVA/NGO) with a core-shell structure was fabricated by utilizing bacterial cellulose (BC) and polyvinyl alcohol (PVA) binary composite hydrogel scaffold as the inner network template, and hydrophilic polymer (PVA) loaded with antibacterial material (NGO) as the outer network. The fabrication process involved physical crosslinking based on repeated freezing and thawing. The resulting BC/PVA/NGO hydrogel exhibited a porous structure, favorable mechanical properties, antibacterial efficacy, and biocompatibility. Subsequently, the performance of BC/PVA/NGO hydrogel in promoting wound healing was evaluated using a mouse skin injury model. The findings demonstrated that the BC/PVA/NGO hydrogel treatment group facilitated improved wound healing in the mouse skin injury model compared to the control group and the BC/PVA group. This enhanced wound healing capability was attributed primarily to the excellent antibacterial and tissue repair properties of the BC/PVA/NGO hydrogel.


Subject(s)
Anti-Bacterial Agents , Cellulose , Graphite , Hydrogels , Polyvinyl Alcohol , Wound Healing , Graphite/chemistry , Graphite/pharmacology , Polyvinyl Alcohol/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Wound Healing/drug effects , Animals , Cellulose/chemistry , Cellulose/pharmacology , Mice , Hydrogels/chemistry , Hydrogels/pharmacology , Skin/drug effects
19.
Int J Biol Macromol ; 269(Pt 1): 131824, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38697411

ABSTRACT

Maintaining wound moisture and monitoring of infection are crucial aspects of chronic wound treatment. The development of a pH-sensitive functional hydrogel dressing is an effective approach to monitor, protect, and facilitate wound healing. In this study, beet red pigment extract (BRPE) served as a native and efficient pH indicator by being grafted into silane-modified bacterial nanocellulose (BNC) to prepare a pH-sensitive wound hydrogel dressing (S-g-BNC/BRPE). FTIR confirmed the successful grafting of BRPE into the BNC matrix. The S-g-BNC/BRPE showed superior mechanical properties (0.25 MPa), swelling rate (1251 % on average), and hydrophilic properties (contact angle 21.83°). The composite exhibited a notable color change as the pH changed between 4.0 and 9.0. It appeared purple-red when the pH ranged from 4.0 to 6.0, and appeared light pink at pH 7.0 and 7.4, and appeared ginger-yellow at pH 8.0 and 9.0. Subsequently, the antioxidant activity and cytotoxicity of the composite was evaluated, its DPPH·, ABTS+, ·OH scavenging rates were 32.33 %, 19.31 %, and 30.06 %, respectively, and the cytotoxicity test clearly demonstrated the safety of the dressing. The antioxidant hydrogel dressing, fabricated with a cost-effective and easy method, not only showed excellent biocompatibility and dressing performance but could also indicated the wound state based on pH changes.


Subject(s)
Antioxidants , Bandages , Beta vulgaris , Cellulose , Hydrogels , Wound Healing , Cellulose/chemistry , Cellulose/pharmacology , Hydrogen-Ion Concentration , Antioxidants/pharmacology , Antioxidants/chemistry , Beta vulgaris/chemistry , Wound Healing/drug effects , Hydrogels/chemistry , Hydrogels/pharmacology , Humans , Plant Extracts/chemistry , Plant Extracts/pharmacology , Silanes/chemistry , Pigments, Biological/chemistry , Pigments, Biological/pharmacology
20.
Int J Biol Macromol ; 269(Pt 2): 132124, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38723802

ABSTRACT

Bacterial cellulose (BC) hydrogel is renowned in the field of tissue engineering for its high biocompatibility, excellent mechanical strength, and eco-friendliness. Herein, we present a biomimetic mineralization method for preparing BC/hydroxyapatite (HAP) composite hydrogel scaffolds with different mineralization time and ion concentration of the mineralized solution. Spherical HAP reinforcement enhanced bone mineralization, thereby imparting increased bioactivity to BC matrix materials. Subsequently, platelet-rich plasma (PRP) was introduced into the scaffold. The PRP-loaded hydrogel enhanced the release of growth factors, which promoted cell adhesion, growth, and bone healing. After 3 weeks of MC3T3-E1 cell-induced osteogenesis, PRP positively affected cell differentiation in BC/HAP@PRP scaffolds. Overall, these scaffolds exhibited excellent biocompatibility, mineralized nodule formation, and controlled release in vitro, demonstrating great potential for application in bone tissue repair.


Subject(s)
Cellulose , Durapatite , Hydrogels , Osteogenesis , Platelet-Rich Plasma , Tissue Engineering , Tissue Scaffolds , Platelet-Rich Plasma/chemistry , Tissue Engineering/methods , Durapatite/chemistry , Durapatite/pharmacology , Cellulose/chemistry , Cellulose/pharmacology , Animals , Mice , Tissue Scaffolds/chemistry , Hydrogels/chemistry , Osteogenesis/drug effects , Bone and Bones/drug effects , Bone and Bones/metabolism , Delayed-Action Preparations/pharmacology , Cell Differentiation/drug effects , Biomimetics/methods , Biomimetic Materials/chemistry , Biomimetic Materials/pharmacology , Cell Line , Bone Regeneration/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL