Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 17.820
Filter
1.
Brain Behav ; 14(7): e3568, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38988039

ABSTRACT

BACKGROUND: Hypertension increases the risk of cognitive impairment and related dementia, causing impaired executive function and unusual gait parameters. However, the mechanism of neural function illustrating this is unclear. Our research aimed to explore the differences of cerebral cortex activation, gait parameters, and working memory performance between healthy older adults (HA) and older hypertensive (HT) patients when performing cognitive and walking tasks. METHOD: A total of 36 subjects, including 12 healthy older adults and 24 older hypertensive patients were asked to perform series conditions including single cognitive task (SC), single walking task (SW), and dual-task (DT), wearing functional near-infrared spectroscopy (fNIRS) equipment and Intelligent Device for Energy Expenditure and Activity equipment to record cortical hemodynamic reactions and various gait parameters. RESULTS: The left somatosensory cortex (L-S1) and bilateral supplementary motor area (SMA) showed higher cortical activation (p < .05) than HA when HT performed DT. The intragroup comparison showed that HT had higher cortical activation (p < .05) when performing DT as SW. The cognitive performance of HT was significantly worse (p < .05) than HA when executing SC. The activation of the L-S1, L-M1, and bilateral SMA in HT were significantly higher during SW (p < .05). CONCLUSION: Hypertension can lead to cognitive impairment in the elderly, including executive function and walking function decline. As a result of these functional declines, elderly patients with hypertension are unable to efficiently allocate brain resources to support more difficult cognitive interference tasks and need to meet more complex task demands by activating more brain regions.


Subject(s)
Cerebral Cortex , Gait , Hypertension , Spectroscopy, Near-Infrared , Walking , Humans , Aged , Male , Spectroscopy, Near-Infrared/methods , Female , Hypertension/physiopathology , Gait/physiology , Walking/physiology , Cerebral Cortex/physiopathology , Cerebral Cortex/diagnostic imaging , Memory, Short-Term/physiology , Middle Aged , Cognition/physiology , Executive Function/physiology , Psychomotor Performance/physiology
2.
Proc Natl Acad Sci U S A ; 121(28): e2317458121, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38950362

ABSTRACT

Functional changes in the pediatric brain following neural injuries attest to remarkable feats of plasticity. Investigations of the neurobiological mechanisms that underlie this plasticity have largely focused on activation in the penumbra of the lesion or in contralesional, homotopic regions. Here, we adopt a whole-brain approach to evaluate the plasticity of the cortex in patients with large unilateral cortical resections due to drug-resistant childhood epilepsy. We compared the functional connectivity (FC) in patients' preserved hemisphere with the corresponding hemisphere of matched controls as they viewed and listened to a movie excerpt in a functional magnetic resonance imaging (fMRI) scanner. The preserved hemisphere was segmented into 180 and 200 parcels using two different anatomical atlases. We calculated all pairwise multivariate statistical dependencies between parcels, or parcel edges, and between 22 and 7 larger-scale functional networks, or network edges, aggregated from the smaller parcel edges. Both the left and right hemisphere-preserved patient groups had widespread reductions in FC relative to matched controls, particularly for within-network edges. A case series analysis further uncovered subclusters of patients with distinctive edgewise changes relative to controls, illustrating individual postoperative connectivity profiles. The large-scale differences in networks of the preserved hemisphere potentially reflect plasticity in the service of maintained and/or retained cognitive function.


Subject(s)
Magnetic Resonance Imaging , Neuroimaging , Humans , Child , Magnetic Resonance Imaging/methods , Female , Male , Adolescent , Neuroimaging/methods , Epilepsy/surgery , Epilepsy/physiopathology , Epilepsy/diagnostic imaging , Cerebral Cortex/diagnostic imaging , Cerebral Cortex/physiopathology , Cerebral Cortex/surgery , Neuronal Plasticity/physiology , Drug Resistant Epilepsy/surgery , Drug Resistant Epilepsy/diagnostic imaging , Drug Resistant Epilepsy/physiopathology , Brain Mapping/methods , Functional Laterality/physiology
3.
J Neuroeng Rehabil ; 21(1): 115, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38987817

ABSTRACT

BACKGROUND: Stroke causes long-term disabilities, highlighting the need for innovative rehabilitation strategies for reducing residual impairments. This study explored the potential of functional near-infrared spectroscopy (fNIRS) for monitoring cortical activation during rehabilitation using digital therapeutics. METHODS: This cross-sectional study included 18 patients with chronic stroke, of whom 13 were men. The mean age of the patients was 67.0 ± 7.1 years. Motor function was evaluated through various tests, including the Fugl-Meyer assessment for upper extremity (FMA-UE), grip and pinch strength test, and box and block test. All the patients completed the digital rehabilitation program (MotoCog®, Cybermedic Co., Ltd., Republic of Korea) while being monitored using fNIRS (NIRScout®, NIRx Inc., Germany). Statistical parametric mapping (SPM) was employed to analyze the cortical activation patterns from the fNIRS data. Furthermore, the K-nearest neighbor (K-NN) algorithm was used to analyze task performance and fNIRS data to classify the severity of motor impairment. RESULTS: The participants showed diverse task performances in the digital rehabilitation program, demonstrating distinct patterns of cortical activation that correlated with different motor function levels. Significant activation was observed in the ipsilesional primary motor area (M1), primary somatosensory area (S1), and contralateral prefrontal cortex. The activation patterns varied according to the FMA-UE scores. Positive correlations were observed between the FMA-UE scores and SPM t-values in the ipsilesional M1, whereas negative correlations were observed in the ipsilesional S1, frontal lobe, and parietal lobe. The incorporation of cortical hemodynamic responses with task scores in a digital rehabilitation program substantially improves the accuracy of the K-NN algorithm in classifying upper limb functional levels in patients with stroke. The accuracy for tasks, such as the gas stove-operation task, increased from 44.4% using only task scores to 83.3% when these scores were combined with oxy-Hb t-values from the ipsilesional M1. CONCLUSIONS: The results advocated the development of tailored digital rehabilitation strategies by combining the behavioral and cerebral hemodynamic data of patients with stroke. This approach aligns with the evolving paradigm of personalized rehabilitation in stroke recovery, highlighting the need for further extensive research to optimize rehabilitation outcomes.


Subject(s)
Spectroscopy, Near-Infrared , Stroke Rehabilitation , Upper Extremity , Humans , Male , Stroke Rehabilitation/methods , Aged , Female , Upper Extremity/physiopathology , Spectroscopy, Near-Infrared/methods , Cross-Sectional Studies , Middle Aged , Hemodynamics/physiology , Stroke/physiopathology , Cerebral Cortex/physiopathology , Cerebral Cortex/diagnostic imaging
4.
Medicine (Baltimore) ; 103(27): e38723, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38968539

ABSTRACT

BACKGROUND: This study aimed to investigate the effects of virtual reality (VR)-based robot therapy combined with task-oriented therapy on cerebral cortex activation and upper limb function in patients with stroke. METHODS: This study included 46 patients with hemiplegia within 1 year of stroke onset. Patients were divided into an experimental group (n = 23) and a control group (n = 23) using a computer randomization program. The experimental group received VR-based robot and task-oriented therapies, whereas the control group received only task-oriented therapy. All participants received interventions for 40 minutes per session, 5 times a week, for 8 weeks. For the pre- and post-evaluation of all participants, the Fugl-Meyer Assessment for the upper extremity, manual function test, motor activity log, and Jebsen-Taylor Hand Function Test were used to evaluate changes in upper limb function and motor-evoked potential amplitudes were measured to compare cerebral cortex activation. RESULTS: In comparison to the control group, experimental group demonstrated an improvement in the function of the upper limb (P < .01) and activation of the cerebral cortex (P < .01). CONCLUSION: The combined intervention of VR-based robot and task-oriented therapies is valuable for improving upper limb function and cerebral cortex activation in patients with stroke.


Subject(s)
Cerebral Cortex , Robotics , Stroke Rehabilitation , Stroke , Upper Extremity , Virtual Reality , Humans , Male , Female , Stroke Rehabilitation/methods , Stroke Rehabilitation/instrumentation , Middle Aged , Upper Extremity/physiopathology , Robotics/methods , Cerebral Cortex/physiopathology , Aged , Stroke/therapy , Stroke/physiopathology , Stroke/complications , Recovery of Function , Hemiplegia/therapy , Hemiplegia/etiology , Hemiplegia/physiopathology , Hemiplegia/rehabilitation , Evoked Potentials, Motor/physiology , Treatment Outcome , Adult
5.
PLoS One ; 19(7): e0306478, 2024.
Article in English | MEDLINE | ID: mdl-38980866

ABSTRACT

Neuroplastic changes appear in people with visual impairment (VI) and they show greater tactile abilities. Improvements in performance could be associated with the development of enhanced early attentional processes based on neuroplasticity. Currently, the various early attentional and cortical remapping strategies that are utilized by people with early (EB) and late-onset blindness (LB) remain unclear. Thus, more research is required to develop effective rehabilitation programs and substitution devices. Our objective was to explore the differences in spatial tactile brain processing in adults with EB, LB and a sighted control group (CG). In this cross-sectional study 27 participants with VI were categorized into EB (n = 14) and LB (n = 13) groups. They were then compared with a CG (n = 15). A vibrotactile device and event-related potentials (ERPs) were utilized while participants performed a spatial tactile line recognition task. The P100 latency and cortical areas of maximal activity were analyzed during the task. The three groups had no statistical differences in P100 latency (p>0.05). All subjects showed significant activation in the right superior frontal areas. Only individuals with VI activated the left superior frontal regions. In EB subjects, a higher activation was found in the mid-frontal and occipital areas. A higher activation of the mid-frontal, anterior cingulate cortex and orbitofrontal zones was observed in LB participants. Compared to the CG, LB individuals showed greater activity in the left orbitofrontal zone, while EB exhibited greater activity in the right superior parietal cortex. The EB had greater activity in the left orbitofrontal region compared to the LB. People with VI may not have faster early attentional processing. EB subjects activate the occipital lobe and right superior parietal cortex during tactile stimulation because of an early lack of visual stimuli and a multimodal information processing. In individuals with LB and EB the orbitofrontal area is activated, suggesting greater emotional processing.


Subject(s)
Attention , Humans , Male , Cross-Sectional Studies , Female , Adult , Attention/physiology , Middle Aged , Evoked Potentials/physiology , Touch/physiology , Touch Perception/physiology , Neuronal Plasticity/physiology , Blindness/physiopathology , Cerebral Cortex/physiopathology , Cerebral Cortex/physiology , Physical Stimulation , Young Adult , Electroencephalography , Brain Mapping/methods
6.
Neurology ; 103(2): e209623, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-38900989

ABSTRACT

BACKGROUND AND OBJECTIVES: Amyotrophic lateral sclerosis (ALS) is predominantly associated with motor cortex, corticospinal tract (CST), brainstem, and spinal cord degeneration, and cerebellar involvement is much less well characterized. However, some of the cardinal clinical features of ALS, such as dysarthria, dysphagia, gait impairment, falls, and impaired dexterity, are believed to be exacerbated by coexisting cerebellar pathology. Cerebellar pathology may also contribute to cognitive, behavioral, and pseudobulbar manifestations. Our objective was to systematically assess both intracerebellar pathology and cerebrocerebellar connectivity alterations in a genetically stratified cohort of ALS. METHODS: A prospective, multimodal neuroimaging study was conducted to evaluate the longitudinal evolution of intracerebellar pathology and cerebrocerebellar connectivity, using structural and functional measures. RESULTS: A total of 113 healthy controls and 212 genetically stratified individuals with ALS were included: (1) C9orf72 hexanucleotide carriers ("C9POS"), (2) sporadic patients who tested negative for ALS-associated genetic variants, and (3) intermediate-length CAG trinucleotide carriers in ATXN2 ("ATXN2"). Flocculonodular lobule (padj = 0.014, 95% CI -5.06e-5 to -3.98e-6) and crura (padj = 0.031, 95% CI -1.63e-3 to -5.55e-5) volume reductions were detected at baseline in sporadic patients. Cerebellofrontal and cerebelloparietal structural connectivity impairment was observed in both C9POS and sporadic patients at baseline, and both projections deteriorated further over time in sporadic patients (padj = 0.003, t(249) = 3.04 and padj = 0.05, t(249) = 1.93). Functional cerebelloparietal uncoupling was evident in sporadic patients at baseline (padj = 0.004, 95% CI -0.19 to -0.03). ATXN2 patients exhibited decreased cerebello-occipital functional connectivity at baseline (padj = 0.004, 95% CI -0.63 to -0.06), progressive cerebellotemporal functional disconnection (padj = 0.025, t(199) = -2.26), and progressive flocculonodular lobule degeneration (padj = 0.017, t(249) = -2.24). C9POS patients showed progressive ventral dentate atrophy (padj = 0.007, t(249) = -2.75). The CSTs (padj < 0.001, 95% CI 4.89e-5 to 1.14e-4) and transcallosal interhemispheric fibers (padj < 0.001, 95% CI 5.21e-5 to 1.31e-4) were affected at baseline in C9POS and exhibited rapid degeneration over the 4 time points. The rate of decline in CST and corpus callosum integrity was faster than the rate of cerebrocerebellar disconnection (padj = 0.001, t(190) = 6.93). DISCUSSION: ALS is associated with accruing intracerebellar disease burden as well as progressive corticocerebellar uncoupling. Contrary to previous suggestions, we have not detected evidence of compensatory structural or functional changes in response to supratentorial degeneration. The contribution of cerebellar disease burden to dysarthria, dysphagia, gait impairment, pseudobulbar affect, and cognitive deficits should be carefully considered in clinical assessments, monitoring, and multidisciplinary interventions.


Subject(s)
Amyotrophic Lateral Sclerosis , C9orf72 Protein , Cerebellum , Humans , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/diagnostic imaging , Amyotrophic Lateral Sclerosis/pathology , Amyotrophic Lateral Sclerosis/physiopathology , Male , Female , Middle Aged , Cerebellum/diagnostic imaging , Cerebellum/pathology , Aged , C9orf72 Protein/genetics , Prospective Studies , Ataxin-2/genetics , Magnetic Resonance Imaging , Disease Progression , Cerebral Cortex/diagnostic imaging , Cerebral Cortex/pathology , Cerebral Cortex/physiopathology , Adult , Longitudinal Studies
7.
J Headache Pain ; 25(1): 103, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38898386

ABSTRACT

OBJECTIVE: The insula is an important part of the posttraumatic headache (PTH) attributed to mild traumatic brain injury (mTBI) neuropathological activity pattern. It is composed of functionally different subdivisions and each of which plays different role in PTH neuropathology. METHODS: Ninety-four mTBI patients were included in this study. Based on perfusion imaging data obtained from arterial spin labelling (ASL) perfusion magnetic resonance imaging (MRI), this study evaluated the insular subregion perfusion-based functional connectivity (FC) and its correlation with clinical characteristic parameters in patients with PTH after mTBI and non-headache mTBI patients. RESULTS: The insular subregions of mTBI + PTH (mTBI patients with PTH) and mTBI-PTH (mTBI patients without PTH) group had positive perfusion-based functional connections with other insular nuclei and adjacent discrete cortical regions. Compared with mTBI-PTH group, significantly increased resting-state perfusion-based FC between the anterior insula (AI) and middle cingulate cortex (MCC)/Rolandic operculum (ROL), between posterior insula (PI) and supplementary motor area (SMA), and decreased perfusion-based FC between PI and thalamus were found in mTBI + PTH group. Changes in the perfusion-based FC of the left posterior insula/dorsal anterior insula with the thalamus/MCC were significant correlated with headache characteristics. CONCLUSIONS: Our findings provide new ASL-based evidence for changes in the perfusion-based FC of the insular subregion in PTH patients attributed to mTBI and the association with headache features, revealing the possibility of potential neuroplasticity after PTH. These findings may contribute to early diagnosis of the disease and follow-up of disease progression.


Subject(s)
Brain Concussion , Magnetic Resonance Imaging , Post-Traumatic Headache , Spin Labels , Humans , Male , Female , Adult , Post-Traumatic Headache/diagnostic imaging , Post-Traumatic Headache/etiology , Brain Concussion/diagnostic imaging , Brain Concussion/complications , Brain Concussion/physiopathology , Magnetic Resonance Imaging/methods , Middle Aged , Insular Cortex/diagnostic imaging , Young Adult , Cerebral Cortex/diagnostic imaging , Cerebral Cortex/physiopathology
8.
Soc Cogn Affect Neurosci ; 19(1)2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38874968

ABSTRACT

Peer victimization contributes to the development of major depressive disorders (MDDs). While previous studies reported differentiated peripheral physiological responses in peer-victimized individuals with depression, little is known about potential alterations of cortical event-related potentials (ERPs) in response to social stimuli in depressive patients with a history of peer victimization. Using a social condition paradigm, the present study examined whether peer victimization alters conditioned cortical responses to potentially threatening social stimuli in MDD patients and healthy controls. In the task, we studied ERPs to conditioned stimuli (CSs), i.e. still images of faces, that were coupled to unconditioned socially negative and neutral evaluative video statements. Peer victimization was related to more pronounced P100 amplitudes in reaction to negative and neutral CSs. Attenuated P200 amplitudes in peer-victimized individuals were found in response to negative CSs. Cortical responses to CSs were not influenced by a diagnosis of MDD. The results suggest altered responsiveness to interpersonal information in peer-victimized individuals. Facilitated early processing of social threat indicators may prevent peer-victimized individuals from adaptive responses to social cues, increasing their vulnerability for depression.


Subject(s)
Crime Victims , Depressive Disorder, Major , Electroencephalography , Evoked Potentials , Peer Group , Humans , Depressive Disorder, Major/physiopathology , Depressive Disorder, Major/psychology , Female , Male , Adult , Electroencephalography/methods , Evoked Potentials/physiology , Crime Victims/psychology , Stress, Psychological/physiopathology , Stress, Psychological/psychology , Young Adult , Cerebral Cortex/physiopathology , Cerebral Cortex/physiology , Middle Aged , Social Perception , Photic Stimulation/methods , Bullying/psychology
9.
Nat Commun ; 15(1): 5153, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38886376

ABSTRACT

Despite decades of research, we still do not understand how spontaneous human seizures start and spread - especially at the level of neuronal microcircuits. In this study, we used laminar arrays of micro-electrodes to simultaneously record the local field potentials and multi-unit neural activities across the six layers of the neocortex during focal seizures in humans. We found that, within the ictal onset zone, the discharges generated during a seizure consisted of current sinks and sources only within the infra-granular and granular layers. Outside of the seizure onset zone, ictal discharges reflected current flow in the supra-granular layers. Interestingly, these patterns of current flow evolved during the course of the seizure - especially outside the seizure onset zone where superficial sinks and sources extended into the deeper layers. Based on these observations, a framework describing cortical-cortical dynamics of seizures is proposed with implications for seizure localization, surgical targeting, and neuromodulation techniques to block the generation and propagation of seizures.


Subject(s)
Electroencephalography , Neocortex , Seizures , Humans , Seizures/physiopathology , Neocortex/physiopathology , Neocortex/physiology , Male , Adult , Female , Young Adult , Cerebral Cortex/physiopathology , Cerebral Cortex/physiology , Microelectrodes , Neurons/physiology
10.
Sci Rep ; 14(1): 13784, 2024 06 14.
Article in English | MEDLINE | ID: mdl-38877093

ABSTRACT

Cortico-cortical evoked potentials (CCEPs) elicited by single-pulse electric stimulation (SPES) are widely used to assess effective connectivity between cortical areas and are also implemented in the presurgical evaluation of epileptic patients. Nevertheless, the cortical generators underlying the various components of CCEPs in humans have not yet been elucidated. Our aim was to describe the laminar pattern arising under SPES evoked CCEP components (P1, N1, P2, N2, P3) and to evaluate the similarities between N2 and the downstate of sleep slow waves. We used intra-cortical laminar microelectrodes (LMEs) to record CCEPs evoked by 10 mA bipolar 0.5 Hz electric pulses in seven patients with medically intractable epilepsy implanted with subdural grids. Based on the laminar profile of CCEPs, the latency of components is not layer-dependent, however their rate of appearance varies across cortical depth and stimulation distance, while the seizure onset zone does not seem to affect the emergence of components. Early neural excitation primarily engages middle and deep layers, propagating to the superficial layers, followed by mainly superficial inhibition, concluding in a sleep slow wave-like inhibition and excitation sequence.


Subject(s)
Electric Stimulation , Evoked Potentials , Humans , Male , Female , Adult , Electric Stimulation/methods , Cerebral Cortex/physiology , Cerebral Cortex/physiopathology , Drug Resistant Epilepsy/therapy , Drug Resistant Epilepsy/physiopathology , Electroencephalography , Young Adult , Middle Aged , Epilepsy/physiopathology , Epilepsy/therapy
11.
J Neural Eng ; 21(3)2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38834058

ABSTRACT

Objective. Closed-loop deep brain stimulation (DBS) is a promising therapy for Parkinson's disease (PD) that works by adjusting DBS patterns in real time from the guidance of feedback neural activity. Current closed-loop DBS mainly uses threshold-crossing on-off controllers or linear time-invariant (LTI) controllers to regulate the basal ganglia (BG) Parkinsonian beta band oscillation power. However, the critical cortex-BG-thalamus network dynamics underlying PD are nonlinear, non-stationary, and noisy, hindering accurate and robust control of Parkinsonian neural oscillatory dynamics.Approach. Here, we develop a new robust adaptive closed-loop DBS method for regulating the Parkinsonian beta oscillatory dynamics of the cortex-BG-thalamus network. We first build an adaptive state-space model to quantify the dynamic, nonlinear, and non-stationary neural activity. We then construct an adaptive estimator to track the nonlinearity and non-stationarity in real time. We next design a robust controller to automatically determine the DBS frequency based on the estimated Parkinsonian neural state while reducing the system's sensitivity to high-frequency noise. We adopt and tune a biophysical cortex-BG-thalamus network model as an in-silico simulation testbed to generate nonlinear and non-stationary Parkinsonian neural dynamics for evaluating DBS methods.Main results. We find that under different nonlinear and non-stationary neural dynamics, our robust adaptive DBS method achieved accurate regulation of the BG Parkinsonian beta band oscillation power with small control error, bias, and deviation. Moreover, the accurate regulation generalizes across different therapeutic targets and consistently outperforms current on-off and LTI DBS methods.Significance. These results have implications for future designs of closed-loop DBS systems to treat PD.


Subject(s)
Computer Simulation , Deep Brain Stimulation , Parkinson Disease , Deep Brain Stimulation/methods , Humans , Parkinson Disease/therapy , Parkinson Disease/physiopathology , Basal Ganglia/physiopathology , Basal Ganglia/physiology , Beta Rhythm/physiology , Models, Neurological , Cerebral Cortex/physiopathology , Cerebral Cortex/physiology , Thalamus/physiology , Thalamus/physiopathology , Nonlinear Dynamics
12.
Cereb Cortex ; 34(6)2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38864573

ABSTRACT

The experience of an extremely aversive event can produce enduring deleterious behavioral, and neural consequences, among which posttraumatic stress disorder (PTSD) is a representative example. Although adolescence is a period of great exposure to potentially traumatic events, the effects of trauma during adolescence remain understudied in clinical neuroscience. In this exploratory work, we aim to study the whole-cortex functional organization of 14 adolescents with PTSD using a data-driven method tailored to our population of interest. To do so, we built on the network neuroscience framework and specifically on multilayer (multisubject) community analysis to study the functional connectivity of the brain. We show, across different topological scales (the number of communities composing the cortex), a hyper-colocalization between regions belonging to occipital and pericentral regions and hypo-colocalization in middle temporal, posterior-anterior medial, and frontal cortices in the adolescent PTSD group compared to a nontrauma exposed group of adolescents. These preliminary results raise the question of an altered large-scale cortical organization in adolescent PTSD, opening an interesting line of research for future investigations.


Subject(s)
Brain , Magnetic Resonance Imaging , Stress Disorders, Post-Traumatic , Humans , Stress Disorders, Post-Traumatic/physiopathology , Stress Disorders, Post-Traumatic/diagnostic imaging , Stress Disorders, Post-Traumatic/psychology , Adolescent , Female , Male , Brain/physiopathology , Brain/diagnostic imaging , Neural Pathways/physiopathology , Brain Mapping/methods , Nerve Net/physiopathology , Nerve Net/diagnostic imaging , Cerebral Cortex/physiopathology , Cerebral Cortex/diagnostic imaging
13.
Asian J Psychiatr ; 97: 104092, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38823081

ABSTRACT

BACKGROUND: Early life stress (ELS) significantly increases the risk of mood disorders and affects the neurodevelopment of the primary cortex. HYPOTHESIS: Modulating the primary cortex through neural intervention can ameliorate the impact of ELS on brain development and consequently alleviate its effects on mood disorders. METHOD: We induced the chronic unpredictable mild stress (CUMS) model in adolescent rats, followed by applying repetitive transcranial magnetic stimulation (rTMS) to their primary cortex in early adulthood. To assess the applicability of primary cortex rTMS in humans, we recruited individuals aged 17-25 with mood disorders who had experienced ELS and performed primary cortex rTMS on them. Functional magnetic resonance imaging (fMRI) and depression-related behavioral and clinical symptoms were conducted in both rats and human subjects before and after the rTMS. RESULTS: In animals, fMRI analysis revealed increased activation in the primary cortex of CUMS rats and decrease subcortical activation. Following the intervention of primary cortex rTMS, the abnormal functional activity was reversed. Similarly, in mood disorders patients with ELS, increased activation in the primary cortex and decreased activation in the frontal cortex were observed. During rTMS intervention, similar neuroimaging improvements were noted, particularly decreased activation in the primary cortex. This suggests that targeted rTMS in the primary cortex can reverse the abnormal neuroimaging. CONCLUSION: This cross-species translational study has identified the primary cortex as a key region in mood disorders patients with ELS. Targeting the primary cortex with rTMS can correct abnormal functional activity while improving symptoms. Our study provides translational evidence for therapeutics targeting the ELS factor of mood disorders patients.


Subject(s)
Disease Models, Animal , Magnetic Resonance Imaging , Mood Disorders , Stress, Psychological , Transcranial Magnetic Stimulation , Animals , Transcranial Magnetic Stimulation/methods , Rats , Stress, Psychological/therapy , Stress, Psychological/physiopathology , Adult , Male , Humans , Young Adult , Adolescent , Mood Disorders/therapy , Mood Disorders/physiopathology , Female , Rats, Sprague-Dawley , Cerebral Cortex/physiopathology , Cerebral Cortex/diagnostic imaging
14.
J Headache Pain ; 25(1): 97, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38858629

ABSTRACT

BACKGROUND: Mindfulness practice has gained interest in the management of Chronic Migraine associated with Medication Overuse Headache (CM-MOH). Mindfulness is characterized by present-moment self-awareness and relies on attention control and emotion regulation, improving headache-related pain management. Mindfulness modulates the Default Mode Network (DMN), Salience Network (SN), and Fronto-Parietal Network (FPN) functional connectivity. However, the neural mechanisms underlying headache-related pain management with mindfulness are still unclear. In this study, we tested neurofunctional changes after mindfulness practice added to pharmacological treatment as usual in CM-MOH patients. METHODS: The present study is a longitudinal phase-III single-blind Randomized Controlled Trial (MIND-CM study; NCT03671681). Patients had a diagnosis of CM-MOH, no history of neurological and severe psychiatric comorbidities, and were attending our specialty headache centre. Patients were divided in Treatment as Usual (TaU) and mindfulness added to TaU (TaU + MIND) groups. Patients underwent a neuroimaging and clinical assessment before the treatment and after one year. Longitudinal comparisons of DMN, SN, and FPN connectivity were performed between groups and correlated with clinical changes. Vertex-wise analysis was performed to assess cortical thickness changes. RESULTS: 177 CM-MOH patients were randomized to either TaU group or TaU + MIND group. Thirty-four patients, divided in 17 TaU and 17 TaU + MIND, completed the neuroimaging follow-up. At the follow-up, both groups showed an improvement in most clinical variables, whereas only TaU + MIND patients showed a significant headache frequency reduction (p = 0.028). After one year, TaU + MIND patients showed greater SN functional connectivity with the left posterior insula (p-FWE = 0.007) and sensorimotor cortex (p-FWE = 0.026). In TaU + MIND patients only, greater SN-insular connectivity was associated with improved depression scores (r = -0.51, p = 0.038). A longitudinal increase in cortical thickness was observed in the insular cluster in these patients (p = 0.015). Increased anterior cingulate cortex thickness was also reported in TaU + MIND group (p-FWE = 0.02). CONCLUSIONS: Increased SN-insular connectivity might modulate chronic pain perception and the management of negative emotions. Enhanced SN-sensorimotor connectivity could reflect improved body-awareness of painful sensations. Expanded cingulate cortex thickness might sustain improved cognitive processing of nociceptive information. Our findings unveil the therapeutic potential of mindfulness and the underlying neural mechanisms in CM-MOH patients. TRIAL REGISTRATION: Name of Registry; MIND-CM study; Registration Number ClinicalTrials.gov identifier: NCT0367168; Registration Date: 14/09/2018.


Subject(s)
Headache Disorders, Secondary , Mindfulness , Humans , Mindfulness/methods , Headache Disorders, Secondary/therapy , Headache Disorders, Secondary/psychology , Female , Male , Adult , Middle Aged , Longitudinal Studies , Single-Blind Method , Magnetic Resonance Imaging , Default Mode Network/diagnostic imaging , Default Mode Network/physiopathology , Cerebral Cortex/diagnostic imaging , Cerebral Cortex/physiopathology
15.
Brain Behav ; 14(6): e3594, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38849980

ABSTRACT

INTRODUCTION: In vivo myeloarchitectonic mapping based on Magnetic Resonance Imaging (MRI) provides a unique view of gray matter myelin content and offers information complementary to other morphological indices commonly employed in studies of autism spectrum disorder (ASD). The current study sought to determine if intracortical myelin content (MC) and its age-related trajectories differ between middle aged to older adults with ASD and age-matched typical comparison participants. METHODS: Data from 30 individuals with ASD and 36 age-matched typical comparison participants aged 40-70 years were analyzed. Given substantial heterogeneity in both etiology and outcomes in ASD, we utilized both group-level and subject-level analysis approaches to test for signs of atypical intracortical MC as estimated by T1w/T2w ratio. RESULTS: Group-level analyses showed no significant differences in average T1w/T2w ratio or its associations with age between groups, but revealed significant positive main effects of age bilaterally, with T1w/T2w ratio increasing with age across much of the cortex. In subject-level analyses, participants were classified into subgroups based on presence or absence of clusters of aberrant T1w/T2w ratio, and lower neuropsychological function was observed in the ASD subgroup with atypically high T1w/T2w ratio in spatially heterogeneous cortical regions. These differences were observed across several neuropsychological domains, including overall intellectual functioning, processing speed, and aspects of executive function. CONCLUSIONS: The group-level and subject-level approaches employed here demonstrate the value of examining inter-individual variability and provide important preliminary insights into relationships between brain structure and cognition in the second half of the lifespan in ASD, suggesting shared factors contributing to atypical intracortical myelin content and poorer cognitive outcomes for a subset of middle aged to older autistic adults. These atypicalities likely reflect diverse histories of neurodevelopmental deficits, and possible compensatory changes, compounded by processes of aging, and may serve as useful markers of vulnerability to further cognitive decline in older adults with ASD.


Subject(s)
Autism Spectrum Disorder , Magnetic Resonance Imaging , Myelin Sheath , Humans , Male , Female , Aged , Middle Aged , Myelin Sheath/pathology , Autism Spectrum Disorder/diagnostic imaging , Autism Spectrum Disorder/physiopathology , Autism Spectrum Disorder/metabolism , Autism Spectrum Disorder/pathology , Adult , Cerebral Cortex/diagnostic imaging , Cerebral Cortex/pathology , Cerebral Cortex/physiopathology , Neuropsychological Tests , Aging/physiology , Aging/pathology
16.
Brain Behav ; 14(6): e3585, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38849981

ABSTRACT

INTRODUCTION: Premature ejaculation (PE), a common male sexual dysfunction, often accompanies by abnormal psychological factors, such as depression. Recent neuroimaging studies have revealed structural and functional brain abnormalities in PE patients. However, there is limited neurological evidence supporting the comorbidity of PE and depression. This study aimed to explore the topological changes of the functional brain networks of PE patients with depression. METHODS: Resting-state functional magnetic resonance imaging (rs-fMRI) data were acquired from 60 PE patients (30 with depression and 30 without depression) and 29 healthy controls (HCs). Functional brain networks were constructed for all participants based on rs-fMRI data. The nodal parameters including nodal centrality and efficiency were calculated by the method of graph theory analysis and then compared between groups. In addition, the results were corrected for multiple comparisons by family-wise error (FWE) (p < .05). RESULTS: PE patients with depression had increased degree centrality and global efficiency in the right pallidum, as well as increased degree centrality in the right thalamus when compared with HCs. PE patients without depression showed increased degree centrality in the right pallidum and thalamus, as well as increased global efficiency in the right precuneus, pallidum, and thalamus when compared with HCs. PE patients with depression demonstrated decreased degree centrality in the right pallidum and thalamus, as well as decreased global efficiency in the right precuneus, pallidum, and thalamus when compared to those without depression. All the brain regions above survived the FWE correction. CONCLUSION: The results suggested that increased and decreased functional connectivity, as well as the capability of global integration of information in the brain, might be related to the occurrence of PE and the comorbidity depression in PE patients, respectively. These findings provided new insights into the understanding of the pathological mechanisms underlying PE and those with depression.


Subject(s)
Depression , Magnetic Resonance Imaging , Nerve Net , Premature Ejaculation , Humans , Male , Adult , Premature Ejaculation/physiopathology , Premature Ejaculation/diagnostic imaging , Depression/physiopathology , Depression/diagnostic imaging , Nerve Net/physiopathology , Nerve Net/diagnostic imaging , Thalamus/physiopathology , Thalamus/diagnostic imaging , Brain/physiopathology , Brain/diagnostic imaging , Young Adult , Cerebral Cortex/physiopathology , Cerebral Cortex/diagnostic imaging , Connectome , Neural Pathways/physiopathology , Neural Pathways/diagnostic imaging
17.
CNS Neurosci Ther ; 30(6): e14805, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38887197

ABSTRACT

AIMS: We intend to elucidate the alterations of cerebral networks in patients with insular glioma-related epilepsy (GRE) based on resting-state functional magnetic resonance images. METHODS: We collected 62 insular glioma patients, who were subsequently categorized into glioma-related epilepsy (GRE) and glioma with no epilepsy (GnE) groups, and recruited 16 healthy individuals matched to the patient's age and gender to form the healthy control (HC) group. Graph theoretical analysis was applied to reveal differences in sensorimotor, default mode, visual, and executive networks among different subgroups. RESULTS: No significant alterations in functional connectivity were found in either hemisphere insular glioma. Using graph theoretical analysis, differences were found in visual, sensorimotor, and default mode networks (p < 0.05). When the glioma located in the left hemisphere, the degree centrality was reduced in the GE group compared to the GnE group. When the glioma located in the right insula, the degree centrality, nodal efficiency, nodal local efficiency, and nodal clustering coefficient of the GE group were lower than those of the GnE group. CONCLUSION: The impact of insular glioma itself and GRE on the brain network is widespread. The networks altered by insular GRE differ depending on the hemisphere location. GRE reduces the nodal properties of brain networks than that in insular glioma.


Subject(s)
Brain Neoplasms , Epilepsy , Glioma , Magnetic Resonance Imaging , Humans , Glioma/diagnostic imaging , Glioma/physiopathology , Glioma/complications , Male , Female , Adult , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/complications , Brain Neoplasms/physiopathology , Middle Aged , Epilepsy/diagnostic imaging , Epilepsy/physiopathology , Nerve Net/diagnostic imaging , Nerve Net/physiopathology , Insular Cortex/diagnostic imaging , Young Adult , Cerebral Cortex/diagnostic imaging , Cerebral Cortex/physiopathology
18.
J Integr Neurosci ; 23(6): 121, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38940096

ABSTRACT

BACKGROUND: Neurofeedback is a non-invasive brain training technique used to enhance and treat hyperactivity disorder by altering the patterns of brain activity. Nonetheless, the extent of enhancement by neurofeedback varies among individuals/patients and many of them are irresponsive to this treatment technique. Therefore, several studies have been conducted to predict the effectiveness of neurofeedback training including the theta/beta protocol with a specific emphasize on slow cortical potential (SCP) before initiating treatment, as well as examining SCP criteria according to age and sex criteria in diverse populations. While some of these studies failed to make accurate predictions, others have demonstrated low success rates. This study explores functional connections within various brain lobes across different frequency bands of electroencephalogram (EEG) signals and the value of phase locking is used to predict the potential effectiveness of neurofeedback treatment before its initiation. METHODS: This study utilized EEG data from the Mendelian database. In this database, EEG signals were recorded during neurofeedback sessions involving 60 hyperactive students aged 7-14 years, irrespective of sex. These students were categorized into treatable and non-treatable. The proposed method includes a five-step algorithm. Initially, the data underwent preprocessing to reduce noise using a multi-stage filtering process. The second step involved extracting alpha and beta frequency bands from the preprocessed EEG signals, with a particular emphasis on the EEG recorded from sessions 10 to 20 of neurofeedback therapy. In the third step, the method assessed the disparity in brain signals between the two groups by evaluating functional relationships in different brain lobes using the phase lock value, a crucial data characteristic. The fourth step focused on reducing the feature space and identifying the most effective and optimal electrodes for neurofeedback treatment. Two methods, the probability index (p-value) via a t-test and the genetic algorithm, were employed. These methods showed that the optimal electrodes were in the frontal lobe and central cerebral cortex, notably channels C3, FZ, F4, CZ, C4, and F3, as they exhibited significant differences between the two groups. Finally, in the fifth step, machine learning classifiers were applied, and the results were combined to generate treatable and non-treatable labels for each dataset. RESULTS: Among the classifiers, the support vector machine and the boosting method demonstrated the highest accuracy when combined. Consequently, the proposed algorithm successfully predicted the treatability of individuals with hyperactivity in a short time and with limited data, achieving an accuracy of 90.6% in the neurofeedback method. Additionally, it effectively identified key electrodes in neurofeedback treatment, reducing their number from 32 to 6. CONCLUSIONS: This study introduces an algorithm with a 90.6% accuracy for predicting neurofeedback treatment outcomes in hyperactivity disorder, significantly enhancing treatment efficiency by identifying optimal electrodes and reducing their number from 32 to 6. The proposed method enables the prediction of patient responsiveness to neurofeedback therapy without the need for numerous sessions, thus conserving time and financial resources.


Subject(s)
Attention Deficit Disorder with Hyperactivity , Electroencephalography , Neurofeedback , Humans , Neurofeedback/methods , Attention Deficit Disorder with Hyperactivity/therapy , Attention Deficit Disorder with Hyperactivity/physiopathology , Adolescent , Male , Female , Child , Cerebral Cortex/physiopathology , Cerebral Cortex/physiology , Brain Waves/physiology , Treatment Outcome
19.
Cereb Cortex ; 34(5)2024 May 02.
Article in English | MEDLINE | ID: mdl-38741271

ABSTRACT

This study investigates abnormalities in cerebellar-cerebral static and dynamic functional connectivity among patients with acute pontine infarction, examining the relationship between these connectivity changes and behavioral dysfunction. Resting-state functional magnetic resonance imaging was utilized to collect data from 45 patients within seven days post-pontine infarction and 34 normal controls. Seed-based static and dynamic functional connectivity analyses identified divergences in cerebellar-cerebral connectivity features between pontine infarction patients and normal controls. Correlations between abnormal functional connectivity features and behavioral scores were explored. Compared to normal controls, left pontine infarction patients exhibited significantly increased static functional connectivity within the executive, affective-limbic, and motor networks. Conversely, right pontine infarction patients demonstrated decreased static functional connectivity in the executive, affective-limbic, and default mode networks, alongside an increase in the executive and motor networks. Decreased temporal variability of dynamic functional connectivity was observed in the executive and default mode networks among left pontine infarction patients. Furthermore, abnormalities in static and dynamic functional connectivity within the executive network correlated with motor and working memory performance in patients. These findings suggest that alterations in cerebellar-cerebral static and dynamic functional connectivity could underpin the behavioral dysfunctions observed in acute pontine infarction patients.


Subject(s)
Brain Stem Infarctions , Cerebellum , Magnetic Resonance Imaging , Neural Pathways , Pons , Humans , Male , Female , Middle Aged , Cerebellum/physiopathology , Cerebellum/diagnostic imaging , Neural Pathways/physiopathology , Neural Pathways/diagnostic imaging , Pons/diagnostic imaging , Pons/physiopathology , Brain Stem Infarctions/physiopathology , Brain Stem Infarctions/diagnostic imaging , Aged , Adult , Cerebral Cortex/physiopathology , Cerebral Cortex/diagnostic imaging , Nerve Net/physiopathology , Nerve Net/diagnostic imaging
20.
Med Sci Monit ; 30: e943802, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38741355

ABSTRACT

BACKGROUND The thalamocortical tract (TCT) links nerve fibers between the thalamus and cerebral cortex, relaying motor/sensory information. The default mode network (DMN) comprises bilateral, symmetrical, isolated cortical regions of the lateral and medial parietal and temporal brain cortex. The Coma Recovery Scale-Revised (CRS-R) is a standardized neurobehavioral assessment of disorders of consciousness (DOC). In the present study, 31 patients with hypoxic-ischemic brain injury (HI-BI) were compared for changes in the TCT and DMN with consciousness levels assessed using the CRS-R. MATERIAL AND METHODS In this retrospective study, 31 consecutive patients with HI-BI (17 DOC,14 non-DOC) and 17 age- and sex-matched normal control subjects were recruited. Magnetic resonance imaging was used to diagnose HI-BI, and the CRS-R was used to evaluate consciousness levels at the time of diffusion tensor imaging (DTI). The fractional anisotropy (FA) values and tract volumes (TV) of the TCT and DMN were compared. RESULTS In patients with DOC, the FA values and TV of both the TCT and DMN were significantly lower compared to those of patients without DOC and the control subjects (p<0.05). When comparing the non-DOC and control groups, the TV of the TCT and DMN were significantly lower in the non-DOC group (p<0.05). Moreover, the CRS-R score had strong positive correlations with the TV of the TCT (r=0.501, p<0.05), FA of the DMN (r=0.532, p<0.05), and TV of the DMN (r=0.501, p<0.05) in the DOC group. CONCLUSIONS This study suggests that both the TCT and DMN exhibit strong correlations with consciousness levels in DOC patients with HI-BI.


Subject(s)
Cerebral Cortex , Coma , Consciousness , Diffusion Tensor Imaging , Hypoxia-Ischemia, Brain , Thalamus , Humans , Female , Male , Middle Aged , Thalamus/physiopathology , Thalamus/diagnostic imaging , Hypoxia-Ischemia, Brain/physiopathology , Hypoxia-Ischemia, Brain/diagnostic imaging , Adult , Consciousness/physiology , Diffusion Tensor Imaging/methods , Cerebral Cortex/physiopathology , Cerebral Cortex/diagnostic imaging , Retrospective Studies , Coma/physiopathology , Coma/diagnostic imaging , Magnetic Resonance Imaging/methods , Default Mode Network/physiopathology , Default Mode Network/diagnostic imaging , Consciousness Disorders/physiopathology , Consciousness Disorders/diagnostic imaging , Aged
SELECTION OF CITATIONS
SEARCH DETAIL
...