Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.330
Filter
1.
Neuroimaging Clin N Am ; 34(3): 359-373, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38942521

ABSTRACT

Concepts of multiple sclerosis (MS) biology continue to evolve, with observations such as "progression independent of disease activity" challenging traditional phenotypic categorization. Iron-sensitive, susceptibility-based imaging techniques are emerging as highly translatable MR imaging sequences that allow for visualization of at least 2 clinically useful biomarkers: the central vein sign and the paramagnetic rim lesion (PRL). Both biomarkers demonstrate high specificity in the discrimination of MS from other mimics and can be seen at 1.5 T and 3 T field strengths. Additionally, PRLs represent a subset of chronic active lesions engaged in "smoldering" compartmentalized inflammation behind an intact blood-brain barrier.


Subject(s)
Magnetic Resonance Imaging , Multiple Sclerosis , Humans , Multiple Sclerosis/diagnostic imaging , Magnetic Resonance Imaging/methods , Brain/diagnostic imaging , Biomarkers , Inflammation/diagnostic imaging , Neuroimaging/methods , Cerebral Veins/diagnostic imaging
4.
Neurosurg Rev ; 47(1): 275, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38878179

ABSTRACT

The vein of Rolando, also known as the central sulcal vein, is a critical superficial cerebral vein located in the central sulcus, playing a pivotal role in the venous drainage of the motor and sensory cortices. Named after the Italian anatomist Luigi Rolando, this vein serves as a crucial anatomical landmark in neurosurgery, guiding surgeons to approach critical brain structures with minimal damage. This article explores the anatomy and clinical significance of the vein of Rolando, emphasizing its role in neurosurgery and neuroimaging. Advanced imaging techniques such as functional MRI (fMRI), Magnetic Resonance Venography (MRV), and CT Angiography have enhanced the ability to diagnose and preserve this vein, reducing surgical risks. The article also discusses the interconnectedness of the vein of Rolando with other cerebral veins like the vein of Trolard and underscores the importance of understanding venous variations and drainage patterns for successful surgical outcomes. Preventive measures to protect the vein during neurosurgery are essential to prevent complications such as venous congestion and intracranial pressure. This overview highlights the necessity for precise anatomical knowledge and advanced diagnostic tools in optimizing neurosurgical procedures and patient care.


Subject(s)
Cerebral Veins , Neurosurgeons , Neurosurgical Procedures , Humans , Cerebral Veins/surgery , Cerebral Veins/anatomy & histology , Cerebral Veins/diagnostic imaging , Magnetic Resonance Imaging , Neurosurgical Procedures/methods
5.
Folia Med (Plovdiv) ; 66(2): 269-276, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38690824

ABSTRACT

Vein of Galen malformations (VGAMs) are rare and complex congenital brain vascular anomalies that pose significant diagnostic and treatment challenges. The natural history of this type of vascular anomaly is very poor, with many patients succumbing to complications such as congestive heart failure, hydrocephalus, and brain parenchymal injury. Although the clinical course of most VGAMs was considered unfortunate, with meticulous imaging, a group of lesions with a more placid presentation and course can be identified.


Subject(s)
Vein of Galen Malformations , Humans , Cerebral Veins/abnormalities , Cerebral Veins/diagnostic imaging , Vein of Galen Malformations/diagnostic imaging , Vein of Galen Malformations/complications
8.
Acta Neurochir (Wien) ; 166(1): 220, 2024 May 18.
Article in English | MEDLINE | ID: mdl-38761276

ABSTRACT

PURPOSE: To improve postoperative outcome in middle third falcine meningiomas by cortical venous preservation. BACKGROUND: Falcine meningiomas arise from the falx and do not involve the superior sagittal sinus (SSS). Their complete resection is often associated with the risk of venous infarction in the eloquent cortex due to overlying superficial cortical veins on the tumors. METHOD: We report one case of middle third falcine meningioma, where we used the posterior interhemispheric corridor for tumor approach. CONCLUSION: Use of the posterior interhemispheric approach, carefully raised bone flap, along with sharp dissection and vein reinforcement using fibrin glue can help to preserve the cortical veins while resecting the falcine meningiomas.


Subject(s)
Meningeal Neoplasms , Meningioma , Humans , Cerebral Cortex/surgery , Cerebral Cortex/blood supply , Cerebral Veins/surgery , Cerebral Veins/diagnostic imaging , Meningeal Neoplasms/surgery , Meningeal Neoplasms/diagnostic imaging , Meningioma/surgery , Meningioma/diagnostic imaging , Neurosurgical Procedures/methods , Treatment Outcome
9.
No Shinkei Geka ; 52(3): 570-578, 2024 May.
Article in Japanese | MEDLINE | ID: mdl-38783500

ABSTRACT

The basal vein of Rosenthal, the vein of Galen, and the straight sinus are important venous communication routes connecting the deep, superficial, and dural sinuses. The basal vein is divided into three parts since it originates secondarily from three different areas and its venous areas are diverse. However, care should be taken because disconnection between these segments causes variations that change the venous flow path. Endovascular treatment warrants a proper understanding of this anatomical area and requires consideration of vascular occlusion and venous drainage changes.


Subject(s)
Cerebral Veins , Cranial Sinuses , Humans , Cranial Sinuses/diagnostic imaging
10.
No Shinkei Geka ; 52(3): 579-586, 2024 May.
Article in Japanese | MEDLINE | ID: mdl-38783501

ABSTRACT

The superior sagittal sinus(SSS)is contained within the dura, which consists of the dura propria and osteal dura at the junction of the falx cerebri, in addition to the attachment of the falx to the cranial vault. The SSS extends anteriorly from the foramen cecum and posteriorly to the torcular Herophili. The superior cerebral veins flow into the SSS, coursing under the lateral venous lacunae via bridging veins. Most of the bridging veins reach the dura and empty directly into the SSS. However, some are attached to the dural or existed in it for some distance before their sinus entrance. The venous structures of the junctional zone between the bridging vein and the SSS existed in the dura are referred to as dural venous channels. The SSS communicates with the lateral venous lacunae connecting the meningeal and diploic veins, as well as the emissary veins. These anatomical variations of the SSS are defined by the embryological processes of fusion and withdrawal of the sagittal plexus and marginal sinus.


Subject(s)
Cerebral Veins , Cranial Sinuses , Humans , Cranial Sinuses/anatomy & histology , Cerebral Veins/anatomy & histology , Superior Sagittal Sinus/anatomy & histology , Dura Mater/anatomy & histology , Dura Mater/blood supply
11.
No Shinkei Geka ; 52(3): 596-604, 2024 May.
Article in Japanese | MEDLINE | ID: mdl-38783503

ABSTRACT

The superior petrosal sinus and petrosal vein are important drainage routes for the posterior cranial fossa, with some variations and collateral vessels. An anterolateral-type tentorial dural arteriovenous fistula, which occurs around the petrosal vein, often develops aggressive symptoms due to venous reflux to the brainstem and cerebellum. Neuroendovascular treatment of this fistula is usually challenging because transarterial embolization has a high risk and indications for transvenous embolization are limited. In the cavernous sinus and transverse sinus/sigmoid sinus dural arteriovenous fistulas, venous reflux to the petrosal vein is dangerous, and a treatment strategy with the occlusion of the petrosal vein is indispensable. Furthermore, attention should be paid to venous approaches through the superior petrosal sinus.


Subject(s)
Central Nervous System Vascular Malformations , Humans , Central Nervous System Vascular Malformations/diagnostic imaging , Central Nervous System Vascular Malformations/therapy , Central Nervous System Vascular Malformations/surgery , Cranial Sinuses/diagnostic imaging , Cranial Sinuses/surgery , Cerebral Veins/diagnostic imaging , Embolization, Therapeutic/methods
12.
No Shinkei Geka ; 52(3): 560-569, 2024 May.
Article in Japanese | MEDLINE | ID: mdl-38783499

ABSTRACT

The cavernous sinus is the crossroad of veins from various embryological origins, including the brain, eye, pituitary gland, dura, and cranium. Embryologically, the cavernous sinus is mainly formed from the pro-otic sinus; secondary anastomosis between the cavernous sinus and primitive tentorial sinus results in various anatomical variations in the drainage patterns of the superficial middle cerebral vein. Moreover, connections between the cavernous sinus and basal vein via the uncal vein, bridging vein, and petrosal vein from the superior petrosal sinus may exist. Retrograde drainage from the cavernous sinus into the cerebral veins is often observed in arteriovenous shunts involving the cavernous sinus, such as dural and carotid-cavernous fistulas, which are primarily treated using transvenous embolization. Understanding the anatomy of the cavernous sinus and its associated veins is essential for safe and reliable endovascular treatment.


Subject(s)
Cavernous Sinus , Humans , Cavernous Sinus/anatomy & histology , Embolization, Therapeutic , Cerebral Veins/anatomy & histology
13.
No Shinkei Geka ; 52(3): 605-616, 2024 May.
Article in Japanese | MEDLINE | ID: mdl-38783504

ABSTRACT

Veins at the craniocervical junction are complex network structures. They empty into two main brain venous drainages, the internal jugular vein and internal vertebral venous plexus, and reroute venous blood according to postural changes. They are also involved in the etiology of dural arteriovenous shunts in this region. Hence, regional venous anatomy is crucial for interventional neuroradiologists to understand the pathophysiology and formulate therapeutic strategies. This article aims to provide a summary on venous anatomy, radiological findings, and related pathological conditions, especially for young and inexperienced interventional neuroradiologists.


Subject(s)
Cranial Sinuses , Humans , Cranial Sinuses/diagnostic imaging , Cranial Sinuses/anatomy & histology , Cerebral Veins/diagnostic imaging , Cerebral Veins/anatomy & histology
14.
Eur J Paediatr Neurol ; 50: 81-85, 2024 May.
Article in English | MEDLINE | ID: mdl-38705014

ABSTRACT

BACKGROUND: The central vein sign (CVS) has been proposed as a novel MRI biomarker to improve diagnosis of pediatric-onset MS (POMS). However, the role of CVS in POMS progression has yet to be discovered. OBJECTIVES: To investigate the appearance of CVS and its correlation with POMS disease progression. METHODS: One hundred fifty-six POMS from two MS centers in Israel and Czech Republic MS centers were followed for five years. Patient assessment was performed by the Expanded Disability Status Scale (EDSS) and Annual Relapse Rate (ARR). Patients in whom at least 40 % of brain MRI lesions had CVS ("rule of 40") were determined as CVS-positive. RESULTS: The total group of POMS consisted of 96 CVS-negative (61.5 %), aged 14.6 ± 1.9 years, EDSS 2.0, 75 % Interquartile Range (IQR) 1.0-3.0, disease duration (DD) 6.28 ± 0.38 years, and 60 CVS-positive (38.5 %), aged 15.1 ± 0.3 years, EDSS 2.0, IQR 1.5-3.0, DD 5.62 ± 0.13 years, were analyzed. After a three and five-year follow-up, the CVS-positive patients had higher EDSS scores than those who were CVS-negative, 2.0, IQR 1.0-2.5, vs 1.0, IQR 1.0-2.0, (p = 0.009) and 2.0, IQR 1.0-3.25 vs 1.0, IQR 1.0-2.0, (p = 0.0003), respectively. Patients with CVS-positive POMS were characterized by a significantly higher ARR (0.78 ± 0.08 vs 0.57 ± 0.04, p = 0.002). These results were confirmed in subgroups of Disease Modifying Treatments (DMT) untreated and treated patients. CONCLUSION: CVS-positive POMS is characterized by higher disability progression than CVS-negative, indicating the importance of CVS in disease pathogenesis.


Subject(s)
Disease Progression , Magnetic Resonance Imaging , Humans , Male , Female , Adolescent , Child , Multiple Sclerosis/diagnostic imaging , Multiple Sclerosis/physiopathology , Cerebral Veins/diagnostic imaging , Cerebral Veins/physiopathology , Israel , Czech Republic , Brain/diagnostic imaging , Brain/pathology , Disability Evaluation , Follow-Up Studies , Age of Onset
15.
J Am Heart Assoc ; 13(10): e034145, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38761086

ABSTRACT

BACKGROUND: This study aims to investigate the temporal and spatial patterns of structural brain injury related to deep medullary veins (DMVs) damage. METHODS AND RESULTS: This is a longitudinal analysis of the population-based Shunyi cohort study. Baseline DMVs numbers were identified on susceptibility-weighted imaging. We assessed vertex-wise cortex maps and diffusion maps at both baseline and follow-up using FSL software and the longitudinal FreeSurfer analysis suite. We performed statistical analysis of global measurements and voxel/vertex-wise analysis to explore the relationship between DMVs number and brain structural measurements. A total of 977 participants were included in the baseline, of whom 544 completed the follow-up magnetic resonance imaging (age 54.97±7.83 years, 32% men, mean interval 5.56±0.47 years). A lower number of DMVs was associated with a faster disruption of white matter microstructural integrity, presented by increased mean diffusivity and radial diffusion (ß=0.0001 and SE=0.0001 for both, P=0.04 and 0.03, respectively), in extensive deep white matter (threshold-free cluster enhancement P<0.05, adjusted for age and sex). Of particular interest, we found a bidirectional trend association between DMVs number and change in brain volumes. Specifically, participants with mild DMVs disruption showed greater cortical enlargement, whereas those with severe disruption exhibited more significant brain atrophy, primarily involving clusters in the frontal and parietal lobes (multiple comparison corrected P<0.05, adjusted for age, sex, and total intracranial volume). CONCLUSIONS: Our findings posed the dynamic pattern of brain parenchymal lesions related to DMVs injury, shedding light on the interactions and chronological roles of various pathological mechanisms.


Subject(s)
Cerebral Veins , Humans , Male , Female , Middle Aged , Cerebral Veins/diagnostic imaging , Cerebral Veins/pathology , Longitudinal Studies , China/epidemiology , White Matter/diagnostic imaging , White Matter/pathology , Adult , Aged
16.
Neurosurg Clin N Am ; 35(3): 273-286, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38782520

ABSTRACT

Comprehensive understanding of venous anatomy is a key factor in the approach to a multitude of conditions. Moreover, the venous system has become the center of attention as a new frontier for treatment of diseases such as idiopathic intracranial hypertension (IIH), arteriovenous malformation (AVM), pulsatile tinnitus, hydrocephalus, and cerebrospinal fluid (CSF) venous fistulas. Its knowledge is ever more an essential requirement of the modern brain physician. In this article, the authors explore the descriptive and functional anatomy of the venous system of the CNS in 5 subsections: embryology, dural sinuses, cortical veins, deep veins, and spinal veins.


Subject(s)
Cerebral Veins , Humans , Cerebral Veins/anatomy & histology , Cranial Sinuses/anatomy & histology , Central Nervous System/anatomy & histology , Central Nervous System/blood supply
17.
J Craniofac Surg ; 35(4): e391-e394, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38722329

ABSTRACT

The occipital emissary foramen (OEF) located on the occipital bone transmits the occipital emissary vein, which connects the occipital vein to the confluence of cranial venous sinuses. The OEF varies in incidence, number, size, and location. Knowledge of this foramen is essential for carrying out suboccipital and transcondylar surgeries without clinical implications. Hence, the study was planned. The aim of the present study is to elaborate on incidence, location, and morphometry consisting of the number and size of this foramen in light of clinical bearing in the context of the Indian population. The study was carried out in the Department of Anatomy using 80 skulls of unknown age and sex. The occipital bone of the skull was observed for the incidence, number, size, and location of the occipital emissary vein and associated clinical implications were elaborated. The incidence of occipital foramen was 36.25% and detected in 29 skulls. All these occipital foramina were patent. The mean diameter of this foramen was 0.6 mm. The most common location of these foramina was the left side of the foramen magnum, followed by the left side of the external occipital crest. The information about the incidence, number, size, and location of OEF is important to prevent catastrophic bleeding during surgery in the region of the occipital bone. The awareness of differential morphometry and morphology of occipital foramina is of great importance for neurosurgeons during suboccipital craniotomy and skull base surgeries, including far lateral and transcondylar approaches to access posterior cranial fossa for management of pathologies in the cranial cavity.


Subject(s)
Cadaver , Occipital Bone , Humans , Occipital Bone/anatomy & histology , Cerebral Veins/anatomy & histology , India , Prevalence , Male , Cranial Sinuses/anatomy & histology , Foramen Magnum/anatomy & histology , Female , Anatomic Variation
18.
Neurol Neuroimmunol Neuroinflamm ; 11(4): e200253, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38788180

ABSTRACT

BACKGROUND AND OBJECTIVES: The diagnosis of multiple sclerosis (MS) can be challenging in clinical practice because MS presentation can be atypical and mimicked by other diseases. We evaluated the diagnostic performance, alone or in combination, of the central vein sign (CVS), paramagnetic rim lesion (PRL), and cortical lesion (CL), as well as their association with clinical outcomes. METHODS: In this multicenter observational study, we first conducted a cross-sectional analysis of the CVS (proportion of CVS-positive lesions or simplified determination of CVS in 3/6 lesions-Select3*/Select6*), PRL, and CL in MS and non-MS cases on 3T-MRI brain images, including 3D T2-FLAIR, T2*-echo-planar imaging magnitude and phase, double inversion recovery, and magnetization prepared rapid gradient echo image sequences. Then, we longitudinally analyzed the progression independent of relapse and MRI activity (PIRA) in MS cases over the 2 years after study entry. Receiver operating characteristic curves were used to test diagnostic performance and regression models to predict diagnosis and clinical outcomes. RESULTS: The presence of ≥41% CVS-positive lesions/≥1 CL/≥1 PRL (optimal cutoffs) had 96%/90%/93% specificity, 97%/84%/60% sensitivity, and 0.99/0.90/0.77 area under the curve (AUC), respectively, to distinguish MS (n = 185) from non-MS (n = 100) cases. The Select3*/Select6* algorithms showed 93%/95% specificity, 97%/89% sensitivity, and 0.95/0.92 AUC. The combination of CVS, CL, and PRL improved the diagnostic performance, especially when Select3*/Select6* were used (93%/94% specificity, 98%/96% sensitivity, 0.99/0.98 AUC; p = 0.002/p < 0.001). In MS cases (n = 185), both CL and PRL were associated with higher MS disability and severity. Longitudinal analysis (n = 61) showed that MS cases with >4 PRL at baseline were more likely to experience PIRA at 2-year follow-up (odds ratio 17.0, 95% confidence interval: 2.1-138.5; p = 0.008), whereas no association was observed between other baseline MRI measures and PIRA, including the number of CL. DISCUSSION: The combination of CVS, CL, and PRL can improve MS differential diagnosis. CL and PRL also correlated with clinical measures of poor prognosis, with PRL being a predictor of disability accrual independent of clinical/MRI activity.


Subject(s)
Magnetic Resonance Imaging , Multiple Sclerosis , Humans , Female , Male , Adult , Multiple Sclerosis/diagnostic imaging , Multiple Sclerosis/diagnosis , Middle Aged , Cross-Sectional Studies , Prognosis , Cerebral Cortex/diagnostic imaging , Cerebral Cortex/pathology , Cerebral Veins/diagnostic imaging , Cerebral Veins/pathology , Disease Progression , Longitudinal Studies
20.
Comput Med Imaging Graph ; 115: 102392, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38714020

ABSTRACT

Cerebral X-ray digital subtraction angiography (DSA) is a widely used imaging technique in patients with neurovascular disease, allowing for vessel and flow visualization with high spatio-temporal resolution. Automatic artery-vein segmentation in DSA plays a fundamental role in vascular analysis with quantitative biomarker extraction, facilitating a wide range of clinical applications. The widely adopted U-Net applied on static DSA frames often struggles with disentangling vessels from subtraction artifacts. Further, it falls short in effectively separating arteries and veins as it disregards the temporal perspectives inherent in DSA. To address these limitations, we propose to simultaneously leverage spatial vasculature and temporal cerebral flow characteristics to segment arteries and veins in DSA. The proposed network, coined CAVE, encodes a 2D+time DSA series using spatial modules, aggregates all the features using temporal modules, and decodes it into 2D segmentation maps. On a large multi-center clinical dataset, CAVE achieves a vessel segmentation Dice of 0.84 (±0.04) and an artery-vein segmentation Dice of 0.79 (±0.06). CAVE surpasses traditional Frangi-based k-means clustering (P < 0.001) and U-Net (P < 0.001) by a significant margin, demonstrating the advantages of harvesting spatio-temporal features. This study represents the first investigation into automatic artery-vein segmentation in DSA using deep learning. The code is publicly available at https://github.com/RuishengSu/CAVE_DSA.


Subject(s)
Angiography, Digital Subtraction , Cerebral Arteries , Cerebral Veins , Humans , Angiography, Digital Subtraction/methods , Cerebral Veins/diagnostic imaging , Cerebral Arteries/diagnostic imaging , Cerebral Angiography/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...