Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23.201
Filter
1.
Sci Rep ; 14(1): 15420, 2024 07 04.
Article in English | MEDLINE | ID: mdl-38965345

ABSTRACT

Due to the low permeability characteristics of the deep gas-containing coal seam, the conventional prevention and control measures that cannot solve the problems of gas outbursts are unsatisfactory for the prevention and control of the coal and gas outbursts disaster. Therefore, in this study, a strain of methane-oxidizing bacteria M07 with high-pressure resistance, strong resistance, and high methane degradation rate was selected from coal mines. The growth and degradation abilities of M07 in chelating wetting agent solutions to assess its adaptability and find the optimal agent-to-M07 ratio. It provides a new method for integrating the reduction of impact tendency and gas pressure in deep coal mines. The experimental results show that M07 is a Gram-positive bacterium of the genus Bacillus, which has strong resistance and adaptability to high-pressure water injection. By degrading 70 mol of methane, M07 produces 1 mol of carbon dioxide, which can reduce gas pressure and reduce the risk of gas outbursts in coal mines. As the experiment proves, the best effect was achieved when the M07 concentration of the chelating wetting agent was 0.05%. The methane-oxidizing bacteria based on the chelating wetting agent as carriers prove a new prevention and control method for the integrated prevention and control of coal and gas outbursts in coal mines and also provide a new idea for microbial application in coal mine disaster control.


Subject(s)
Biodegradation, Environmental , Chelating Agents , Methane , Methane/metabolism , Methane/chemistry , Chelating Agents/chemistry , Chelating Agents/pharmacology , Chelating Agents/metabolism , Bacillus/metabolism , Coal , Coal Mining
2.
Int J Mol Sci ; 25(14)2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39063122

ABSTRACT

Essential transition metals have key roles in oxygen transport, neurotransmitter synthesis, nucleic acid repair, cellular structure maintenance and stability, oxidative phosphorylation, and metabolism. The balance between metal deficiency and excess is typically ensured by several extracellular and intracellular mechanisms involved in uptake, distribution, and excretion. However, provoked by either intrinsic or extrinsic factors, excess iron, zinc, copper, or manganese can lead to cellular damage upon chronic or acute exposure, frequently attributed to oxidative stress. Intracellularly, mitochondria are the organelles that require the tightest control concerning reactive oxygen species production, which inevitably leaves them to be one of the most vulnerable targets of metal toxicity. Current therapies to counteract metal overload are focused on chelators, which often cause secondary effects decreasing patients' quality of life. New therapeutic options based on synthetic or natural antioxidants have proven positive effects against metal intoxication. In this review, we briefly address the cellular metabolism of transition metals, consequences of their overload, and current therapies, followed by their potential role in inducing oxidative stress and remedies thereof.


Subject(s)
Antioxidants , Oxidative Stress , Transition Elements , Humans , Antioxidants/therapeutic use , Antioxidants/metabolism , Oxidative Stress/drug effects , Transition Elements/metabolism , Animals , Mitochondria/metabolism , Mitochondria/drug effects , Reactive Oxygen Species/metabolism , Iron/metabolism , Metals/metabolism , Chelating Agents/therapeutic use , Chelating Agents/pharmacology
3.
Sci Adv ; 10(28): eadn0960, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38996025

ABSTRACT

Celastrol (CEL), an active compound isolated from the root of Tripterygium wilfordii, exhibits broad anticancer activities. However, its poor stability, narrow therapeutic window and numerous adverse effects limit its applications in vivo. In this study, an adenosine triphosphate (ATP) activatable CEL-Fe(III) chelate was designed, synthesized, and then encapsulated with a reactive oxygen species (ROS)-responsive polymer to obtain CEL-Fe nanoparticles (CEL-Fe NPs). In normal tissues, CEL-Fe NPs maintain structural stability and exhibit reduced systemic toxicity, while at the tumor site, an ATP-ROS-rich tumor microenvironment, drug release is triggered by ROS, and antitumor potency is restored by competitive binding of ATP. This intelligent CEL delivery system improves the biosafety and bioavailability of CEL for cancer therapy. Such a CEL-metal chelate strategy not only mitigates the challenges associated with CEL but also opens avenues for the generation of CEL derivatives, thereby expanding the therapeutic potential of CEL in clinical settings.


Subject(s)
Adenosine Triphosphate , Pentacyclic Triterpenes , Prodrugs , Reactive Oxygen Species , Pentacyclic Triterpenes/pharmacology , Pentacyclic Triterpenes/chemistry , Prodrugs/chemistry , Prodrugs/pharmacology , Adenosine Triphosphate/metabolism , Humans , Animals , Reactive Oxygen Species/metabolism , Mice , Cell Line, Tumor , Triterpenes/chemistry , Triterpenes/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Chelating Agents/chemistry , Chelating Agents/pharmacology , Neoplasms/drug therapy , Neoplasms/metabolism , Neoplasms/pathology , Tumor Microenvironment/drug effects , Drug Liberation , Nanoparticles/chemistry , Xenograft Model Antitumor Assays , Ferric Compounds/chemistry
4.
Nat Commun ; 15(1): 5741, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39009580

ABSTRACT

Targeted alpha therapy (TAT) pairs the specificity of antigen targeting with the lethality of alpha particles to eradicate cancerous cells. Actinium-225 [225Ac; t1/2 = 9.920(3) days] is an alpha-emitting radioisotope driving the next generation of TAT radiopharmaceuticals. Despite promising clinical results, a fundamental understanding of Ac coordination chemistry lags behind the rest of the Periodic Table due to its limited availability, lack of stable isotopes, and inadequate systems poised to probe the chemical behavior of this radionuclide. In this work, we demonstrate a platform that combines an 8-coordinate synthetic ligand and a mammalian protein to characterize the solution and solid-state behavior of the longest-lived Ac isotope, 227Ac [t1/2 = 21.772(3) years]. We expect these results to direct renewed efforts for 225Ac-TAT development, aid in understanding Ac coordination behavior relative to other +3 lanthanides and actinides, and more broadly inform this element's position on the Periodic Table.


Subject(s)
Actinium , Chelating Agents , Actinium/chemistry , Chelating Agents/chemistry , Crystallization , Radiopharmaceuticals/chemistry , Humans , Ligands
5.
BMC Bioinformatics ; 25(1): 239, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39014298

ABSTRACT

BACKGROUND: Metal ions play vital roles in regulating various biological systems, making it essential to control the concentration of free metal ions in solutions during experimental procedures. Several software applications exist for estimating the concentration of free metals in the presence of chelators, with MaxChelator being the easily accessible choice in this domain. This work aimed at developing a Python version of the software with arbitrary precision calculations, extensive new features, and a user-friendly interface to calculate the free metal ions. RESULTS: We introduce the open-source PyChelator web application and the Python-based Google Colaboratory notebook, PyChelator Colab. Key features aim to improve the user experience of metal chelator calculations including input in smaller units, selection among stability constants, input of user-defined constants, and convenient download of all results in Excel format. These features were implemented in Python language by employing Google Colab, facilitating the incorporation of the calculator into other Python-based pipelines and inviting the contributions from the community of Python-using scientists for further enhancements. Arbitrary-precision arithmetic was employed by using the built-in Decimal module to obtain the most accurate results and to avoid rounding errors. No notable differences were observed compared to the results obtained from the PyChelator web application. However, comparison of different sources of stability constants showed substantial differences among them. CONCLUSIONS: PyChelator is a user-friendly metal and chelator calculator that provides a platform for further development. It is provided as an interactive web application, freely available for use at https://amrutelab.github.io/PyChelator , and as a Python-based Google Colaboratory notebook at https://colab. RESEARCH: google.com/github/AmruteLab/PyChelator/blob/main/PyChelator_Colab.ipynb .


Subject(s)
Chelating Agents , Internet , Metals , Software , Chelating Agents/chemistry , Metals/chemistry
6.
Orphanet J Rare Dis ; 19(1): 261, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38982450

ABSTRACT

OBJECTIVES: Wilson disease (WD) is a rare genetic disease affecting copper metabolism and the biliary tract's copper excretion. Lifelong medication is necessary to prevent liver failure, neurological complications, and death. Although D-penicillamine (DPA), trientine, and zinc are used to treat WD, there is limited research on the long-term outcomes of these drugs, especially in children. This study aimed to evaluate the efficacy and safety of DPA, trientine, and zinc in patients diagnosed with WD during childhood. METHODS: Ninety out of 92 patients were included in the analysis, excluding two patients who underwent liver transplantation without drug treatment due to an acute liver failure diagnosis. Treatment outcomes and reasons for discontinuation of therapy in 148 treatment blocks (37 DPA, 50 trientine, and 61 zinc) were analyzed using Kaplan-Meier analysis. RESULTS: The median age at diagnosis was 8.3 years. There was a statistically significant difference in drug changes due to treatment ineffectiveness among the three drugs: trientine (22/50, 44%), zinc (15/61, 25%), and DPA (2/37, 5%) (all p < 0.05). Regarding drug changes due to adverse effects, the rate was the highest for DPA, followed by zinc and trientine. There were significant differences between DPA and zinc, zinc and trientine (all p < 0.05), but no significant difference was observed between DPA and zinc (p = 0.22). CONCLUSIONS: In pediatric WD, DPA, zinc, and trientine have therapeutic effects in that order. However, DPA and zinc are associated with more adverse effects compared to trientine.


Subject(s)
Hepatolenticular Degeneration , Penicillamine , Trientine , Zinc , Humans , Hepatolenticular Degeneration/drug therapy , Hepatolenticular Degeneration/metabolism , Penicillamine/therapeutic use , Penicillamine/adverse effects , Trientine/therapeutic use , Trientine/adverse effects , Child , Male , Female , Zinc/therapeutic use , Adolescent , Child, Preschool , Chelating Agents/therapeutic use , Treatment Outcome
7.
Sci Rep ; 14(1): 16808, 2024 Jul 22.
Article in English | MEDLINE | ID: mdl-39039161

ABSTRACT

A new modified cellulose with diaminoguanidine (Cel-Gua) synthesized for specific recovery of Cu (II), Cd (II), and Hg (II) from the alum sample. Cellulose was silanized by 3-chloropropyltrimethoxysilane and then was modified with diaminoguanidine to obtain N-donor chelating fibers. Fourier transform-infrared spectroscopy, scanning electron microscopy, X-ray diffraction, zeta potential, electrons disperse X-ray analysis, elemental analyses (C, H and N), and thermogravimetric analysis were used for characterization. Factors influencing the adsorption were thoroughly examined. Under the optimal conditions, the Cel-Gua sorbent displayed maximum adsorption capacities of 94.33, 112.10 and 95.78 mg/g for Cu (II), Cd (II), and Hg (II), respectively. The sorption process of metal ions is equipped by kinetic model PSO and Langmuir adsorption isotherm. The calculated thermodynamic variables confirmed that the adsorption of Cu (II), Cd (II) and Hg (II) by Cel-Gua sorbent is a spontaneous and exothermic process. In our study, we used the molecular operating environment software to conduct molecular docking simulations on the Cel-Gua compound. The results of the docking simulations showed that the Cel-Gua compound displayed greater potency and a stronger affinity for the Avr2 effector protein derived from Fusarium oxysporum, a fungal plant pathogen (code 5OD4). The adsorbent was stable for 7 cycles, thus allowing its safe reutilization.


Subject(s)
Cadmium , Cellulose , Copper , Molecular Docking Simulation , Cellulose/chemistry , Copper/chemistry , Cadmium/chemistry , Adsorption , Mercury/chemistry , Alum Compounds/chemistry , Kinetics , Thermodynamics , Spectroscopy, Fourier Transform Infrared , Chelating Agents/chemistry
8.
Biochemistry ; 63(14): 1709-1717, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-38975737

ABSTRACT

I present the perspective that the divalent metalome and the metabolome can be modeled as a network of chelating interactions instead of separate entities. I review progress in understanding the complex cellular environment, in particular recent contributions to modeling metabolite-Mg2+ interactions. I then demonstrate a simple extension of these strategies based approximately on intracellular Escherichia coli concentrations. This model is composed of four divalent metal cations with a range of cellular concentrations and physical properties (Mg2+, Ca2+, Mn2+, and Zn2+), eight representative metabolites, and interaction constants. I applied this model to predict the speciation of divalent metal cations between free and metabolite-chelated species. This approach reveals potentially beneficial properties, including maintenance of free divalent metal cations at biologically relevant concentrations, buffering of free divalent metal cations, and enrichment of functional metabolite-chelated species. While currently limited by available interaction coefficients, this modeling strategy can be generalized to more complex systems. In summary, biochemists should consider the potential of cellular metabolites to form chelating interactions with divalent metal cations.


Subject(s)
Cations, Divalent , Escherichia coli , Cations, Divalent/metabolism , Cations, Divalent/chemistry , Escherichia coli/metabolism , Escherichia coli/genetics , Chelating Agents/chemistry , Chelating Agents/metabolism , Models, Biological , Metabolome , Magnesium/metabolism , Magnesium/chemistry , Buffers , Zinc/metabolism , Zinc/chemistry
9.
BMC Vet Res ; 20(1): 262, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38890656

ABSTRACT

BACKGROUND: In recent years, anthropogenic activities have released heavy metals and polluted the aquatic environment. This study investigated the ability of the silica-stabilized magnetite (Si-M) nanocomposite materials to dispose of lead nitrate (Pb(NO3)2) toxicity in Nile tilapia and African catfish. RESULTS: Preliminary toxicity tests were conducted and determined the median lethal concentration (LC50) of lead nitrate (Pb(NO3)2) to Nile tilapia and African catfish to be 5 mg/l. The sublethal concentration, equivalent to 1/20 of the 96-hour LC50 Pb(NO3)2, was selected for our experiment. Fish of each species were divided into four duplicated groups. The first group served as the control negative group, while the second group (Pb group) was exposed to 0.25 mg/l Pb(NO3)2 (1/20 of the 96-hour LC50). The third group (Si-MNPs) was exposed to silica-stabilized magnetite nanoparticles at a concentration of 1 mg/l, and the fourth group (Pb + Si-MNPs) was exposed simultaneously to Pb(NO3)2 and Si-MNPs at the same concentrations as the second and third groups. Throughout the experimental period, no mortalities or abnormal clinical observations were recorded in any of the treated groups, except for melanosis and abnormal nervous behavior observed in some fish in the Pb group. After three weeks of sublethal exposure, we analyzed hepatorenal indices, oxidative stress parameters, and genotoxicity. Values of alkaline phosphatase (ALP), gamma-glutamyl transferase (GGT), urea, and creatinine were significantly higher in the Pb-intoxicated groups compared to the control and Pb + Si-MNPs groups in both fish species. Oxidative stress parameters showed a significant decrease in reduced glutathione (GSH) concentration, along with a significant increase in malondialdehyde (MDA) and protein carbonyl content (PCC) concentrations, as well as DNA fragmentation percentage in the Pb group. However, these values were nearly restored to control levels in the Pb + Si-MNPs groups. High lead accumulation was observed in the liver and gills of the Pb group, with the least accumulation in the muscles of tilapia and catfish in the Pb + Si-MNPs group. Histopathological analysis of tissue samples from Pb-exposed groups of tilapia and catfish revealed brain vacuolation, gill fusion, hyperplasia, and marked hepatocellular and renal necrosis, contrasting with Pb + Si-MNP group, which appeared to have an apparently normal tissue structure. CONCLUSIONS: Our results demonstrate that Si-MNPs are safe and effective aqueous additives in reducing the toxic effects of Pb (NO3)2 on fish tissue through the lead-chelating ability of Si-MNPs in water before being absorbed by fish.


Subject(s)
Catfishes , Cichlids , Lead , Liver , Nitrates , Oxidative Stress , Silicon Dioxide , Water Pollutants, Chemical , Animals , Lead/toxicity , Oxidative Stress/drug effects , Silicon Dioxide/chemistry , Liver/drug effects , Liver/pathology , Liver/metabolism , Water Pollutants, Chemical/toxicity , Nanocomposites/chemistry , Nanocomposites/toxicity , Chelating Agents/pharmacology , Kidney/drug effects , Kidney/pathology , Bioaccumulation , Gills/drug effects , Gills/pathology , DNA Damage/drug effects
10.
Int J Mol Sci ; 25(11)2024 May 28.
Article in English | MEDLINE | ID: mdl-38892077

ABSTRACT

Periodontitis development arises from the intricate interplay between bacterial biofilms and the host's immune response, where macrophages serve pivotal roles in defense and tissue homeostasis. Here, we uncover the mitigative effect of copper chelator Tetrathiomolybdate (TTM) on periodontitis through inhibiting cuproptosis, a newly identified form of cell death which is dependent on copper. Our study reveals concurrent cuproptosis and a macrophage marker within murine models. In response to lipopolysaccharide (LPS) stimulation, macrophages exhibit elevated cuproptosis-associated markers, which are mitigated by the administration of TTM. TTM treatment enhances autophagosome expression and mitophagy-related gene expression, countering the LPS-induced inhibition of autophagy flux. TTM also attenuates the LPS-induced fusion of autophagosomes and lysosomes, the degradation of lysosomal acidic environments, lysosomal membrane permeability increase, and cathepsin B secretion. In mice with periodontitis, TTM reduces cuproptosis, enhances autophagy flux, and decreases Ctsb levels. Our findings underscore the crucial role of copper-chelating agent TTM in regulating the cuproptosis/mitophagy/lysosome pathway during periodontitis inflammation, suggesting TTM as a promising approach to alleviate macrophage dysfunction. Modulating cuproptosis through TTM treatment holds potential for periodontitis intervention.


Subject(s)
Autophagy , Chelating Agents , Copper , Lysosomes , Molybdenum , Periodontitis , Animals , Lysosomes/metabolism , Lysosomes/drug effects , Mice , Periodontitis/drug therapy , Periodontitis/metabolism , Autophagy/drug effects , Molybdenum/pharmacology , Copper/metabolism , Chelating Agents/pharmacology , Lipopolysaccharides , Macrophages/metabolism , Macrophages/drug effects , Chelation Therapy/methods , Inflammation/drug therapy , Inflammation/metabolism , Mice, Inbred C57BL , Male
11.
ACS Chem Neurosci ; 15(13): 2470-2483, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38874606

ABSTRACT

In Alzheimer's disease (AD), reactive oxygen species (ROS) plays a crucial role, which is produced from molecular oxygen with extracellular deposited amyloid-ß (Aß) aggregates through the reduction of a Cu2+ ion. In the presence of a small amount of redox-active Cu2+ ion, ROS is produced by the Aß-Cu2+ complex as Aß peptide alone is unable to generate excess ROS. Therefore, Cu2+ ion chelators are considered promising therapeutics against AD. Here, we have designed and synthesized a series of Schiff base derivatives (SB) based on 2-hydroxy aromatic aldehyde derivatives and dopamine. These SB compounds contain one copper chelating core, which captures the Cu2+ ions from the Aß-Cu2+ complex. Thereby, it inhibits copper-induced amyloid aggregation as well as amyloid self-aggregation. It also inhibits copper-catalyzed ROS production through sequestering of Cu2+ ions. The uniqueness of our designed ligands has the dual property of dopamine, which not only acts as a ROS scavenger but also chelates the copper ion. The crystallographic analysis proves the power of the dopamine unit. Therefore, dual exploration of dopamine core can be considered as potential therapeutics for future AD treatment.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Chelating Agents , Copper , Dopamine , Reactive Oxygen Species , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Reactive Oxygen Species/metabolism , Dopamine/metabolism , Copper/metabolism , Copper/chemistry , Humans , Amyloid beta-Peptides/metabolism , Amyloid beta-Peptides/antagonists & inhibitors , Chelating Agents/pharmacology , Schiff Bases/pharmacology , Schiff Bases/chemistry
12.
Inorg Chem ; 63(26): 12268-12280, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38877980

ABSTRACT

His-Leu is a hydrolytic byproduct of angiotensin metabolism, whose concentration in the bloodstream could be at least micromolar. This encouraged us to investigate its Cu(II) binding properties and the concomitant redox reactivity. The Cu(II) binding constants were derived from isothermal titration calorimetry and potentiometry, while identities and structures of complexes were obtained from ultraviolet-visible, circular dichroism, and room-temperature electronic paramagnetic resonance spectroscopies. Four types of Cu(II)/His-Leu complexes were detected. The histamine-like complexes prevail at low pH. At neutral and mildly alkaline pH and low Cu(II):His-Leu ratios, they are superseded by diglycine-like complexes involving the deprotonated peptide nitrogen. At His-Leu:Cu(II) ratios of ≥2, bis-complexes are formed instead. Above pH 10.5, a diglycine-like complex containing the equatorially coordinated hydroxyl group predominates at all ratios tested. Cu(II)/His-Leu complexes are also strongly redox active, as demonstrated by voltammetric studies and the ascorbate oxidation assay. Finally, numeric competition simulations with human serum albumin, glycyl-histydyl-lysine, and histidine revealed that His-Leu might be a part of the low-molecular weight Cu(II) pool in blood if its abundance is >10 µM. These results yield further questions, such as the biological relevance of ternary complexes containing His-Leu.


Subject(s)
Chelating Agents , Coordination Complexes , Copper , Oxidation-Reduction , Copper/chemistry , Humans , Chelating Agents/chemistry , Chelating Agents/chemical synthesis , Coordination Complexes/chemistry , Coordination Complexes/chemical synthesis , Oligopeptides/chemistry , Angiotensins/chemistry , Angiotensins/metabolism , Hydrogen-Ion Concentration , Histidine/chemistry , Molecular Structure
13.
J Environ Manage ; 363: 121350, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38850901

ABSTRACT

Conventional methods of metal recovery involving solvents have raised environmental concerns. To address these concerns and promote sustainable resource recovery, we explored the use of deep eutectic solvents (DES) and chelating agents (CA) as more environmentally friendly alternatives. Goethite and blast oxide slag dust (BOS-D) from heap piles at their respective sites and characterised via ICP-MS. The greatest extraction of critical metals was from goethite, removing 38% of all metals compared to 21% from the blast oxide slag. Among the tested CA, nitrilotriacetic acid (NTA) was the most effective, while for DES, choline chloride ethylene glycol (ChCl-EG) demonstrated superior performance in extracting metals from both blast oxide slag dust and goethite. The study further highlighted the selectivity for transition metals and metalloids was influenced by the carboxyl groups of DES. Alkaline metals and rare earth lanthanides extractions were favoured with DES due to improved mass transfer and increased denticity, respectively. In comparison to ethylenediaminetetraacetic acid (EDTA), typically used for metal extraction, CA and DES showed comparable extraction efficiency for Fe, Cu, Pb, Li, Al, Mn, and Ni. Using these greener chelators and solvents for metal extraction show significant promise in enhancing the sustainability of solvometallurgy. Additional conditions e.g., temperature and agitation combined with a cascading leaching process could further enhance metal extraction potential.


Subject(s)
Chelating Agents , Edetic Acid , Metals , Chelating Agents/chemistry , Edetic Acid/chemistry , Metals/chemistry , Deep Eutectic Solvents/chemistry , Solvents/chemistry
14.
Mol Pharm ; 21(7): 3256-3267, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38856975

ABSTRACT

Prostate-specific membrane antigen (PSMA) overexpressed in prostate cancer cells can serve as a target for imaging and radioligand therapy (RLT). Previously, [68Ga]Ga-P16-093, containing a Ga(III) chelator, N,N'-bis[2-hydroxy-5-(carboxyethyl)benzyl]ethylenediamine-N,N'-diacetic acid (HBED-CC), displayed excellent PSMA-targeting properties and showed a high tumor uptake and retention useful for diagnosis in prostate cancer patients. Recently, [177Lu]Lu-PSMA-617 has been approved by the U.S. food and drug administration (FDA) for the treatment of prostate cancer patients. Derivatives of PSMA-093 using AAZTA (6-amino-6-methylperhydro-1,4-diazepinetetraacetic acid), as the chelator, were designed as alternative agents forming complexes with both diagnostic and therapeutic radiometals, such as gallium-68 (log K = 22.18) or lutetium-177 (log K = 21.85). The aim of this study is to evaluate AAZTA-Gly-O-(methylcarboxy)-Tyr-Phe-Lys-NH-CO-NH-Glu (designated as AZ-093, 1) leading to a gallium-68/lutetium-177 theranostic pair as potential PSMA targeting agents. Synthesis of the desired precursor, AZ-093, 1, was effectively accomplished. Labeling with either [68Ga]GaCl3 or [177Lu]LuCl3 in a sodium acetate buffer solution (pH 4-5) at 50 °C in 5 to 15 min produced either [68Ga]Ga-1 or [177Lu]Lu-1 with high yields and excellent radiochemical purities. Results of in vitro binding studies, cell uptake, and retention (using PSMA-positive prostate carcinoma cells line, 22Rv1-FOLH1-oe) were comparable to that of [68Ga]Ga-P16-093 and [177Lu]Lu-PSMA-617, respectively. Specific cellular uptake was determined with or without the competitive blocking agent (2 µM of "cold" PSMA-11). Cellular binding and internalization showed a time-dependent increase over 2 h at 37 °C in the PSMA-positive cells. The cell uptakes were completely blocked by the "cold" PSMA-11 suggesting that they are competing for the same PSMA binding sites. In the mouse model with implanted PSMA-positive tumor cells, both [68Ga]Ga-1 and [177Lu]Lu-1 displayed excellent uptake and retention in the tumor. Results indicate that [68Ga]Ga/[177Lu]Lu-1 (68Ga]Ga/[177Lu]Lu-AZ-093) is potentially useful as PSMA-targeting agent for both diagnosis and radiotherapy of prostate cancer.


Subject(s)
Antigens, Surface , Gallium Radioisotopes , Glutamate Carboxypeptidase II , Lutetium , Prostatic Neoplasms , Radiopharmaceuticals , Male , Humans , Prostatic Neoplasms/diagnostic imaging , Prostatic Neoplasms/radiotherapy , Prostatic Neoplasms/metabolism , Lutetium/chemistry , Antigens, Surface/metabolism , Radiopharmaceuticals/chemistry , Radiopharmaceuticals/pharmacology , Radiopharmaceuticals/pharmacokinetics , Glutamate Carboxypeptidase II/metabolism , Glutamate Carboxypeptidase II/antagonists & inhibitors , Cell Line, Tumor , Radioisotopes/chemistry , Animals , Chelating Agents/chemistry , Prostate-Specific Antigen/metabolism , Tissue Distribution , Mice , Edetic Acid/analogs & derivatives , Edetic Acid/chemistry , Positron Emission Tomography Computed Tomography/methods
15.
Talanta ; 277: 126337, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38823331

ABSTRACT

Depletion and separation of histidine-rich proteins from complicated biosamples are crucial for various downstream applications in proteome research and clinical diagnosis. Herein, porous polymer microspheres coated with polyacrylic acid (SPSDVB-PAA) were fabricated through double emulsion interfacial polymerization technique and followed by immobilization of Cu2+ ions on the surface of SPSDVB-PAA. The as-prepared SPSDVB-PAA-Cu with uniform size and nanoscale pore structure enabled coordination interaction of Cu2+ with histidine residues in his-rich proteins, resulting in high-performance adsorption. As metal affinity adsorbent, the SPSDVB-PAA-Cu exhibited favorable selectivity for adsorbing hemoglobin (Hb) and human serum albumin (HSA) with the maximum adsorption capacities of 152.2 and 100.7 mg g-1. Furthermore, the polymer microspheres were used to isolate histidine-rich proteins from human whole blood and plasma, underscoring their effectiveness. The liquid chromatography tandem mass spectrometry (LC-MS/MS) results indicated that the content of 14 most abundant proteins in human plasma was depleted from 81.6 % to 30.7 % and low-abundance proteins were enriched from 18.4 % to 69.3 % after treatment with SPSDVB-PAA-Cu, illustrating potential application of SPSDVB-PAA-Cu in proteomic research.


Subject(s)
Copper , Microspheres , Proteins , Copper/chemistry , Humans , Porosity , Proteins/chemistry , Proteins/isolation & purification , Proteins/analysis , Adsorption , Chelating Agents/chemistry , Acrylic Resins/chemistry , Histidine/chemistry , Polymers/chemistry , Serum Albumin, Human/chemistry , Serum Albumin, Human/analysis
16.
J Med Chem ; 67(13): 11242-11253, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38935616

ABSTRACT

We report the [natMn/52Mn]Mn(II) complexes of the macrocyclic chelators PYAN [3,6,10,13-tetraaza-1,8(2,6)-dipyridinacyclotetradecaphane] and CHXPYAN [(41R,42R,101R,102R)-3,5,9,11-tetraaza-1,7(2,6)-dipyridina-4,10(1,2)-dicyclohexanacyclododecaphane]. The X-ray crystal structures of Mn-PYAN and Mn-CHXPYAN evidence distorted octahedral geometries through coordination of the nitrogen atoms of the macrocycles. Cyclic voltammetry studies evidence reversible processes due to the Mn(II)/Mn(III) pair, indicating that the complexes are resistant to oxidation. CHXPYAN forms a more thermodynamically stable and kinetically inert Mn(II) complex than PYAN. Radiochemical studies with the radioactive isotope manganese-52 (52Mn, t1/2 = 5.6 days) evidenced better radiochemical yields for CHXPYAN than for PYAN. Both [52Mn]Mn(II) complexes remained stable in mouse and human serum, so in vivo stability studies were carried out. Positron emission tomography/computed tomography scans and biodistribution assays indicated that [52Mn]Mn-PYAN has a distribution pattern similar to that of [52Mn]MnCl2, showing persistent radioactivity accumulation in the kidneys. Conversely, [52Mn]Mn-CHXPYAN remained stable in vivo, clearing quickly from the liver and kidneys.


Subject(s)
Chelating Agents , Macrocyclic Compounds , Manganese , Positron-Emission Tomography , Animals , Mice , Positron-Emission Tomography/methods , Macrocyclic Compounds/chemistry , Macrocyclic Compounds/chemical synthesis , Macrocyclic Compounds/pharmacokinetics , Manganese/chemistry , Chelating Agents/chemistry , Chelating Agents/chemical synthesis , Crystallography, X-Ray , Coordination Complexes/chemistry , Coordination Complexes/chemical synthesis , Coordination Complexes/pharmacokinetics , Tissue Distribution , Models, Molecular , Radiopharmaceuticals/chemistry , Radiopharmaceuticals/chemical synthesis , Radiopharmaceuticals/pharmacokinetics , Drug Stability
17.
Arch Biochem Biophys ; 758: 110077, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38942109

ABSTRACT

Ammonium and hexyltrimethylammonium thiomolybdates (ATM and ATM-C6) and thiotungstates (ATT and ATT-C6) were synthesized. Their toxicity was evaluated using both in vitro and in vivo approaches via the zebrafish embryo acute toxicity assay (ZFET), while the copper-thiometallate interaction was studied using cyclic voltammetry, as well as in an in vivo assay. Cyclic voltammetry suggests that all thiometallates form complexes with copper in a 2:1 Cu:thiometallate ratio. Both in vitro and in vivo assays demonstrated low toxicity in BALB/3T3 cells and in zebrafish embryos, with high IC50 and LC50 values. Furthermore, the hexyltrimethylammonium ion played a crucial role in enhancing viability and reducing toxicity during prolonged treatments for ATM and ATT. In particular, the ZEFT assay uncovered the accumulation of ATM in zebrafish yolk, averted by the incorporation of the hexyltrimethylammonium ion. Notably, the copper-thiometallate interaction assay highlighted the improved viability of embryos when cultured in CuCl2 and ATM-C6, even at high CuCl2 concentrations. The hatching assay further confirmed that copper-ATM-C6 interaction mitigates inhibitory effects induced by thiomolybdates and CuCl2 when administered individually. These results suggest that the incorporation of the hexyltrimethylammonium ion in ATM increase its ability to interact with copper and its potential application as a copper chelator.


Subject(s)
Chelating Agents , Copper , Molybdenum , Zebrafish , Animals , Zebrafish/embryology , Copper/chemistry , Chelating Agents/chemistry , Chelating Agents/pharmacology , Molybdenum/chemistry , Molybdenum/pharmacology , Mice , Embryo, Nonmammalian/drug effects , BALB 3T3 Cells , Quaternary Ammonium Compounds/chemistry , Quaternary Ammonium Compounds/pharmacology
18.
J Labelled Comp Radiopharm ; 67(8): 295-304, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38837480

ABSTRACT

Cathepsin B (CTSB) is a lysosomal protease that is overexpressed in tumor cells. Radioimmunoconjugates (RICs) composed of CTSB-recognizing chelating agents are expected to increase the molecular weights of their radiometabolites by forming conjugates with CTSB in cells, resulting in their improved retention in tumor cells. We designed a novel CTSB-recognizing trifunctional chelating agent, azide-[111In]In-DOTA-CTSB-substrate ([111In]In-ADCS), to synthesize a RIC, trastuzumab-[111In]In-ADCS ([111In]In-TADCS), and evaluated its utility to improve tumor retention of the RIC. [111In]In-ADCS and [111In]In-TADCS were synthesized with satisfactory yield and purity. [111In]In-ADCS was markedly stable in murine plasma until 96 h postincubation. [111In]In-ADCS showed binding to CTSB in vitro, and the conjugation was blocked by the addition of CTSB inhibitor. In the internalization assay, [111In]In-TADCS exhibited high-level retention in SK-OV-3 cells, indicating the in vitro utility of the CTSB-recognizing unit. In the biodistribution assay, [111In]In-TADCS showed high-level tumor accumulation, but the retention was hardly improved. In the first attempt to combine a CTSB-recognizing unit and RIC, these findings show the fundamental properties of the CTSB-recognizing trifunctional chelating agent to improve tumor retention of RICs.


Subject(s)
Cathepsin B , Chelating Agents , Immunoconjugates , Cathepsin B/metabolism , Chelating Agents/chemistry , Chelating Agents/chemical synthesis , Animals , Mice , Immunoconjugates/chemistry , Immunoconjugates/pharmacokinetics , Tissue Distribution , Cell Line, Tumor , Humans , Indium Radioisotopes/chemistry , Chemistry Techniques, Synthetic , Trastuzumab/chemistry
19.
Neurosci Lett ; 836: 137869, 2024 Jul 27.
Article in English | MEDLINE | ID: mdl-38852766

ABSTRACT

Dietary administration of a copper chelator, cuprizone (CPZ), has long been reported to induce intense and reproducible demyelination of several brain structures such as the corpus callosum. Despite the widespread use of CPZ as an animal model for demyelinating diseases such as multiple sclerosis (MS), the mechanism by which it induces demyelination and then allows robust remyelination is still unclear. An intensive mapping of the cell dynamics of oligodendrocyte (OL) lineage during the de- and remyelination course would be particularly important for a deeper understanding of this model. Here, using a panel of OL lineage cell markers as in situ hybridization (ISH) probes, including Pdgfra, Plp, Mbp, Mog, Enpp6, combined with immunofluorescence staining of CC1, SOX10, we provide a detailed dynamic profile of OL lineage cells during the entire course of the model from 1, 2, 3.5 days, 1, 2, 3, 4,5 weeks of CPZ treatment, as well as after 1, 2, 3, 4 weeks of recovery from CPZ treatment. The result showed an unexpected early death of mature OLs and response of OL progenitor cells (OPCs) in vivo upon CPZ challenge, and a prolonged upregulation of myelin-forming OLs compared to the intact control even 4 weeks after CPZ withdrawal. These data may serve as a basic reference system for future studies of the effects of any intervention on de- and remyelination using the CPZ model, and imply the need to optimize the timing windows for the introduction of pro-remyelination therapies in demyelinating diseases such as MS.


Subject(s)
Cell Lineage , Cuprizone , Demyelinating Diseases , Oligodendroglia , Cuprizone/toxicity , Animals , Demyelinating Diseases/chemically induced , Demyelinating Diseases/pathology , Oligodendroglia/drug effects , Oligodendroglia/pathology , Oligodendroglia/metabolism , Disease Models, Animal , In Situ Hybridization/methods , Mice, Inbred C57BL , Mice , Remyelination/drug effects , Remyelination/physiology , Male , Chelating Agents/toxicity , Chelating Agents/pharmacology , Myelin Sheath/pathology , Myelin Sheath/drug effects , Myelin Sheath/metabolism
20.
Chem Commun (Camb) ; 60(56): 7148-7151, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38860653

ABSTRACT

We report the use of DOTA as a chelator for titanium. The resulting complex is fully characterised and in vitro stability studies reveal its high kinetic inertness against transmetallation and transchelation. The radiolabeling of DOTA with 45Ti, via a guaiacol-based liquid-liquid extraction method, leads to a high radiochemical conversion up to 98%.


Subject(s)
Heterocyclic Compounds, 1-Ring , Radiopharmaceuticals , Titanium , Radiopharmaceuticals/chemistry , Radiopharmaceuticals/chemical synthesis , Heterocyclic Compounds, 1-Ring/chemistry , Heterocyclic Compounds, 1-Ring/chemical synthesis , Titanium/chemistry , Coordination Complexes/chemistry , Coordination Complexes/chemical synthesis , Aza Compounds/chemistry , Aza Compounds/chemical synthesis , Chelating Agents/chemistry , Chelating Agents/chemical synthesis , Molecular Structure
SELECTION OF CITATIONS
SEARCH DETAIL