Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40.774
Filter
1.
Bioorg Med Chem ; 111: 117847, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-39121679

ABSTRACT

Pyridazine, as a privileged scaffold, has been extensively utilized in drug development due to its multiple biological activities. Especially around its distinctive anticancer property, a massive number of pyridazine-containing compounds have been synthesized and evaluated that target a diverse array of biological processes involved in cancer onset and progression. These include glutaminase 1 (GLS1) inhibitors, tropomyosin receptor kinase (TRK) inhibitors, and bromodomain containing protein (BRD) inhibitors, targeting aberrant tumor metabolism, cell signal transduction and epigenetic modifications, respectively. Pyridazine moieties functioned as either core frameworks or warheads in the above agents, exhibiting promising potential in cancer treatment. Therefore, the review aims to summarize the recent contributions of pyridazine derivatives as potent anticancer agents between 2020 and 2024, focusing mainly on their structure-activity relationships (SARs) and development strategies, with a view to show that the application of the pyridazine scaffold by different medicinal chemists provides new insights into the rational design of anticancer drugs.


Subject(s)
Antineoplastic Agents , Pyridazines , Pyridazines/chemistry , Pyridazines/pharmacology , Pyridazines/chemical synthesis , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Humans , Structure-Activity Relationship , Chemistry, Pharmaceutical , Molecular Structure , Neoplasms/drug therapy , Cell Proliferation/drug effects , Drug Screening Assays, Antitumor
2.
Pharmazie ; 79(7): 146-150, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39152556

ABSTRACT

The principal aim of this study was to optimize analytical methodology based on mass spectrometry for the evaluation of the quality of recombinant human insulin and its analogs. In this study ESI-MS was used to assess the quality of human insulin, short acting insulin analogs, insulin lispro, insulin aspart and insulin glulisine and long acting analogs including insulin glargine, insulin degludec, and insulin detemir, in respective pharmaceutical formulations. In this study, with the aimed to optimize analytical conditions, different factors influencing the analytical performance such as pH, ionic strength, sample dilution, organic solvent addition were addressed. The study results demonstrated that MS is a suitable technique for the analysis of biotechnological compounds like insulin and its analogs. Although the obtained results provide an important information regarding this methodology, further studies are needed to validate this analytical approach and check for its suitability to be used in the regulatory environment.


Subject(s)
Insulin , Spectrometry, Mass, Electrospray Ionization , Spectrometry, Mass, Electrospray Ionization/methods , Insulin/chemistry , Insulin/analysis , Insulin/analogs & derivatives , Quality Control , Hydrogen-Ion Concentration , Humans , Osmolar Concentration , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/analysis , Insulin, Long-Acting/chemistry , Chemistry, Pharmaceutical/methods , Solvents/chemistry
3.
Chem Biol Drug Des ; 104(2): e14609, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39155152

ABSTRACT

To increase the success rate of drug discovery, one practical strategy is to begin molecular hybridisation. The presence of two or more pharmacophores in a single unit leads to a pharmacological potency greater than the sum of each individual moiety's potency. Heterocyclic compounds are very widely distributed in nature and are essential for life activities. Benzimidazole and oxadiazole are privileged structures in medicinal chemistry and are widely used in drug discovery and development due to their vast biological properties. The drug-like properties (like pharmacokinetics and pharmacodynamics) of the individual scaffolds can be improved by benzimidazole-oxadiazole chimeric molecules via a molecular hybridisation approach. Benzimidazole and oxadiazole cores can either be fused or incorporated using either functional groups/bonds. Over the last few decades, drug discovery scientists have predicted that these moieties could be interconnected to yield a novel or modified hybrid compound. Benzimidazole and oxadiazole hybrids were identified as the most potent anticancer, antimicrobial, anti-inflammatory, antioxidant, anticonvulsant, antidepressant, antihypertensive and antitubercular agents. In this context, the present review describes the biological properties of benzimidazole-oxadiazole (1,3,4 and 1,2,4) hybrids, their possible structure-activity relationship and the mechanism of action studies presented. This review article is intended to stimulate fresh ideas in the search for rational designs of more active and less toxic benzimidazole-oxadiazole hybrid prospective therapeutic candidates, as well as more effective diagnostic agents and pathologic probes.


Subject(s)
Benzimidazoles , Oxadiazoles , Oxadiazoles/chemistry , Oxadiazoles/pharmacology , Benzimidazoles/chemistry , Benzimidazoles/pharmacology , Humans , Structure-Activity Relationship , Chemistry, Pharmaceutical , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Anti-Infective Agents/chemistry , Anti-Infective Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/pharmacology , Drug Discovery , Antioxidants/chemistry , Antioxidants/pharmacology
4.
AAPS PharmSciTech ; 25(6): 187, 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39143365

ABSTRACT

Conventional dissolution tests only assess the aqueous release of drugs to ensure quality and performance, without indicating whether absorption occurs through the portal or the lymphatic circulation. To address this issue, this study aimed to develop novel first-generation dissolution models that could investigate the release and uptake of oral lymphotropic drugs and examine relevant formulation issues. Dissolution of three commercial lymphotropic drug products (Terbinafina, Apo-terbinafine, and Lamisil) was done using modified versions of USP Apparatus II and IV. The developed models contained a lymphatic compartment filled with artificial chylomicrons to account for absorption through intestinal lymphatic pathway. The various products exhibited different release profiles into the aqueous media and the lymphatic media across the two tested models. The modified USP IV apparatus demonstrated greater distinction in aqueous release patterns. However, the release pattern into the lymphatic media remained similar in both models. This work represents a progress in meeting the challenges posed by the increasing complexity of pharmaceutical products containing lipophilic drugs or formulations, and has the potential to contribute towards the development of in-vitro bioequivalence standards for formulations targeting intestinal lymphatics.


Subject(s)
Drug Liberation , Solubility , Administration, Oral , Chemistry, Pharmaceutical/methods , Intestinal Absorption , Models, Biological
5.
AAPS PharmSciTech ; 25(6): 185, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39138704

ABSTRACT

Aqueous suspensions containing crystalline drug in the sub-micron range is a favorable platform for long-acting injectables where particle size can be used to obtain a desired plasma-concentration profile. Stabilizers are added to the suspensions and screened extensively to define the optimal formulation composition. In the initial formulation screening the amount of drug compound can be limited, necessitating milling methods for small-volume screening predictable for scale-up. Hence, adaptive focused ultrasound was investigated as a potential milling method for rapid small-volume suspensions by identifying the critical process parameters during preparation. Suspensions containing drug compounds with different mechanical properties and thereby grindability, i.e., cinnarizine, haloperidol, and indomethacin with brittle, elastic, and plastic properties, respectively, were investigated to gain an understanding of the manufacturing with adaptive focused acoustics as well as comparison to already established milling techniques. Using a DoE-design, peak incident power was identified as the most crucial process parameter impacting the milling process for all three compounds. It was possible to decrease the sizes of drug particles to micron range after one minute of focused ultrasound exposure which was superior compared to other milling techniques (e.g., non-focused ultrasound exposure). The addition of milling beads decreased the drug particle sizes even further, thus to a lower degree than other already established milling techniques such as milling by dual centrifugation. This study thereby demonstrated that adaptive focused ultrasonication was a promising method for rapid homogenization and particle size reduction to micron range for different compounds varying in grindability without altering the crystalline structure.


Subject(s)
Chemistry, Pharmaceutical , Particle Size , Suspensions , Chemistry, Pharmaceutical/methods , Drug Compounding/methods , Indomethacin/chemistry , Water/chemistry , Sonication/methods , Cinnarizine/chemistry , Ultrasonics/methods , Technology, Pharmaceutical/methods , Haloperidol/chemistry , Excipients/chemistry
6.
AAPS PharmSciTech ; 25(6): 183, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39138765

ABSTRACT

The dissolution and bioavailability challenges posed by poorly water-soluble drugs continue to drive innovation in pharmaceutical formulation design. Nintedanib (NDNB) is a typical BCS class II drug that has been utilized to treat idiopathic pulmonary fibrosis (IPF). Due to the low solubility, its oral bioavailability is relatively low, limiting its therapeutical effectiveness. It is crucial to enhance the dissolution and the oral bioavailability of NDNB. In this study, we focused on the preparation of amorphous solid dispersions (ASD) using hot melt extrusion (HME). The formulation employed Kollidon® VA64 (VA64) as the polymer matrix, blended with the NDNB at a ratio of 9:1. HME was conducted at temperatures ranging from 80 °C to 220 °C. The successful preparation of ASD was confirmed through various tests including polarized light microscopy (PLM), X-ray powder diffraction (XRPD), differential scanning calorimetry (DSC), Fourier-transform infrared spectroscopy (FT-IR), and thermogravimetric analysis (TGA). The in-vitro cumulative release of NDNB-ASD in 2 h in a pH 6.8 medium was 8.3-fold higher than that of NDNB (p < 0.0001). In a pH 7.4 medium, it was 10 times higher (p < 0.0001). In the in-vivo pharmacokinetic experiments, the area under curve (AUC) of NDNB-ASD was 5.3-fold higher than that of NDNB and 2.2 times higher than that of commercially available soft capsules (Ofev®) (p < 0.0001). There was no recrystallization after 6 months under accelarated storage test. Our study indicated that NDNB-ASD can enhance the absorption of NDNB, thus providing a promising method to improve NDNB bioavailability in oral dosages.


Subject(s)
Biological Availability , Indoles , Solubility , Indoles/pharmacokinetics , Indoles/chemistry , Indoles/administration & dosage , Administration, Oral , Animals , Chemistry, Pharmaceutical/methods , Calorimetry, Differential Scanning/methods , X-Ray Diffraction/methods , Male , Spectroscopy, Fourier Transform Infrared/methods , Drug Compounding/methods , Rabbits , Polymers/chemistry , Hot Melt Extrusion Technology/methods , Drug Liberation
7.
AAPS PharmSciTech ; 25(6): 179, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39107500

ABSTRACT

This study was designed to synthesize quarternized chitosans (Q-CS) and explore their potential application in aqueous solubility enhancement of indomethacin (IND), a BCS class-II drug. Three different Q-CS; N,N,N-trimethyl chitosan chloride (TMC), N-(4-N'-methylpyridinylmethyl) chitosan chloride (mPyCS), and N-(4-N',N',N'-trimethylaminobenzyl) chitosan chloride (TmBzCS) were synthesized and characterized through various spectroscopic analysis. Q-CS-based solid-dispersion (SD) composites of IND (Q-CS-IND) were prepared using the spray-drying method and characterized through Fourier transform infrared (FTIR), scanning electron microscopy (SEM), differential-scanning calorimetry (DSC), and powder X-ray diffraction (P-XRD). The solubility and dissolution profiles of SD-composites of IND were evaluated and compared with physical mixtures (PM). The IND contents were quantified and validated in the composites using UV-Vis spectrophotometer. FTIR and NMR analysis showed the successful preparation of Q-CS. TMC was found with the highest yield (55.13%) and mPyCS with the highest degree of quaternization (DQ) (63.37%). FT-IR analysis of IND-Q-CS composites demonstrated chemical interaction between carbonyl moieties of IND with functional groups of Q-CS. DSC and PXRD analyses demonstrated the transformation of IND in SD composites from crystalline to an amorphous form. All the IND-Q-CS composites were observed with a significant increase in the solubility and dissolution rate of the drug (1996.0 µg/min) compared to PM (1306.8 µg/min), which is higher than pure IND (791.6 µg/min). The contents of IND in TMC, mPyCS, and TmBzCS composites were 97.69-99.92%, 97.66-100.25%, and 97.18-100.11% respectively. Overall, the findings encourage the applications of Q-CS derivatives for increasing IND water solubility and warrant further in vivo biological profiling of IND composites.


Subject(s)
Calorimetry, Differential Scanning , Chitosan , Indomethacin , Solubility , Indomethacin/chemistry , Chitosan/chemistry , Spectroscopy, Fourier Transform Infrared/methods , Calorimetry, Differential Scanning/methods , X-Ray Diffraction/methods , Chemistry, Pharmaceutical/methods , Microscopy, Electron, Scanning/methods
8.
AAPS PharmSciTech ; 25(6): 180, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39107558

ABSTRACT

In recent years, there has been a significant increase in the prevalence of thyroid diseases, particularly hypothyroidism. In this study, we investigated the impact and mechanisms of Chemical permeation enhancement(CPE) on transdermal permeation of levothyroxine sodium (L-T4) patches.We found that the combination of oleic acid (OA) and Azone (NZ) yielded the best transdermal permeation effect for L-T4.Subsequently, we also investigated the relevant propermeability mechanism.The results demonstrate that the combined application of OA and NZ significantly enhances the transdermal permeation of L-T4 compared to individual applications,it is attributed to two mechanisms: firstly, OA improves drug release by increasing the flowability of the pressure-sensitive adhesive (PSA) matrix; secondly, both OA and NZ act on the stratum corneum, especially facilitating L-T4 permeation through the hair follicle pathway. No skin irritation or cytotoxicity is observed with these final patches, which exhibit a remarkable therapeutic effect on hypothyroidism. this study contributes to the development of transdermal formulations of L-T4.


Subject(s)
Administration, Cutaneous , Oleic Acid , Skin Absorption , Thyroxine , Oleic Acid/chemistry , Thyroxine/administration & dosage , Thyroxine/pharmacology , Thyroxine/pharmacokinetics , Animals , Skin Absorption/drug effects , Transdermal Patch , Skin/metabolism , Skin/drug effects , Drug Liberation , Mice , Permeability , Hypothyroidism/drug therapy , Hypothyroidism/metabolism , Humans , Chemistry, Pharmaceutical/methods , Male
9.
AAPS PharmSciTech ; 25(7): 196, 2024 Aug 22.
Article in English | MEDLINE | ID: mdl-39174848

ABSTRACT

In this study, N, N '-bis {4- [(α-L- rhamnosyloxy) benzyl]} thiourea (PG-1), a phenolic glycoside compound was purified from Moringa seed. The PG-1 has attracted extensive attention due to its anti-cancer, antioxidant, anti-inflammatory and hypoglycemic properties. However, some of its physicochemical properties such as oral bioavailability has not been studied. Herein, a highly purified PG-1 was extracted and incorporated in multiple layered liposomes (PG-1-L) to avoid its burst release and enhance oral bioavailability. After appropriate characterization, it was discovered that the obtained PG-1-L was stable, homogeneous and well dispersed with the average particle size being 89.26 ± 0.23 nm. Importantly, the in vitro release and in vivo oral bioavailability of PG-1-L were significantly improved compared with PG-1. In addition, MTT results showed that compared with the free PG-1, PG-1-L displayed obvious inhibitory effect on the HepG2 cells, while the inhibitory effect on healthy non-malignant 3T6 and LO-2 cells was not significant, indicating that PG-1-L had high safety. In conclusion, PG-1-L can be used as a promising delivery system and an ideal novel approach to improve the oral bioavailability and anticancer activity of PG-1.


Subject(s)
Biological Availability , Glycosides , Liposomes , Moringa oleifera , Phenols , Seeds , Moringa oleifera/chemistry , Seeds/chemistry , Humans , Glycosides/chemistry , Glycosides/administration & dosage , Glycosides/pharmacology , Glycosides/isolation & purification , Animals , Hep G2 Cells , Phenols/administration & dosage , Phenols/chemistry , Phenols/isolation & purification , Phenols/pharmacokinetics , Particle Size , Drug Delivery Systems/methods , Mice , Male , Rats , Administration, Oral , Chemistry, Pharmaceutical/methods , Rats, Sprague-Dawley
10.
PDA J Pharm Sci Technol ; 78(4): 445-464, 2024 Aug 23.
Article in English | MEDLINE | ID: mdl-39179396

ABSTRACT

The following article analyses the excipients used in the parenteral formulations registered by the U.S. Food and Drug Administration (FDA) in the years 2011 and 2021. It adds real-word data for parenteral excipients in approved products from the New Zealand Medicines and Medical Devices Safety Authority (Medsafe) and the Irish Health Products Regulatory Authority (HPRA) in 2021. Maximum daily exposures (MDEs) for all parenteral excipients that had their amount listed either in the Medsafe or HPRA database are presented. Altogether, there were 355 excipients found in the parenteral dosage forms across all markets (US, New Zealand, and Ireland). Only 90 excipients (25.3%) were found in all three markets. In contrast, there were 187 (52.7%) excipients found in only one market. The MDE values of parenteral excipients from New Zealand and Ireland are frequently higher than the values found in the FDA inactive ingredients database (IID), adding important new information when the toxicity of these excipients is considered. There is a heterogenicity between the markets in use of parenteral excipients, with the US market leading in the number of total excipients as well as excipients present only in the US market. Nevertheless, there are several excipients not found in the US market that are registered in other markets. The comprehensive listing of parenteral excipients used worldwide presented in this article enables formulation scientists to quickly reference all potential parenteral excipients that are already proven safe and acceptable when designing a new parenteral formulation. Further, a list of new values for the MDE, often higher than those listed in the IID, provides important information for formulation scientists and toxicologists about the potential toxicity of these excipients.


Subject(s)
Excipients , United States Food and Drug Administration , Excipients/analysis , Excipients/chemistry , United States , New Zealand , Humans , Ireland , Drug Approval , Infusions, Parenteral , Chemistry, Pharmaceutical/methods
11.
AAPS PharmSciTech ; 25(7): 195, 2024 Aug 21.
Article in English | MEDLINE | ID: mdl-39168904

ABSTRACT

Psoriasis is a chronic inflammatory disorder affecting over 100 million people, requires long-term therapy. Current treatments offer only symptomatic relief. However, phytoconstituents-based therapies like Silymarin (SLM) have shown promising effects. The study aims to develop, optimize, and evaluate a novel stable SLM NLC gel to improve anti-psoriatic activity by enhancing its permeability and retention into the dermal layer. SLM NLC formulation was prepared and optimized using 32 full factorial designs. The formulation was evaluated for the particle size, PDI, zeta potential, and % entrapment efficiency, evaluated by Transmission electron microscopy and thermal analysis. The freeze dried and prepared NLC-loaded gel was evaluated for physicochemical parameters, ex-vivo, and in-vivo studies. SLM-loaded NLC shows 624 nm particle size, 0.41 PDI, 92.95% entrapment efficiency, and -31.6 mV zeta potential. The sphere form of NLCs was confirmed using TEM. Controlled drug release was observed in ex vivo studies, low PASI score compared to disease control. Further, the levels of IL-6, TNF-α, and NF-κB were also reduced. The results are supported by histopathology showing minimal parakeratosis indicated in the SLM NLC-treated group. Prepared NLC-based shows enhance topical penetration and decrease the thickness of psoriatic plaques in the in vivo study.


Subject(s)
Gels , Particle Size , Psoriasis , Silymarin , Silymarin/pharmacology , Silymarin/administration & dosage , Silymarin/chemistry , Silymarin/pharmacokinetics , Psoriasis/drug therapy , Animals , Skin Absorption , Drug Liberation , Skin/metabolism , Skin/drug effects , Administration, Cutaneous , Chemistry, Pharmaceutical/methods , Nanoparticles/chemistry , Male , Mice
12.
AAPS PharmSciTech ; 25(7): 194, 2024 Aug 21.
Article in English | MEDLINE | ID: mdl-39168908

ABSTRACT

The oral bioavailability of sildenafil citrate is approximately 43%, primarily limited by the low aqueous solubility and first-pass effect. Considering the drug properties and biopharmaceutical considerations, this study aimed to develop an immediate release, taste masked orodispersible film (ODF) of sildenafil citrate for the efficient management of pulmonary arterial hypertension (PAH). The optimization was done by applying 32 full-factorial design. The drug-loaded film was prepared and evaluated for the physical and mechanical parameters like; thickness, disintegration time, tensile strength, elongation, swelling index, content uniformity, disintegration and in vitro drug release in pH 6.2 stimulated salivary fluid. The FTIR and DSC data proved excellent compatibility between the drug and polymers used. The time taken for disintegration by the optimized film was about 62.66 s, while the drug release was observed ~ 96% in 10 min. Pharmacokinetic studies exhibited better sildenafil plasma level (p < 0.05) and Cmax (p < 0.001) of orally disintegrating film which is significantly higher than the oral drug solution. The AUC0-8 (24874.425 ± 1234.45 ng. h/mL) in the oromucosal application was 1.2-fold more (p < 0.0001) than the control. The presence of sweetening and flavoring agents in the formulation masked the drug bitterness, resulting in a higher intake of the formulation in rats compared to the unmasked drug solution, as observed with in vivo taste masking studies. The importance of ODF as a feasible, effective, and optimal approach for delivering sildenafil citrate via oromucosal administration for the treatment of PAH was successfully highlighted by these results.


Subject(s)
Biological Availability , Drug Liberation , Hypertension, Pulmonary , Sildenafil Citrate , Solubility , Taste , Sildenafil Citrate/pharmacokinetics , Sildenafil Citrate/administration & dosage , Animals , Administration, Oral , Rats , Male , Hypertension, Pulmonary/drug therapy , Rats, Wistar , Vasodilator Agents/pharmacokinetics , Vasodilator Agents/administration & dosage , Chemistry, Pharmaceutical/methods , Drug Delivery Systems/methods
13.
AAPS PharmSciTech ; 25(7): 193, 2024 Aug 21.
Article in English | MEDLINE | ID: mdl-39168956

ABSTRACT

Physiologically based pharmacokinetic (PBPK) or physiologically based biopharmaceutics models (PBBM) demonstrated plethora of applications in both new drugs and generic product development. Justification of dissolution specifications and establishment of dissolution safe space is an important application of such modeling approaches. In case of molecules exhibiting saturable absorption behavior, justification of dissolution specifications requires development of a model that incorporates effects of transporters is critical to simulate in vivo scenario. In the present case, we have developed a semi-mechanistic PBBM to describe the non-linearity of BCS class III molecule metformin for justification of dissolution specifications of extended release formulation at strengths 500 mg and 1000 mg. Semi-mechanistic PBBM was built using physicochemical properties, dissolution and non-linearity was accounted through incorporation of multiple transporter kinetics at absorption level. The model was extensively validated using literature reported intravenous, oral (immediate & extended release) formulations and further validated using in-house bioequivalence data in fasting and fed conditions. Virtual dissolution profiles at lower and upper specifications were generated to justify the dissolution specifications. The model predicted literature as well as in-house clinical study data with acceptable prediction errors. Further, virtual bioequivalence trials predicted the bioequivalence outcome that matched with clinical study data. The model predicted bioequivalence when lower and upper specifications were compared against pivotal test formulations thereby justifying dissolution specifications. Overall, complex and saturable absorption pathway of metformin was successfully simulated and this work resulted in regulatory acceptance of dissolution specifications which has ability to reduce multiple dissolution testing.


Subject(s)
Biopharmaceutics , Delayed-Action Preparations , Metformin , Models, Biological , Solubility , Therapeutic Equivalency , Metformin/pharmacokinetics , Metformin/administration & dosage , Metformin/chemistry , Delayed-Action Preparations/pharmacokinetics , Humans , Biopharmaceutics/methods , Drug Liberation , Chemistry, Pharmaceutical/methods , Hypoglycemic Agents/pharmacokinetics , Hypoglycemic Agents/administration & dosage , Hypoglycemic Agents/chemistry , Administration, Oral , Intestinal Absorption
14.
AAPS PharmSciTech ; 25(7): 190, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39164432

ABSTRACT

In this research, 3D-printed antifungal buccal films (BFs) were manufactured as a potential alternative to commercially available antifungal oral gels addressing key considerations such as ease of manufacturing, convenience of administration, enhanced drug efficacy and suitability of paediatric patients. The fabrication process involved the use of a semi-solid extrusion method to create BFs from zein-Poly-Vinyl-Pyrrolidone (zein-PVP) polymer blend, which served as a carrier for drug (miconazole) and taste enhancers. After manufacturing, it was determined that the disintegration time for all films was less than 10 min. However, these films are designed to adhere to buccal tissue, ensuring sustained drug release. Approximately 80% of the miconazole was released gradually over 2 h from the zein/PVP matrix of the 3D printed films. Moreover, a detailed physicochemical characterization including spectroscopic and thermal methods was conducted to assess solid state and thermal stability of film constituents. Mucoadhesive properties and mechanical evaluation were also studied, while permeability studies revealed the extent to which film-loaded miconazole permeates through buccal tissue compared to commercially available oral gel formulation. Histological evaluation of the treated tissues was followed. Furthermore, in vitro antifungal activity was assessed for the developed films and the commercial oral gel. Finally, films underwent a two-month drug stability test to ascertain the suitability of the BFs for clinical application. The results demonstrate that 3D-printed films are a promising alternative for local administration of miconazole in the oral cavity.


Subject(s)
Antifungal Agents , Candidiasis, Oral , Drug Liberation , Miconazole , Printing, Three-Dimensional , Miconazole/administration & dosage , Miconazole/chemistry , Miconazole/pharmacokinetics , Antifungal Agents/administration & dosage , Antifungal Agents/chemistry , Antifungal Agents/pharmacokinetics , Administration, Buccal , Candidiasis, Oral/drug therapy , Humans , Zein/chemistry , Mouth Mucosa/metabolism , Mouth Mucosa/microbiology , Povidone/chemistry , Permeability , Drug Delivery Systems/methods , Animals , Chemistry, Pharmaceutical/methods , Child
15.
AAPS PharmSciTech ; 25(7): 192, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39164485

ABSTRACT

Lipid-based formulations (LbFs) have demonstrated success in pharmaceutical applications; however, challenges persist in dissolving entire doses of the drug into defined liquid volumes. In this study, the temperature-induced supersaturation method was employed in LbF to address drug loading and pill burden issues. Supersaturated LbFs (super-LbF) were prepared using the temperature-induced supersaturation method, where the drug load is above its equilibrium solubility. Further, the influence of the drug's physicochemical and thermal characteristics on drug loading and their relevance with an apparent degree of supersaturation (aDS) was studied using two model drugs, ibrutinib and enzalutamide. All the prepared LbFs were evaluated in terms of physical stability, dispersion, and solubilization capacity, as well as pharmacokinetic assessments. Drug re-crystallization was observed in the lipid solution on long-term storage at higher aDS values of 2-2.5. Furthermore, high-throughput lipolysis studies demonstrated a significant decrease in drug concentration across all LbFs (regardless of drug loading) due to a decline in the formulation solvation capacity and subsequent generation of in-situ supersaturation. Further, the in vivo results demonstrated comparable pharmacokinetic parameters between conventional LbF and super-LbF. The short duration of the thermodynamic metastable state limits the potential absorption benefits. However, super-LbFs of Ibr and Enz showed superior profiles, with 1.7-fold and 5.2-fold increased drug exposure compared to their respective crystalline suspensions. In summary, this study emphasizes the potential of temperature-induced supersaturation in LbF for enhancing drug loading and highlights the intricate interplay between drug properties, formulation characteristics, and in vivo performance.


Subject(s)
Adenine , Benzamides , Chemistry, Pharmaceutical , Lipids , Nitriles , Phenylthiohydantoin , Piperidines , Solubility , Temperature , Nitriles/chemistry , Nitriles/administration & dosage , Piperidines/chemistry , Piperidines/administration & dosage , Piperidines/pharmacokinetics , Benzamides/chemistry , Benzamides/pharmacokinetics , Adenine/analogs & derivatives , Adenine/chemistry , Adenine/administration & dosage , Phenylthiohydantoin/pharmacokinetics , Phenylthiohydantoin/administration & dosage , Lipids/chemistry , Animals , Chemistry, Pharmaceutical/methods , Drug Compounding/methods , Male , Pyrimidines/pharmacokinetics , Pyrimidines/chemistry , Pyrimidines/administration & dosage , Drug Stability , Crystallization/methods , Pyrazoles/chemistry , Pyrazoles/pharmacokinetics , Pyrazoles/administration & dosage , Lipolysis/drug effects , Rats
16.
AAPS PharmSciTech ; 25(7): 191, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39164556

ABSTRACT

The compound Salvia Recipe has been shown to have a relatively significant curative effect in management of cardiovascular and cerebrovascular diseases. This work aimed to prepare a thermosensitive in situ gel (ISG) delivery system that utilizes Poloxamer 407, Poloxamer 188, and hydroxypropyl methylcellulose for ocular administration of the compound Salvia recipe to treat cardiovascular and cerebrovascular diseases. The central composite design-response surface method was utilized to improve the prescription of the gel. The formulated gel was characterized and assessed in terms of stability, retention time, in vitro release, rheology, ocular irritation, pharmacokinetics studies, and tissue distribution. The gel was a liquid solution at room temperature and became semisolid at physiological temperature, prolonging its stay time in the eye. Pharmacokinetics and tissue distribution experiments indicated that thermosensitive ISG had enhanced targeting of heart and brain tissues. Additionally, it could lower drug toxicity and side effects in the lungs and kidneys. The compound Salvia ophthalmic thermosensitive ISG is a promising drug delivery system for the management of cardiovascular and cerebrovascular illnesses.


Subject(s)
Administration, Ophthalmic , Drug Delivery Systems , Gels , Salvia , Animals , Salvia/chemistry , Drug Delivery Systems/methods , Tissue Distribution , Temperature , Poloxamer/chemistry , Rabbits , Eye/drug effects , Eye/metabolism , Chemistry, Pharmaceutical/methods , Hypromellose Derivatives/chemistry , Male , Rheology , Drugs, Chinese Herbal/administration & dosage , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/pharmacokinetics
17.
Expert Opin Drug Deliv ; 21(7): 1069-1079, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39129595

ABSTRACT

INTRODUCTION: The pharmaceutical industry is gradually changing batch-wise manufacturing processes to continuous manufacturing processes, due to the advantages it has to offer. The final product quality and process efficiency of continuous manufacturing processes is among others impacted by the properties of the raw materials. Existing knowledge on the role of raw material properties in batch processing is however not directly transferable to continuous processes, due to the inherent differences between batch and continuous processes. AREAS COVERED: A review is performed to evaluate the role of excipient properties for different unit operations used in continuous manufacturing processes. Unit operations that will be discussed include feeding, blending, granulation, final blending, and compression. EXPERT OPINION: Although the potency of continuous manufacturing is widely recognized, full utilization still requires a number of challenges to be addressed effectively. An expert opinion will be provided that discusses those challenges and potential solutions to overcome those challenges. The provided overview can serve as a framework for the pharmaceutical industry to push ahead process optimization and formulation development for continuous manufacturing processes.


Subject(s)
Chemistry, Pharmaceutical , Drug Compounding , Drug Industry , Excipients , Powders , Tablets , Excipients/chemistry , Chemistry, Pharmaceutical/methods , Drug Compounding/methods , Humans , Technology, Pharmaceutical/methods , Pharmaceutical Preparations/chemistry
18.
AAPS PharmSciTech ; 25(6): 161, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38992175

ABSTRACT

Drug solubility and dissolution remain a significant challenge in pharmaceutical formulations. This study aimed to formulate and evaluate repanglinide (RPG) nanosuspension-based buccal fast-dissolving films (BDFs) for dissolution enhancement. RPG nanosuspension was prepared by the antisolvent-precipitation method using multiple hydrophilic polymers, including soluplus®, polyvinyl alcohol, polyvinyl pyrrolidine, poloxamers, and hydroxyl propyl methyl cellulose. The nanosuspension was then directly loaded into BDFs using the solvent casting technique. Twelve formulas were prepared with a particle size range of 81.6-1389 nm and PDI 0.002-1 for the different polymers. Nanosuspensions prepared with soluplus showed a favored mean particle size of 82.6 ± 3.2 nm. The particles were spherical and non-aggregating, as demonstrated by SEM imaging. FTIR showed no interaction between soluplus and RPG. Faster dissolution occurred for the nanosuspension in comparison with pure RPG (complete release vs 60% within 30 min). The nanosuspension was successfully incorporated into BDFs. The optimum film formula showed 28 s disintegration time, and 97.3% RPG released within 10 min. Ex-vivo permeation profiles revealed improved RPG nanosuspension permeation with the cumulative amount of RPG permeated is103.4% ± 10.1 and a flux of 0.00275 mg/cm2/min compared to 39.3% ± 9.57 and a flux of 0.001058 mg/cm2/min for pure RPG. RPG was successfully formulated into nanosuspension that boosted drug dissolution and permeation. The selection of the ultimate NP formula was driven by optimal particle size, distribution, and drug content. Soluplus NPs were shown to be the successful formulations, which were further incorporated into a buccal film. The film was evaluated for ex-vivo permeation, confirming successful RPG formulation with improved performance compared to pure drugs.


Subject(s)
Carbamates , Nanoparticles , Particle Size , Piperidines , Solubility , Suspensions , Nanoparticles/chemistry , Piperidines/chemistry , Piperidines/administration & dosage , Piperidines/pharmacokinetics , Carbamates/chemistry , Carbamates/administration & dosage , Carbamates/pharmacokinetics , Animals , Chemistry, Pharmaceutical/methods , Drug Liberation , Polyvinyls/chemistry , Polymers/chemistry , Administration, Buccal , Polyethylene Glycols/chemistry , Drug Compounding/methods
19.
Drug Deliv ; 31(1): 2372277, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38952058

ABSTRACT

Skin melanoma is considered the most dangerous form of skin cancer due to its association with high risk of metastasis, high mortality rate and high resistance to different treatment options. Genistein is a natural isoflavonoid with known chemotherapeutic activity. Unfortunately, it has low bioavailability due to its poor aqueous solubility and excessive metabolism. In the current study, genistein was incorporated into transferosomal hydrogel to improve its bioavailability. The prepared transferosomal formulations were characterized regarding: particle size; polydispersity index; zeta potential; encapsulation efficiency; TEM; FTIR; DSC; XRD; in vitro drug release; viscosity; pH; ex vivo anti-tumor activity on 3D skin melanoma spheroids and 1-year stability study at different storage temperatures. The optimized formulation has high encapsulation efficiency with an excellent particle size that will facilitate its penetration through the skin. The transfersomes have a spherical shape with sustained drug release profile. The anti-tumor activity evaluation of genistein transfersome revealed that genistein is a potent chemotherapeutic agent with enhanced penetration ability through the melanoma spheroids when incorporated into transfersomes. Stability study results demonstrate the high physical and chemical stability of our formulations. All these outcomes provide evidence that our genistein transferosomal hydrogel is a promising treatment option for skin melanoma.


Subject(s)
Drug Liberation , Genistein , Hydrogels , Melanoma , Particle Size , Skin Neoplasms , Genistein/administration & dosage , Genistein/pharmacology , Genistein/pharmacokinetics , Melanoma/drug therapy , Skin Neoplasms/drug therapy , Humans , Hydrogels/chemistry , Drug Delivery Systems/methods , Cell Line, Tumor , Drug Stability , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/pharmacology , Antineoplastic Agents/pharmacokinetics , Solubility , Drug Carriers/chemistry , Chemistry, Pharmaceutical , Viscosity , Biological Availability , Administration, Cutaneous , Spheroids, Cellular/drug effects
20.
AAPS PharmSciTech ; 25(6): 151, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38954171

ABSTRACT

The intranasal route has demonstrated superior systemic bioavailability due to its extensive surface area, the porous nature of the endothelial membrane, substantial blood flow, and circumvention of first-pass metabolism. In traditional medicinal practices, Bacopa monnieri, also known as Brahmi, is known for its benefits in enhancing cognitive functions and potential effects in epilepsy. This study aimed to develop and optimize a thermosensitive in-situ nasal gel for delivering Bacoside A, the principal active compound extracted from Bacopa monnieri. The formulation incorporated Poloxamer 407 as a thermogelling agent and HPMC K4M as the Mucoadhesive polymer. A 32-factorial design approach was employed for Optimization. Among the formulations. F7 exhibited the most efficient Ex-vivo permeation through the nasal mucosa, achieving 94.69 ± 2.54% permeation, and underwent a sol-gel transition at approximately 30.48 °C. The study's factorial design revealed that gelling temperature and mucoadhesive strength were critical factors influencing performance. The potential of in-situ nasal Gel (Optimized Batch-F7) for the treatment of epilepsy was demonstrated in an in-vivo investigation using a PTZ-induced convulsion model. This formulation decreased both the occurrence and intensity of seizures. The optimized formulation F7 showcases significant promise as an effective nasal delivery system for Bacoside A, offering enhanced bioavailability and potentially increased efficacy in epilepsy treatment.


Subject(s)
Administration, Intranasal , Epilepsy , Gels , Nasal Mucosa , Triterpenes , Animals , Administration, Intranasal/methods , Epilepsy/drug therapy , Gels/chemistry , Nasal Mucosa/metabolism , Nasal Mucosa/drug effects , Male , Triterpenes/administration & dosage , Triterpenes/pharmacokinetics , Triterpenes/pharmacology , Triterpenes/chemistry , Temperature , Saponins/administration & dosage , Saponins/chemistry , Saponins/pharmacology , Saponins/pharmacokinetics , Chemistry, Pharmaceutical/methods , Biological Availability , Rats , Poloxamer/chemistry , Anticonvulsants/administration & dosage , Anticonvulsants/pharmacokinetics , Anticonvulsants/pharmacology , Anticonvulsants/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL