Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.597
Filter
1.
Parasit Vectors ; 17(1): 327, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39095927

ABSTRACT

BACKGROUND: Chicken coccidiosis is an intracellular parasitic disease that presents major challenges to the development of the commercial poultry industry. Perennial drug selective pressure has led to the multi-drug resistance of chicken coccidia, which makes the prevention and control of chicken coccidiosis extremely difficult. In recent years, natural plant products have attracted the attention of researchers due to their inherent advantages, such as the absence of veterinary drug residues. The development of these natural products provides a new direction for the prevention and treatment of chicken coccidiosis. METHODS: The anticoccidial effect of a natural plant product combination formulation (eucalyptus oil + apigenin + eugenol essential oil) was tested against Eimeria tenella in broilers. To search for the optimal concentration of the combination formulation, we screened 120 broilers in a chicken cage trial in which 100 broilers were infected with 5 × 104 sporulated Eimeria tenella oocysts; broilers receiving a decoquinate solution was set up as a chemical control. The optimal anticoccidial concentration was determined by calculating the anticoccidial index (ACI), and the suitable concentration was used as the recommended dose for a series of safety dose assessment tests, such as feed conversion ratio (FCR), hematological indices and serum biochemical indices, as well as liver and kidney sections, at onefold (low dose), threefold (medium dose) and sixfold (high dose) the recommended dose (RD). RESULTS: The results showed that this combination formulation of three plant natural products had a better anticoccidial effect than formulations containing two plant natural products or a single one, with an ACI of 169.3. The dose gradient anticoccidial test revealed that the high-dose formulation group had a better anticoccidial effect (ACI = 169.2) than the medium- and low-dose groups. The safety evaluation test showed that concentrations of the formulation at one-, three- and sixfold the RD were non-toxic to Arbor Acres broilers, indicating the high safety of the combination formulation. CONCLUSIONS: The combination formulation showed not only a moderate anticoccidial effect but also had a high safety profile for broilers. The results of this study indicate a new alternative for the prevention and control of coccidiosis in broilers.


Subject(s)
Chickens , Coccidiosis , Coccidiostats , Eimeria tenella , Eucalyptus , Eugenol , Poultry Diseases , Animals , Chickens/parasitology , Eimeria tenella/drug effects , Coccidiosis/drug therapy , Coccidiosis/veterinary , Coccidiosis/parasitology , Poultry Diseases/drug therapy , Poultry Diseases/parasitology , Coccidiostats/pharmacology , Coccidiostats/therapeutic use , Coccidiostats/administration & dosage , Eugenol/pharmacology , Eugenol/administration & dosage , Eucalyptus/chemistry , Biological Products/pharmacology , Biological Products/administration & dosage , Oocysts/drug effects , Plant Extracts/pharmacology , Plant Extracts/chemistry , Plant Extracts/administration & dosage , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Oils, Volatile/administration & dosage
2.
Parasitol Res ; 123(8): 289, 2024 Aug 03.
Article in English | MEDLINE | ID: mdl-39096422

ABSTRACT

Chicken coccidiosis causes retarded growth and low production performance in poultry, resulting in huge economic losses to the poultry industry. In order to prevent and control chicken coccidiosis, great efforts have been made to develop new drugs and vaccines, which require pure isolates of Eimeria spp. In this study, we obtained the Eimeira tenella Xiantao isolate by single oocyst isolation technology and compared its genome with the reference genome GCF_000499545.2_ETH001 of the Houghton strain. The results of the comparative genomic analysis indicated that the genome of this isolate contained 46,888 single nucleotide polymorphisms (SNPs). There were 15,107 small insertion and deletion variations (indels), 1693 structural variations (SV), and 3578 copy number variations (CNV). In addition, 64 broilers were used to determine the resistance profile of Xiantao strain. Drug susceptibility testing revealed that this isolate was completely resistant to monensin, diclazuril, halofuginone, sulfachlorpyrazine sodium, and toltrazuril, but sensitive to decoquinate. These data improve our understanding of drug resistance in avian coccidia.


Subject(s)
Chickens , Coccidiosis , Drug Resistance , Eimeria tenella , Poultry Diseases , Eimeria tenella/genetics , Eimeria tenella/drug effects , Eimeria tenella/isolation & purification , Animals , China , Chickens/parasitology , Poultry Diseases/parasitology , Coccidiosis/veterinary , Coccidiosis/parasitology , Drug Resistance/genetics , Coccidiostats/pharmacology , Polymorphism, Single Nucleotide , Genome, Protozoan
3.
Turkiye Parazitol Derg ; 48(2): 117-119, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38958466

ABSTRACT

This case report was prepared to provide information about Menacanthus pallidulus (Neumann, 1912), which was detected for the first time on a domestic chicken in Hatay province of Türkiye. Louse specimens collected from a chicken by a student were brought to Hatay Mustafa Kemal University Faculty of Veterinary Medicine, Department of Parasitology, and sent to Selçuk University Faculty of Veterinary Medicine, Department of Parasitology, for identification of species and microscopic examination revealed the presence of Menacanthus pallidulus (Neumann, 1912). Thus, with this study, the presence of M. pallidulus on domestic chickens was recorded for the first time in Türkiye.


Subject(s)
Amblycera , Chickens , Lice Infestations , Poultry Diseases , Animals , Chickens/parasitology , Lice Infestations/veterinary , Lice Infestations/parasitology , Turkey , Poultry Diseases/parasitology , Amblycera/classification , Amblycera/anatomy & histology , Male , Female
4.
Genes (Basel) ; 15(7)2024 Jun 24.
Article in English | MEDLINE | ID: mdl-39062610

ABSTRACT

Coccidiosis, a parasitic disease caused by single or multiple Eimeria species, leads to significant economic losses in the poultry industry. The Eimeria life cycle includes schizogony, gametogony, and sporogony. To investigate the dynamics of gene expression and regulatory networks during the development of Eimeria acervulina, we employed time-course transcriptomics to rigorously compare the gene expression patterns between a precocious line (PL) and the wild type (WT) of E. acervulina. The results revealed that the PL enters into gametogony 12 h earlier than the WT, and both the PL and WT exhibited distinct clustering patterns during the development phase. A weighted gene co-expression network analysis (WGCNA) identified genes specifically expressed at four distinct developmental stages, schizogony, gametogony, sporulated oocysts, and unsporulated oocysts, clarifying the key biological processes at each stage. This study used global transcriptome profiling to elucidate molecular variations throughout the E. acervulina life cycle, providing critical insights into molecular characterization and valuable resources for investigating other apicomplexan parasites of public health importance.


Subject(s)
Eimeria , Transcriptome , Eimeria/genetics , Animals , Oocysts/growth & development , Coccidiosis/parasitology , Coccidiosis/veterinary , Coccidiosis/genetics , Gene Expression Profiling/methods , Life Cycle Stages/genetics , Chickens/parasitology , Chickens/genetics , Gene Expression Regulation, Developmental , Gene Regulatory Networks , Poultry Diseases/parasitology , Poultry Diseases/genetics , Protozoan Proteins/genetics , Protozoan Proteins/metabolism
5.
Vet Parasitol Reg Stud Reports ; 52: 101044, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38880575

ABSTRACT

Soft ticks pose significant health risks as vectors of various pathogens. This study explored the spatio-temporal distribution and genetic relationships of the soft tick species Argas persicus infesting domestic hens (Gallus gallus domesticus) across different districts in Pakistan. An examination of 778 hens revealed a notable tick infestation prevalence of 70.82%, with a total of 1299 ticks collected from 551 hens. The overall mean intensity was 2.19 soft ticks per infested chicken, and the overall mean abundance was 1.61 soft ticks per examined hen. Morphological identification confirmed all collected ticks (n = 1210) as A. persicus, comprising 719 males, 333 females, 121 nymphs, and 38 larvae. The Haveli, Muzaffarabad, and Kotli districts had the highest infestation rates, while Bagh had the lowest. Molecular analyses of tick DNA, focusing on 16S rDNA and 12S rDNA sequences, revealed genetic similarities among A. persicus soft ticks from Pakistan and other regions, providing insights into their evolutionary history. Importantly, no Babesia, Rickettsia, or Anaplasma infections were detected in the examined samples. These findings enhance the understanding of soft tick infestation patterns and the genetic diversity of A. persicus in the studied region.


Subject(s)
Argas , Chickens , Phylogeny , Poultry Diseases , Tick Infestations , Animals , Pakistan/epidemiology , Chickens/parasitology , Poultry Diseases/parasitology , Poultry Diseases/epidemiology , Tick Infestations/veterinary , Tick Infestations/epidemiology , Tick Infestations/parasitology , Female , Prevalence , Male , Spatio-Temporal Analysis , Babesia/isolation & purification , Babesia/genetics , Babesia/classification , Nymph , Rickettsia/isolation & purification , Rickettsia/genetics , Rickettsia/classification , RNA, Ribosomal, 16S/analysis , RNA, Ribosomal, 16S/genetics , Larva/classification
6.
Parasit Vectors ; 17(1): 221, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38745229

ABSTRACT

BACKGROUND: The chicken body louse is an obligate ectoparasite of domestic chickens. Chicken body lice feed on feathers, and infestation with this louse is linked to decreases in egg production, hen weight, and feed conversion efficiency. However, it is unknown how chicken body lice impact egg-laying chickens in cage-free environments. Welfare and behavior metrics were collected from flocks of egg-laying chickens either infested with chicken body lice or left uninfested. METHODS: In two trials, two flocks of cage-free commercial egg-laying chickens were infested with chicken body lice or maintained as uninfested controls. At three timepoints, behavior and welfare of all chickens was measured. On-animal sensors were used to quantify pecking, preening, and dustbathing behavior. Other animal-based welfare metrics included recording comb wounds and skin lesions. RESULTS: Birds infested with chicken body lice exhibited significantly more preening behaviors than uninfested birds, even at low louse levels. Moderate or severe skin lesions were detected on birds that were moderately infested with chicken body lice while skin lesions were never detected on uninfested birds. CONCLUSIONS: The welfare of chickens was impacted by the chicken body louse, a chewing louse that primarily feather feeds. Evidence of skin lesions on infested birds suggests that lice may cause more damage to birds than previously thought, and further evaluation of louse economic damage is necessary.


Subject(s)
Animal Welfare , Chickens , Housing, Animal , Poultry Diseases , Animals , Chickens/parasitology , Poultry Diseases/parasitology , Female , Behavior, Animal , Amblycera/physiology , Feathers/parasitology , Lice Infestations/veterinary , Lice Infestations/parasitology
7.
Parasite ; 31: 23, 2024.
Article in English | MEDLINE | ID: mdl-38759153

ABSTRACT

Eimeria tenella is an obligate intracellular parasite which causes great harm to the poultry breeding industry. Protein phosphorylation plays a vital role in host cell-E. tenella interactions. However, no comprehensive phosphoproteomic analyses of host cells at various phases of E. tenella infection have been published. In this study, quantitative phosphoproteomic analysis of chicken embryo DF-1 fibroblasts that were uninfected (UI) or infected with E. tenella for 6 h (PI6, the early invasion phase) or 36 h (PI36, the trophozoite development phase) was conducted. A total of 10,122 phosphopeptides matched to 3,398 host cell phosphoproteins were identified and 13,437 phosphorylation sites were identified. Of these, 491, 1,253, and 275 differentially expressed phosphorylated proteins were identified in the PI6/UI, PI36/UI, and PI36/PI6 comparisons, respectively. KEGG pathway enrichment analysis showed that E. tenella modulated host cell processes through phosphorylation, including focal adhesion, regulation of the actin cytoskeleton, and FoxO signaling to support its early invasion phase, and modulating adherens junctions and the ErbB signaling pathway to favor its trophozoite development. These results enrich the data on the interaction between E. tenella and host cells and facilitate a better understanding of the molecular mechanisms underlying host-parasite relationships.


Title: Analyse phosphoprotéomique quantitative de cellules DF-1 de poulet infectées par Eimeria tenella, par spectrométrie de masse avec marqueur de masse en tandem (TMT) et surveillance des réactions parallèles (PRM). Abstract: Eimeria tenella est un parasite intracellulaire obligatoire qui cause de graves dommages à l'industrie de l'élevage de volailles. La phosphorylation des protéines joue un rôle essentiel dans les interactions entre la cellule hôte et E. tenella. Cependant, aucune analyse phosphoprotéomique complète des cellules hôtes à différentes phases de l'infection par E. tenella n'a été publiée. Dans cette étude, une analyse phosphoprotéomique quantitative de fibroblastes DF-1 d'embryon de poulet non infectés (NI) ou infectés par E. tenella pendant 6 h (PI6, la phase d'invasion précoce) ou 36 h (PI36, la phase de développement des trophozoïtes) a été réalisée. Un total de 10 122 phosphopeptides correspondant à 3 398 phosphoprotéines de cellules hôtes ont été identifiés et 13 437 sites de phosphorylation ont été identifiés. Parmi celles-ci, 491, 1 253 et 275 protéines différentiellement phosphorylées exprimées ont été identifiées respectivement dans les comparaisons PI6/NI, PI36/NI et PI36/PI6. L'analyse d'enrichissement de la voie KEGG a montré qu'E. tenella modulait les processus de la cellule hôte par phosphorylation, y compris l'adhésion focale, la régulation du cytosquelette d'actine et la signalisation FoxO, pour aider sa phase d'invasion précoce, et la modulation des jonctions adhérentes et de la voie de signalisation ErbB pour favoriser le développement de son trophozoïte. Ces résultats enrichissent les données sur l'interaction entre E. tenella et les cellules hôtes et facilitent une meilleure compréhension des mécanismes moléculaires sous-jacents aux relations hôtes­parasites.


Subject(s)
Chickens , Eimeria tenella , Fibroblasts , Phosphoproteins , Proteomics , Tandem Mass Spectrometry , Animals , Eimeria tenella/physiology , Chickens/parasitology , Proteomics/methods , Phosphoproteins/analysis , Phosphoproteins/metabolism , Phosphorylation , Fibroblasts/parasitology , Cell Line , Poultry Diseases/parasitology , Host-Parasite Interactions , Coccidiosis/parasitology , Coccidiosis/veterinary , Chick Embryo , Signal Transduction
8.
PLoS One ; 19(5): e0302567, 2024.
Article in English | MEDLINE | ID: mdl-38781235

ABSTRACT

This study investigated the sand fly fauna of the municipality Iguatama, in the Midwest Region of Minas Gerais state, Brazil, including Leishmania infection rates and blood meal sources. Sand flies were collected during four periods over the course of a single year, encompassing both dry and rainy seasons, using CDC light traps placed in peridomiciles where dogs were seropositive for visceral leishmaniasis (VL). A total of 762 sand fly specimens, representing 12 species across seven genera, were collected. Lutzomyia longipalpis was the most abundant species, comprising 57.6% of the collected specimens, followed by Nyssomyia neivai (19.6%) and Nyssomyia whitmani (10.5%). Species richness and diversity varied among collection periods, with the highest diversity observed in January 2019. Molecular analysis detected Leishmania DNA in 12.5% of the sand fly specimens, with Le. infantum being the predominant species. Blood meal analysis revealed feeding on multiple vertebrate species, including humans, rats, dogs, and chickens. The presence of Leishmania DNA in sand flies, and the identification of human blood meals, highlight the potential role of these species in VL transmission. These findings underscore the importance of continued surveillance and control measures to prevent the spread of VL and reduce transmission risk in the region.


Subject(s)
Insect Vectors , Leishmania , Psychodidae , Animals , Brazil/epidemiology , Psychodidae/parasitology , Leishmania/isolation & purification , Leishmania/genetics , Dogs , Humans , Insect Vectors/parasitology , Leishmaniasis, Visceral/transmission , Leishmaniasis, Visceral/epidemiology , Leishmaniasis, Visceral/parasitology , Leishmaniasis, Visceral/veterinary , Rats , Chickens/parasitology , Feeding Behavior , Biodiversity
9.
Sci Rep ; 14(1): 10702, 2024 05 10.
Article in English | MEDLINE | ID: mdl-38729976

ABSTRACT

Coccidiosis, an intestinal disease caused by Eimeria parasites, is responsible for major losses in the poultry industry by impacting chicken health. The gut microbiota is associated with health factors, such as nutrient exchange and immune system modulation, requiring understanding on the effects of Eimeria infection on the gut microbiota. This study aimed to determine the effects of Eimeria acervulina infection on the luminal and mucosal microbiota of the cecum (CeL and CeM) and ileum (IlL and IlM) at multiple time points (days 3, 5, 7, 10, and 14) post-infection. E. acervulina infection decreased evenness in CeL microbiota at day 10, increased richness in CeM microbiota at day 3 before decreasing richness at day 14, and decreased richness in IlL microbiota from day 3 to 10. CeL, CeM, and IlL microbiota differed between infected and control birds based on beta diversity at varying time points. Infection reduced relative abundance of bacterial taxa and some predicted metabolic pathways known for short-chain fatty acid production in CeL, CeM, and IlL microbiota, but further understanding of metabolic function is required. Despite E. acervulina primarily targeting the duodenum, our findings demonstrate the infection can impact bacterial diversity and abundance in the cecal and ileal microbiota.


Subject(s)
Cecum , Chickens , Coccidiosis , Eimeria , Gastrointestinal Microbiome , Ileum , Poultry Diseases , Animals , Chickens/microbiology , Chickens/parasitology , Cecum/microbiology , Cecum/parasitology , Eimeria/physiology , Ileum/microbiology , Ileum/parasitology , Coccidiosis/veterinary , Coccidiosis/parasitology , Poultry Diseases/microbiology , Poultry Diseases/parasitology , Intestinal Mucosa/microbiology , Intestinal Mucosa/parasitology
10.
Eur J Protistol ; 94: 126089, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38749182

ABSTRACT

Chicken coccidiosis causes disastrous losses to the poultry industry all over the world. Eimeria tenella is the most prevalent of these disease-causing species. Our former RNA-seq indicated that E. tenella ankyrin repeat-containing protein (EtANK) was expressed differently between drug-sensitive (DS) and drug-resistant strains. In this study, we cloned EtANK and analyzed its translational and transcriptional levels using quantitative real-time PCR (qPCR) and western blotting. The data showed that EtANK was significantly upregulated in diclazuril-resistant (DZR) strain and maduramicin-resistant (MRR) strain compared with the drug-sensitive (DS) strain. In addition, the transcription levels in the DZR strains isolated from the field were higher than in the DS strain. The translation levels of EtANK were higher in unsporulated oocysts (UO) than in sporozoites (SZ), sporulated oocysts (SO), or second-generation merozoites (SM), and the protein levels in SM were significantly higher than in UO, SO, and SZ. The results of the indirect immunofluorescence localization showed that the protein was distributed mainly at the anterior region of SZ and on the surface and in the cytoplasm of SM. The fluorescence intensity increased further with its development in vitro. An anti-rEtANK polyclonal antibody inhibited the invasive ability of E. tenella in DF-1 cells. These results showed that EtANK may be related to host cell invasion, required for the parasite's growth in the host, and may be involved in the development of E. tenella resistance to some drugs.


Subject(s)
Ankyrin Repeat , Eimeria tenella , Protozoan Proteins , Triazines , Eimeria tenella/genetics , Protozoan Proteins/genetics , Protozoan Proteins/metabolism , Animals , Triazines/pharmacology , Chickens/parasitology , Coccidiostats/pharmacology , Nitriles/pharmacology , Drug Resistance/genetics , Coccidiosis/parasitology , Coccidiosis/veterinary , Poultry Diseases/parasitology , Benzamides/pharmacology , Lactones
11.
Vet Parasitol ; 329: 110200, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38744230

ABSTRACT

Histomonas meleagridis, an anaerobic intercellular parasite, is known to infect gallinaceous birds, particularly turkeys and chickens. The resurgence of histomonosis in recent times has resulted in significant financial setbacks due to the prohibition of drugs used for disease treatment. Currently, research on about H. meleagridis primarily concentrate on the examination of its virulence, gene expression analysis, and the innate immunity response of the host organism. However, there is a lack of research on differentially expressed miRNAs (DEMs) related to liver infection induced by H. meleagridis. In this study, the weight gain and pathological changes at various post-infection time points were evaluated through animal experiments to determine the peak and early stages of infection. Next, High-throughput sequencing was used to examine the expression profile of liver miRNA at 10 and 15 days post-infection (DPI) in chickens infected with the Chinese JSYZ-F strain of H. meleagridis. A comparison with uninfected controls revealed the presence of 120 and 118 DEMs in the liver of infected chickens at 10 DPI and 15 DPI, respectively, with 74 DEMs being shared between the two time points. Differentially expressed microRNAs (DEMs) were categorized into three groups based on the time post-infection. The first group (L1) includes 45 miRNAs that were differentially expressed only at 10 DPI and were predicted to target 1646 genes. The second group (L2) includes 43 miRNAs that were differentially expressed only at 15 DPI and were predicted to target 2257 genes. The third group (L3) includes 75 miRNAs that were differentially expressed at both 10 DPI and 15 DPI and were predicted to target 1623 genes. At L1, L2, and L3, there were 89, 87, and 41 significantly enriched Gene Ontology (GO) terms, respectively (p<0.05). The analysis of differentially expressed miRNA target genes using KEGG pathways revealed significant enrichment at L1, L2, and L3, with 3, 4, and 5 pathways identified, respectively (p<0.05). This article suggests that the expression of liver miRNA undergoes dynamic alterations due to H. meleagridis and the host. It showed that the expression pattern of L1 class DEMs was more conducive to regulating the development of the inflammatory response, while the L2 class DEMs were more conducive to augmenting the inflammatory response. The observed patterns of miRNA expression associated with inflammation were in line with the liver's inflammatory process following infection. The results of this study provide a basis for conducting a comprehensive analysis of the pathogenic mechanism of H. meleagridis from the perspective of host miRNAs.


Subject(s)
Chickens , Liver , MicroRNAs , Poultry Diseases , Trichomonadida , Animals , Chickens/parasitology , MicroRNAs/genetics , MicroRNAs/metabolism , Poultry Diseases/parasitology , Liver/parasitology , Liver/metabolism , Trichomonadida/genetics , Protozoan Infections, Animal/parasitology , Transcriptome , Gene Expression Profiling/veterinary
12.
Parasit Vectors ; 17(1): 208, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38720313

ABSTRACT

BACKGROUND: Triatoma infestans, Triatoma brasiliensis, Triatoma pseudomaculata and Rhodnius prolixus are vectors of Trypanosoma cruzi, the etiological agent of Chagas disease. Chickens serve as an important blood food source for triatomines. This study aimed to assess the insecticidal activity of fluralaner (Exzolt®) administered to chickens against triatomines (R. prolixus, T. infestans, T. brasiliensis and T. pseudomaculata). METHODS: Twelve non-breed chickens (Gallus gallus domesticus) were randomized based on weight into three groups: negative control (n = 4); a single dose of 0.5 mg/kg fluralaner (Exzolt®) (n = 4); two doses of 0.5 mg/kg fluralaner (Exzolt®) (n = 4). Nymphs of 3rd, 4th and 5th instars of R. prolixus, T. infestans, T. brasiliensis and T. pseudomaculata (all n = 10) were allowed to feed on chickens before treatment, and at intervals of 1, 7, 14, 21, 28, 35 and 56 days after treatment, with insect mortality determined. RESULTS: Treatment with two doses of fluralaner showed higher insecticidal efficacy against R. prolixus, T. infestans and T. brasiliensis compared to the single-dose treatment. Similar insecticidal efficacy was observed for T. pseudomaculata for one and two doses of fluralaner. Insecticidal activity of fluralaner (Exzolt®) against triatomine bugs was noted up to 21 and 28 days after treatment with one and two doses of fluralaner, respectively. CONCLUSIONS: The results demonstrate that treatment of chickens with fluralaner (Exzolt®) induces insecticidal activity against triatomines for up to 28 days post-treatment, suggesting its potential use as a control strategy for Chagas disease in endemic areas.


Subject(s)
Chickens , Insecticides , Isoxazoles , Animals , Chickens/parasitology , Isoxazoles/pharmacology , Isoxazoles/administration & dosage , Insecticides/pharmacology , Insecticides/administration & dosage , Insect Vectors/drug effects , Chagas Disease/transmission , Chagas Disease/drug therapy , Chagas Disease/veterinary , Triatominae , Nymph/drug effects , Poultry Diseases/parasitology , Poultry Diseases/prevention & control , Triatoma/drug effects
13.
Vet Parasitol ; 328: 110174, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38579608

ABSTRACT

Raillietina species and Ascaridia galli are two of the significant intestinal parasites that affect chickens in a free-range system production. They destroy the intestinal mucosa layer, leading to several clinical symptoms such as weight loss, a slowed growth rate, and economic value loss. Thus, the objective of this study was to develop an assay for simultaneously detecting Raillietina spp. (R. echinobothrida, R. tetragona, and R. cesticillus) and A. galli in a single reaction using duplex loop-mediated isothermal amplification (dLAMP) coupled with a lateral flow dipstick (LFD) assay. The analytical specificity of the dLAMP-LFD assay showed a high specific amplification of Raillietina spp. and A. galli without non-target amplification. Regarding the analytical sensitivity, this approach was capable of simultaneously detecting concentrations as low as 5 pg/µL of mixed-targets. To evaluate the efficiency of the dLAMP assay, 30 faecal samples of chickens were verified and compared through microscopic examination. The dLAMP-LFD assay and microscopic examination results showed kappa values of Raillietina spp. and A. galli with moderate (K= 0.615) to high (K= 1) agreements, respectively, while the McNemar's test indicated that the efficiency between assays was not significantly different. Therefore, the developed dLAMP-LFD assay can be used as an alternative screening method to the existing classical method for epidemiological investigation, epidemic control, and farm management, as well as for addressing poultry health problems.


Subject(s)
Ascaridia , Ascaridiasis , Chickens , Nucleic Acid Amplification Techniques , Poultry Diseases , Sensitivity and Specificity , Animals , Chickens/parasitology , Nucleic Acid Amplification Techniques/veterinary , Nucleic Acid Amplification Techniques/methods , Poultry Diseases/parasitology , Poultry Diseases/diagnosis , Ascaridia/isolation & purification , Ascaridia/genetics , Ascaridiasis/veterinary , Ascaridiasis/diagnosis , Ascaridiasis/parasitology , Feces/parasitology , Molecular Diagnostic Techniques/veterinary , Molecular Diagnostic Techniques/methods
14.
Acta Parasitol ; 69(2): 1192-1200, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38605153

ABSTRACT

AIM OF THE STUDY: The growing resistance of helminth parasites to currently available commercial anthelmintic drugs, combined with apprehensions regarding detrimental chemical residues in livestock products, has sparked an interest in exploring medicinal plants as an alternative strategy for treating helminthiasis. As a result, this study was designed to investigate the anthelmintic activity of crude methanolic extracts (CME) of Saussurea costus root on Ascaridia.galli, a pathogenic nematode of poultry. MATERIALS AND METHODS: In vitro, the anthelmintic effect of Saussurea costus root was evaluated in comparison to commercial anthelmintic, levamisole on the adult nematode parasites, A.galli using worm motility inhibition (WMI) test. The CME of S.costus was also evaluated for in vivo anthelmintic activity in chickens experimentally infected with Ascaridia galli. For the in vivo study, one hundred-day-old chickens were orally infected with embryonated eggs of A. galli worms. The efficacy of the plant extract as an anthelmintic was assessed through two tests: faecal egg count reduction (FECR) test and worm count reduction (WCR) test. The study investigated three distinct doses of plant extract under in vivo setup: 500 mg kg-1 body weight (bw), 1000 mg kg-1 bw, and 2000 mg kg-1 bw. RESULTS: In vitro, all the tested concentrations of S.costus (25 mg/ml, 50 mg/ml, and 100 mg/ml) showed a significant (P < 0.001) anthelmintic effects on live adult A. galli worms in terms of inhibition of worm motility at different hours post-treatment. At the highest concentration of the extract, we observed worm motility inhibition of 100% at 24 h post-exposure. On day 14 post-treatment, all birds were slaughtered, and adult A. galli worms were subsequently retrieved from their small intestines. Birds treated with CME extract of S. costus root exhibited a significant (P < 0.001) reduction in faecal egg count. However, the administration of the extract at the dosage of 500 mg kg-1bw to the birds did not reveal any significant (P > 0.05) differences in the worm count compared to the negative control group. The CME of S. costus at a dose of 2000 mg kg-1bw showed the highest anthelmintic activity by inducing 83.10% FECR and 76.47% WCR. CONCLUSION: In conclusion, the root extract of S. costus has a promising anthelmintic activity on A. galli as demonstrated by the results of the present experiment.


Subject(s)
Anthelmintics , Ascaridia , Ascaridiasis , Chickens , Plant Extracts , Poultry Diseases , Saussurea , Animals , Ascaridia/drug effects , Plant Extracts/pharmacology , Plant Extracts/chemistry , Poultry Diseases/parasitology , Poultry Diseases/drug therapy , Anthelmintics/pharmacology , Chickens/parasitology , Saussurea/chemistry , Ascaridiasis/veterinary , Ascaridiasis/drug therapy , Ascaridiasis/parasitology , Parasite Egg Count , Feces/parasitology , Plant Roots/chemistry , Levamisole/pharmacology , Levamisole/therapeutic use
15.
Avian Pathol ; 53(5): 350-358, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38616734

ABSTRACT

Coccidiosis is a recurring disease in broiler flocks that causes significant economic losses. This study aims to evaluate the effect of Artemisia absinthium on coccidiosis in broilers through a systematic review and meta-analysis. The article selection process included a search from the year 2000 to February 2021, with no restrictions on country or geographical region. Our objective was met by only six studies, which underwent systematic review. The meta-analysis was conducted using the metafor package in R via RStudio (version 1.1.383; RStudio, Inc.). The systematic review indicates that in vivo studies have shown the effectiveness of various plant extracts (essential oil and methanolic extract) when administered in food or drinking water on the considered parameters (oocyst shedding, bloody diarrhoea, mortality rate, weight gain, conversion index, lesion score). Furthermore, in vitro studies demonstrated a positive impact on oocyst count, LC50 (lethal concentration), sporulation rate (%), and sporulation inhibition rate (%). The meta-analysis of the four studies included in this analysis revealed that the inclusion of A. absinthium extract resulted in a significant reduction in oocyst shedding (SMD = -1.64, 95% CI: -2.72 to -0.55; P < 0.0001). However, the effectiveness of A. absinthium extract was not as significant as that of antibiotics (SMD = 0.57, 95% CI: -0.19 to 0.95; P = 0.0032). Various forms of administration and extracts of A. absinthium have demonstrated antiparasitic activity against Eimeria spp, making them suitable as natural anticoccidial agents.


Subject(s)
Artemisia absinthium , Chickens , Coccidiosis , Plant Extracts , Poultry Diseases , Animals , Coccidiosis/veterinary , Coccidiosis/drug therapy , Coccidiosis/parasitology , Chickens/parasitology , Poultry Diseases/drug therapy , Poultry Diseases/parasitology , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Artemisia absinthium/chemistry , Eimeria/drug effects , Oocysts/drug effects , Coccidiostats/therapeutic use , Coccidiostats/pharmacology
16.
Infect Genet Evol ; 120: 105584, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38521481

ABSTRACT

Management of Dermanyssus gallinae, a cosmopolitan hematophagous mite responsible for damage in layer poultry farming, is hampered by a lack of knowledge of its spatio-temporal population dynamics. Previous studies have shown that the circulation of this pest between farms is of strictly anthropogenic origin, that a mitochondrial haplogroup has been expanding on European farms since the beginning of the 21st century and that its local population growth may be particularly rapid. To refine our understanding of how D. gallinae spreads within and among farms, we characterized the genetic structure of mite populations at different spatial scales and sought to identify the main factors interrupting gene flow between poultry houses and between mitochondrial haplogroups. To this end, we selected and validated the first set of nuclear microsatellite markers for D. gallinae and sequenced a region of the CO1-encoding mitochondrial gene in a subsample of microsatellite-genotyped mites. We also tested certain conditions required for effective contamination of a poultry house through field experimentation, and conducted a survey of practices during poultry transfers. Our results confirm the role of poultry transport in the dissemination of mite populations, but the frequency of effective contamination after the introduction of contaminated material into poultry houses seems lower than expected. The high persistence of mites on farms, even during periods when poultry houses are empty and cleaned, and the very large number of nodes in the logistic network (large number of companies supplying pullets or transporting animals) undoubtedly explain the very high prevalence on farms. Substantial genetic diversity was measured in farm populations, probably as a result of the mite's known haplodiploid mode of sexual reproduction, coupled with the dense logistic network. The possibility of the occasional occurrence of asexual reproduction in this sexually reproducing mite was also revealed in our analyses, which could explain the extreme aggressiveness of its demographic dynamics under certain conditions.


Subject(s)
Microsatellite Repeats , Mite Infestations , Mites , Animals , Mites/genetics , Mite Infestations/veterinary , Mite Infestations/parasitology , Poultry Diseases/parasitology , Chickens/parasitology , Poultry/parasitology , Farms , Gene Flow , Haplotypes , Genetic Variation
17.
Acta Parasitol ; 69(1): 854-864, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38446343

ABSTRACT

PURPOSE: Coccidiosis of domestic chicken is an important disease caused by any of seven species of Eimeria which, by developing within the epithelial cells of the intestine, cause lesions therein. We carried out a study on poultry farms located in various regions of Iran to determine the incidence and spread of Eimeria species by employing a single PCR test. METHODS: A total of 64 fully confirmed clinically intestinal tracts were collected from different parts of Iran. From these 64 intestinal tracts, 82 samples were prepared from the different sites involved in the digestive tract. In morphological assessment, 23 samples could not be isolated and its information was not evaluated. RESULTS: Using morphological methods, the following seven species of Eimeria were identified: E. acervulina (15/59; 25.42%), E. tenella (30/59; 50.84%), E. maxima (12/59; 20.33%), E. praecox (1/59; 1.69%), E. necatrix (2/59; 3.38%), E. mitis (5/59; 8.47%), and E. mivati (2/59; 3.38%). Mixed infections were found in eight (13.55%) samples. In molecular assessment, 31 samples could not be isolated and its information was not evaluated. Totally, the following five species were identified using molecular methods: E. acervulina (35/51; 68.62%), E. tenella (33/51; 64.70%), E. maxima (6/51; 11.76%), E. brunetti (5/51; 9.80%), and E. necatrix (2/51; 3.92%). Mixed infections were found in 23 (45.09%) samples. CONCLUSIONS: The present study is an update on the situation of poultry coccidiosis in Iran and provides the first data on the molecular detection, identification, and characterization of Eimeria spp. in the poultry population of this country and confirmed the presence of different species of this parasite in this area. According to the results, E. acervulina and E. tenella, as the main disease-causing species, should be considered in control programs such as treatment and vaccination strategies.


Subject(s)
Chickens , Coccidiosis , Eimeria , Polymerase Chain Reaction , Poultry Diseases , Animals , Iran/epidemiology , Chickens/parasitology , Coccidiosis/veterinary , Coccidiosis/parasitology , Coccidiosis/epidemiology , Eimeria/isolation & purification , Eimeria/classification , Eimeria/genetics , Poultry Diseases/parasitology , Poultry Diseases/epidemiology , Polymerase Chain Reaction/veterinary , Farms , DNA, Protozoan/genetics , DNA, Protozoan/chemistry
18.
Vet Parasitol ; 328: 110155, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38452531

ABSTRACT

The poultry red mite, Dermanyssus gallinae (Arachnida: Dermanyssidae) is a pest that causes significant economic loss in laying hens for which control methods are limited. In this study, the effects of 20 indigenous fungal strains on poultry red mites in chicken farms were investigated. All experiments were conducted under laboratory condition at 28 ± 1 °C and 80 ± 5% humidity. A screening test showed that Metharizium flavoviride strain As-2 and Beauveria bassiana strain Pa4 had the greatest measured effect on D. gallinae at 1 × 107 conidia/ml 7 days after application. In a subsequent does-response experiment, these strains also caused 92.7% mortality at 1 × 109 conidia/ml within the same period. The LC50 of these strains was 5.5 × 104 (95% CI: 0.8-37.5) conidia/ml for As-2 and 3.2 × 104 (95% CI: 0.4-26.0) conidia/ml for Pa4, and their LT50 were 1.94 and 1.57 days, respectively. The commercial Metarhizium anisopliae bioinsecticide Bio-Storm 1.15% WP, used as a comparator, had LC50 and LT50 1 × 105 (95% CI: 0.1-7.9) conidia/ml and 3.03 (95% CI: 2.4-3.8) days, respectively. It is suggested that mycoacaricides could be developed using the best two fungal strains found in this study (As-2 and Pa4), providing potential for biological control of poultry red mites.


Subject(s)
Chickens , Mite Infestations , Mites , Pest Control, Biological , Poultry Diseases , Animals , Pest Control, Biological/methods , Mites/microbiology , Poultry Diseases/parasitology , Poultry Diseases/prevention & control , Poultry Diseases/microbiology , Chickens/parasitology , Mite Infestations/veterinary , Mite Infestations/prevention & control , Mite Infestations/parasitology , Beauveria/physiology , Female
19.
Vet Parasitol ; 328: 110153, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38452532

ABSTRACT

Avian coccidiosis, caused by Eimeria spp., is one of the major parasitic diseases in chicken. Aquaporins (AQP) are essential mediators of water regulation and nutritional intake in parasites, and it may be a suitable molecule for chemotherapeutic target and vaccine candidate. We identified two aquaporin genes in Eimeria tenella (EtAQP1 and EtAQP2) with their full sequence, and the expression profiles were analyzed across different stages of E. tenella life cycle. The expression of EtAQP1 and EtAQP2 in Xenopus oocytes renders them highly permeable for both water and glycerol. Sugar alcohols up to five carbons and urea pass the pore. The immunohistochemical analysis confirms the restriction of antiserum staining to the surface of transfected Xenopus oocytes. Like other AQP family, EtAQPs are transmembrane proteins that are likely important molecules that facilitate solute uptake for parasite intracellular growth and therapeutic targets.


Subject(s)
Aquaporins , Cloning, Molecular , Eimeria tenella , Eimeria tenella/genetics , Animals , Aquaporins/genetics , Aquaporins/metabolism , Oocytes , Protozoan Proteins/genetics , Protozoan Proteins/metabolism , Poultry Diseases/parasitology , Chickens/parasitology , Amino Acid Sequence , Phylogeny , Water/chemistry , Gene Expression Regulation
20.
Avian Pathol ; 53(5): 368-379, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38529824

ABSTRACT

Coccidiosis, caused by parasites of the genus Eimeria, is a significant economic burden to the poultry industry. In this study, we conducted a comprehensive analysis to evaluate the financial losses associated with Eimeria infection in chickens in Algeria, relying on data provided by key stakeholders in the Algerian poultry industry to assess sub-clinical as well as clinical impact. We employed the updated 2020 version of a model established to estimate the cost of coccidiosis in chickens, taking into consideration specific cultural and technical aspects of poultry farming in Algeria. The findings predict economic losses due to coccidiosis in chickens of approximately £86.7 million in Algeria for the year 2022, representing £0.30 per chicken raised. The majority of the cost was attributed to morbidity (74.9%), emphasizing the substantial economic impact of reduced productivity including decreased bodyweight gain and increased feed conversion ratio. Costs associated with control measures made up 20.5% of the total calculated cost, with 4.6% of the cost related to mortality. These figures provide a clear indication of the scope and economic impact of Eimeria infection of chickens in Algeria, illustrating the impact of practices common across North Africa. They underscore the ongoing requirement for effective preventive and control measures to reduce these financial losses while improving productivity and welfare, ensuring the economic sustainability of the Algerian poultry industry.


Subject(s)
Animal Husbandry , Chickens , Coccidiosis , Eimeria , Poultry Diseases , Animals , Coccidiosis/veterinary , Coccidiosis/economics , Coccidiosis/epidemiology , Coccidiosis/parasitology , Chickens/parasitology , Poultry Diseases/economics , Poultry Diseases/parasitology , Poultry Diseases/epidemiology , Algeria/epidemiology , Eimeria/isolation & purification , Animal Husbandry/economics
SELECTION OF CITATIONS
SEARCH DETAIL