Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.416
Filter
1.
Int J Mol Sci ; 25(13)2024 Jun 28.
Article in English | MEDLINE | ID: mdl-39000203

ABSTRACT

The role of Chitinase-3-like protein 1 (CHI3L1) in tumor progression has been gradually clarified in different kinds of solid tumors. Hence, we aim to elucidate its prognostic value for glioma. In this study, we analyzed RNA sequencing data combined with corresponding clinical information obtained from The Cancer Genome Atlas (TCGA) and the Chinese Glioma Genome Atlas (CGGA) databases. Differentially expressed genes (DEGs) were acquired based on CHI3L1 expression profiles and were used for Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses. Cox regression, least absolute shrinkage and selection operator (LASSO) regression methods, along with a nomogram, were employed to establish a predictive model. Compared with the corresponding non-tumor tissues, CHI3L1 expression was significantly upregulated in various types of solid tumors, correlating with poor clinical outcomes including glioma. GO analysis identified oxidative stress-related genes (ORGs) that were differentially expressed and modulated by CHI3L1, with 11 genes subsequently identified as potential predictors, using Univariate-Cox regression and LASSO regression. In addition, an index of oxidative stress-related genes (ORGI) was established, demonstrating its prognostic value in conjunction with CHI3L1 expression. The aberrant expression of CHI3L1 was proved in glioma patients through immunohistochemistry (IHC). Meanwhile, the knockdown of CHI3L1 inhibited glioma growth in vitro, and real-time Quantitative PCR (qPCR) confirmed decreased ORG expression upon CHI3L1 knockdown, suggesting the potential prognostic value of CHI3L1 as a therapeutic target for glioma.


Subject(s)
Biomarkers, Tumor , Brain Neoplasms , Chitinase-3-Like Protein 1 , Gene Expression Regulation, Neoplastic , Glioma , Chitinase-3-Like Protein 1/genetics , Chitinase-3-Like Protein 1/metabolism , Humans , Glioma/genetics , Glioma/metabolism , Glioma/pathology , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Prognosis , Brain Neoplasms/genetics , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Female , Male , Middle Aged , Cell Line, Tumor , Gene Expression Profiling
2.
Alzheimers Res Ther ; 16(1): 146, 2024 07 03.
Article in English | MEDLINE | ID: mdl-38961441

ABSTRACT

BACKGROUND: Increasing evidence supports the use of plasma biomarkers of amyloid, tau, neurodegeneration, and neuroinflammation for diagnosis of dementia. However, their performance for positive and differential diagnosis of dementia with Lewy bodies (DLB) in clinical settings is still uncertain. METHODS: We conducted a retrospective biomarker study in two tertiary memory centers, Paris Lariboisière and CM2RR Strasbourg, France, enrolling patients with DLB (n = 104), Alzheimer's disease (AD, n = 76), and neurological controls (NC, n = 27). Measured biomarkers included plasma Aß40/Aß42 ratio, p-tau181, NfL, and GFAP using SIMOA and plasma YKL-40 and sTREM2 using ELISA. DLB patients with available CSF analysis (n = 90) were stratified according to their CSF Aß profile. RESULTS: DLB patients displayed modified plasma Aß ratio, p-tau181, and GFAP levels compared with NC and modified plasma Aß ratio, p-tau181, GFAP, NfL, and sTREM2 levels compared with AD patients. Plasma p-tau181 best differentiated DLB from AD patients (ROC analysis, area under the curve [AUC] = 0.80) and NC (AUC = 0.78), and combining biomarkers did not improve diagnosis performance. Plasma p-tau181 was the best standalone biomarker to differentiate amyloid-positive from amyloid-negative DLB cases (AUC = 0.75) and was associated with cognitive status in the DLB group. Combining plasma Aß ratio, p-tau181 and NfL increased performance to identify amyloid copathology (AUC = 0.79). Principal component analysis identified different segregation patterns of biomarkers in the DLB and AD groups. CONCLUSIONS: Amyloid, tau, neurodegeneration and neuroinflammation plasma biomarkers are modified in DLB, albeit with moderate diagnosis performance. Plasma p-tau181 can contribute to identify Aß copathology in DLB.


Subject(s)
Amyloid beta-Peptides , Biomarkers , Lewy Body Disease , tau Proteins , Aged , Aged, 80 and over , Female , Humans , Male , Middle Aged , Alzheimer Disease/blood , Alzheimer Disease/cerebrospinal fluid , Alzheimer Disease/diagnosis , Amyloid beta-Peptides/blood , Amyloid beta-Peptides/cerebrospinal fluid , Axons/pathology , Biomarkers/blood , Biomarkers/cerebrospinal fluid , Chitinase-3-Like Protein 1/blood , Chitinase-3-Like Protein 1/cerebrospinal fluid , Diagnosis, Differential , Glial Fibrillary Acidic Protein/blood , Glial Fibrillary Acidic Protein/cerebrospinal fluid , Lewy Body Disease/blood , Lewy Body Disease/cerebrospinal fluid , Lewy Body Disease/diagnosis , Lewy Body Disease/pathology , Membrane Glycoproteins , Neurofilament Proteins/blood , Neurofilament Proteins/cerebrospinal fluid , Neuroinflammatory Diseases/blood , Neuroinflammatory Diseases/diagnosis , Neuroinflammatory Diseases/cerebrospinal fluid , Peptide Fragments/blood , Peptide Fragments/cerebrospinal fluid , Receptors, Immunologic/blood , Retrospective Studies , tau Proteins/blood , tau Proteins/cerebrospinal fluid
3.
Neurology ; 103(3): e209537, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-38986050

ABSTRACT

BACKGROUND AND OBJECTIVES: Neuroinflammation, particularly early astrocyte reactivity, is a significant driver of Alzheimer disease (AD) pathogenesis. It is unclear how the levels of astrocyte biomarkers change in patients across the AD continuum and which best reflect AD-related change. We performed a systematic review and meta-analysis of 3 blood astrocyte biomarkers (glial fibrillary acidic protein [GFAP], chitinase-3-like protein 1 [YKL-40], and S100B) in patients clinically diagnosed with AD. METHODS: MEDLINE and Web of Science were searched on March 23, 2023, without restrictions on language, time, or study design, for studies reporting blood levels of the astrocyte biomarkers GFAP, YKL-40, or S100B in patients on the AD continuum (including those with mild cognitive impairment [MCI] and dementia) and a cognitively unimpaired (CU) control population. AD diagnosis was based on established diagnostic criteria and/or comprehensive multidisciplinary clinical consensus. Studies reporting indirect biomarker measures (e.g., levels of biomarker autoantibodies) were excluded. Risk of bias assessment was performed using the revised Quality Assessment of Diagnostic Accuracy Studies tool. Pooled effect sizes were determined using the Hedge g method with a random-effects model. The review was prospectively registered on PROSPERO (registration number CRD42023458305). RESULTS: The search identified 1,186 studies; 36 met inclusion criteria (AD continuum n = 3,366, CU n = 4,115). No study was assessed to have a high risk of bias. Compared with CU individuals, patients on the AD continuum had higher GFAP and YKL-40 levels (GFAP effect size 1.15, 95% CI 0.94-1.36, p < 0.0001; YKL-40 effect size 0.38, 95% CI 0.28-0.49, p < 0.0001). Both biomarkers were elevated in more advanced clinical stages of the disease (i.e., in AD dementia compared with MCI due to AD: GFAP effect size 0.48, 95% CI 0.19-0.76, p = 0.0009; YKL-40 effect size 0.34, 95% CI 0.10-0.57, p = 0.0048). No significant differences in blood S100B levels were identified. DISCUSSION: We demonstrated significant elevations in blood GFAP and YKL-40 levels in patients on the AD continuum compared with CU individuals. Furthermore, within the AD clinical spectrum, significant elevation correlated with more advanced disease stage. Our findings suggest that both biomarkers reflect AD-related pathology. Our findings are limited by the lack of cultural and linguistic diversity in the study populations meta-analyzed. Future meta-analyses using a biomarker-defined AD population are warranted.


Subject(s)
Alzheimer Disease , Astrocytes , Biomarkers , Chitinase-3-Like Protein 1 , Glial Fibrillary Acidic Protein , S100 Calcium Binding Protein beta Subunit , Alzheimer Disease/blood , Alzheimer Disease/diagnosis , Humans , Biomarkers/blood , Chitinase-3-Like Protein 1/blood , Glial Fibrillary Acidic Protein/blood , Astrocytes/metabolism , S100 Calcium Binding Protein beta Subunit/blood , Cognitive Dysfunction/blood , Cognitive Dysfunction/diagnosis
4.
Front Immunol ; 15: 1410948, 2024.
Article in English | MEDLINE | ID: mdl-38975344

ABSTRACT

Background: Chronic rhinosinusitis (CRS) is an inflammatory disease affecting more than 10% of the global adult population. It is classified into Th1, Th2, and Th17 endotypes and eosinophilic and non-eosinophilic types. Th2-based inflammation and eosinophilic CRS (ECRS) are associated with tissue remodeling and fibrinolytic system impairment. Objective: To elucidate the role of eosinophils in inducing fibrin deposition in CRS nasal polyp tissues and explore potential regulatory mechanisms. Methods: We analyzed the expression of genes related to the serpin family and fibrinolytic system using Gene Expression Omnibus and Next-generation sequencing data. Differentially expression genes (DEGs) analysis was used to compare control and nasal polyp tissues, followed by KEGG and Gene ontology (GO) analysis. We measured the expression and correlation of plasminogen activator-1 (PAI-1), tissue plasminogen activator (t-PA), urokinase plasminogen activator (u-PA), and urokinase plasminogen activator surface receptor (u-PAR) in CRS tissues, and evaluated the effect of eosinophils on the fibrinolytic system using a cytokine array and co-culture. Results: Nasal polyp tissues showed upregulated PAI-1, u-PA, and u-PAR expression and downregulated t-PA expression. Fibrinolytic system-related genes positively correlated with Th2 cytokines, except for t-PA. Eosinophil-derived Chitinase-3-like protein 1 (CHI3L1) increased PAI-1 expression and decreased t-PA levels in fibroblasts and epithelial cells. The inhibition of CHI3L1 suppresses these alterations. Conclusion: CHI3L1 contributes to fibrin deposition by impairing the fibrinolytic system during nasal polyp formation. The regulation of CHI3L1 expression may inhibit fibrin deposition and edema in ECRS, presenting a potential treatment for this condition.


Subject(s)
Chitinase-3-Like Protein 1 , Eosinophils , Fibrinolysis , Nasal Polyps , Plasminogen Activator Inhibitor 1 , Rhinitis , Sinusitis , Humans , Nasal Polyps/metabolism , Nasal Polyps/immunology , Sinusitis/metabolism , Sinusitis/immunology , Rhinitis/metabolism , Rhinitis/immunology , Chronic Disease , Plasminogen Activator Inhibitor 1/metabolism , Plasminogen Activator Inhibitor 1/genetics , Chitinase-3-Like Protein 1/metabolism , Chitinase-3-Like Protein 1/genetics , Adult , Female , Male , Middle Aged , Eosinophils/immunology , Eosinophils/metabolism , Receptors, Urokinase Plasminogen Activator/genetics , Receptors, Urokinase Plasminogen Activator/metabolism , Urokinase-Type Plasminogen Activator/genetics , Urokinase-Type Plasminogen Activator/metabolism , Tissue Plasminogen Activator/metabolism , Tissue Plasminogen Activator/genetics , Cytokines/metabolism , Rhinosinusitis
5.
Rev Assoc Med Bras (1992) ; 70(6): e20231574, 2024.
Article in English | MEDLINE | ID: mdl-39045955

ABSTRACT

OBJECTIVE: The aim of this study was to investigate the relationship between Chitinase 3-Like 1 gene polymorphisms and the occurrence of preeclampsia in a selected cohort of pregnant women. METHODS: A total of 75 pregnant women participated in the study, 35 of whom were diagnosed with preeclampsia, while 40 served as healthy controls. The preeclamptic group was subdivided based on severity. Real-time polymerase chain reaction was employed to analyze the serum samples for variations in Chitinase 3-Like 1 gene polymorphisms. RESULTS: The rs880633 polymorphism was found to be significantly more frequent in the control group (80%) compared with the overall preeclamptic group (60%) (p<0.05). In the severity-based subgroups, rs880633 appeared in 57.1% of non-severe and 61.9% of severe preeclamptics. Contrarily, the heterozygous form of rs7515776 polymorphism showed a significantly higher prevalence in the preeclamptic cohort (p<0.05), without distinctions in severity subgroups. CONCLUSION: The study suggests that the rs880633 polymorphism may serve a protective role against the development of preeclampsia, whereas the rs7515776 polymorphism may be associated with an elevated risk. Further research is warranted to elucidate the clinical implications of these findings.


Subject(s)
Chitinase-3-Like Protein 1 , Genetic Predisposition to Disease , Pre-Eclampsia , Severity of Illness Index , Humans , Pre-Eclampsia/genetics , Female , Pregnancy , Chitinase-3-Like Protein 1/genetics , Chitinase-3-Like Protein 1/blood , Adult , Case-Control Studies , Genetic Predisposition to Disease/genetics , Real-Time Polymerase Chain Reaction , Young Adult , Polymorphism, Single Nucleotide , Genotype , Risk Factors , Gene Frequency
6.
BMC Nephrol ; 25(1): 206, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38918734

ABSTRACT

BACKGROUND: Tubular biomarkers, which reflect tubular dysfunction or injury, are associated with incident chronic kidney disease and kidney function decline. Several tubular biomarkers have also been implicated in the progression of autosomal dominant polycystic kidney disease (ADPKD). We evaluated changes in multiple tubular biomarkers in four groups of patients with ADPKD who participated in one of two clinical trials (metformin therapy and diet-induced weight loss), based on evidence suggesting that such interventions could reduce tubule injury. METHODS: 66 participants (26 M/40 F) with ADPKD and an estimated glomerular filtration rate (eGFR) ≥ 30 ml/min/1.73m2 who participated in either a metformin clinical trial (n = 22 metformin; n = 23 placebo) or dietary weight loss study (n = 10 daily caloric restriction [DCR]; n = 11 intermittent fasting [IMF]) were included in assessments of urinary tubular biomarkers (kidney injury molecule-1 [KIM-1], fatty-acid binding protein [FABP], interleukin-18 [IL-18], monocyte chemoattractant protein-1 [MCP-1], neutrophil gelatinase-associated lipocalin [NGAL], clusterin, and human cartilage glycoprotein-40 [YKL-40]; normalized to urine creatinine), at baseline and 12 months. The association of baseline tubular biomarkers with both baseline and change in height-adjusted total kidney volume (HtTKV; percent change from baseline to 12 months) and estimated glomerular filtration rate (eGFR; absolute change at 12 months vs. baseline), with covariate adjustment, was also assessed using multiple linear regression. RESULTS: Mean ± s.d. age was 48 ± 8 years, eGFR was 71 ± 16 ml/min/1.73m2, and baseline BMI was 30.5 ± 5.9 kg/m2. None of the tubular biomarkers changed with any intervention as compared to placebo. Additionally, baseline tubular biomarkers were not associated with either baseline or change in eGFR or HtTKV over 12 months, after adjustments for demographics, group assignment, and clinical characteristics. CONCLUSIONS: Tubular biomarkers did not change with dietary-induced weight loss or metformin, nor did they associate with kidney disease progression, in this cohort of patients with ADPKD.


Subject(s)
Biomarkers , Caloric Restriction , Glomerular Filtration Rate , Kidney Tubules , Metformin , Polycystic Kidney, Autosomal Dominant , Humans , Metformin/therapeutic use , Polycystic Kidney, Autosomal Dominant/urine , Polycystic Kidney, Autosomal Dominant/drug therapy , Polycystic Kidney, Autosomal Dominant/diet therapy , Male , Female , Biomarkers/urine , Middle Aged , Kidney Tubules/pathology , Kidney Tubules/drug effects , Adult , Lipocalin-2/urine , Chemokine CCL2/urine , Fatty Acid-Binding Proteins/urine , Hepatitis A Virus Cellular Receptor 1/metabolism , Hepatitis A Virus Cellular Receptor 1/analysis , Chitinase-3-Like Protein 1/urine , Hypoglycemic Agents/therapeutic use
7.
Biochem Pharmacol ; 225: 116335, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38824968

ABSTRACT

Drugs specifically targeting YKL-40, an over-expressed gene (CHI3L1) in various diseases remain developed. The current study is to create a humanized anti-YKL-40 neutralizing antibody and characterize its potentially therapeutic signature. We utilized in silico CDR-grafting bioinformatics to replace the complementarity determining regions (CDRs) of human IgG1 with mouse CDRs of our previously established anti-YKL-40 antibody (mAY). In fifteen candidates (VL1-3/VH1-5) of heavy and light chain variable region combination, one antibody L3H4 named Rosazumab demonstrated strong binding affinity with YKL-40 (KD = 4.645 × 10-8 M) and high homology with human IgG (80 %). In addition, we established different overlapping amino acid peptides of YKL-40 and found that Rosazumab specifically bound to residues K337, K342, and R344, the KR-rich functional domain of YKL-40. Rosazumab inhibited migration and tube formation of YKL-40-expressing tumor cells and induced tumor cell apoptosis. Mechanistically, Rosazumab induced interaction of N-cadherin with ß-catenin and activation of downstream MST1/RASSF1/Histone H2B axis, leading to chromosomal DNA breakage and cell apoptosis. Treatment of xenografted tumor mice with Rosazumab twice a week for 4 weeks inhibited tumor growth and angiogenesis, but induced tumor apoptosis. Rosazumab injected in mice distributed to blood, tumor, and other multiple organs, but did not impact in function or structure of liver and kidney, indicating non-detectable toxicity in vivo. Collectively, the study is the first one to demonstrate that a humanized YKL-40 neutralizing antibody offers a valuable means to block tumor development.


Subject(s)
Antibodies, Monoclonal, Humanized , Chitinase-3-Like Protein 1 , Neoplasms , Animals , Female , Humans , Mice , Antibodies, Monoclonal, Humanized/pharmacology , Antibodies, Neutralizing/pharmacology , Antibodies, Neutralizing/therapeutic use , Cell Line, Tumor , Chitinase-3-Like Protein 1/antagonists & inhibitors , Mice, Nude , Neoplasms/drug therapy , Neoplasms/metabolism , Neoplasms/pathology , Xenograft Model Antitumor Assays/methods
8.
Mult Scler Relat Disord ; 88: 105734, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38909525

ABSTRACT

BACKGROUND: Our objective was to explore various biomarkers for predicting suboptimal responses to disease-modifying treatments (DMTs) in patients with MS (pwMS). METHODS: We conducted a longitudinal, bicentric study with pwMS stratified based on their DMTs responses. Treatment failure (TF) was defined as the onset of a second relapse, presence of two or more T2 new lesions, or disability progression independent of relapse during the follow-up period. We evaluated intrathecal synthesis (ITS) of IgG and IgM using OCB, linear indices, and Reibergrams. Free kappa light chains ITS was assessed using the linear index (FKLCi). NfL and GFAP in serum and CSF, and CHI3L1 in CSF were quantified. Quantitative variables were dichotomized based on the third quartile. Predictive efficacy was assessed through bivariate and multivariate analyses, adjusting for age, sex, EDSS, acute inflammatory activity (AI) -defined as the onset of a relapse or gadolinium-enhancing lesions within a 90-day window of lumbar puncture-, treatment modality, study center, and time from disease onset to treatment initiation. In case of collinearity, multiple models were generated or confounding variables were excluded if collinearity existed between them and the biomarker. The same methodology was used to investigate the predictive potential of various combinations of two biomarkers, based on whether any of them tested positive or exceeded the third quartile. RESULTS: A total of 137 pwMS were included. FKLCi showed no differences based on AI, no correlation with EDSS and was significantly higher in pwMS with TF (p = 0.008). FKLCi>130 was associated with TF in bivariate analysis (Log-Rank p = 0.004). Due to collinearity between age and EDSS, two different models were generated with each of them and the rest of the confounding variables, in which FKLCi>130 showed a Hazard Ratio (HR) of 2.69 (CI: 1.35-5.4) and 2.67 (CI: 1.32-5.4), respectively. The combination of either FKLC or sNfL exceeding the third quartile was also significant in bivariate (Log-Rank p = 0.04) and multivariate (HR=3.1 (CI: 1.5-6.5)) analyses. However, when analyzed independently, sNfL did not show significance, and FKLCi mirrored the pattern obtained in the previous model (HR: 3.04; CI: 1.51-6.1). Treatment with highefficacy DMTs emerged as a protective factor in all models. DISCUSSION: Our analysis and the fact that FKLCi is independent of EDSS and AI suggest that it might be a valuable parameter for discriminating aggressive phenotypes. We propose implementing high-efficacy drugs in pwMS with elevated FKLCi.


Subject(s)
Biomarkers , Humans , Female , Male , Adult , Biomarkers/blood , Biomarkers/cerebrospinal fluid , Middle Aged , Longitudinal Studies , Immunologic Factors/administration & dosage , Immunologic Factors/pharmacology , Neurofilament Proteins/blood , Neurofilament Proteins/cerebrospinal fluid , Multiple Sclerosis/cerebrospinal fluid , Multiple Sclerosis/blood , Multiple Sclerosis/drug therapy , Multiple Sclerosis/diagnosis , Glial Fibrillary Acidic Protein/cerebrospinal fluid , Glial Fibrillary Acidic Protein/blood , Immunoglobulin G/cerebrospinal fluid , Immunoglobulin G/blood , Treatment Failure , Chitinase-3-Like Protein 1/blood , Chitinase-3-Like Protein 1/cerebrospinal fluid , Immunoglobulin M/cerebrospinal fluid , Immunoglobulin M/blood , Prognosis
9.
Neuroscience ; 552: 152-158, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-38944147

ABSTRACT

OBJECTIVES: Our study aimed to evaluate the association between plasma human cartilage glycoprotein-39 (YKL-40) and stroke-specific mortality at two years in acute ischemic stroke patients according to the drinking status and amount of alcohol consumption. We further investigated the effect of the interaction between these conditions and YKL-40 levels on the outcome. METHODS: We measured plasma YKL-40 levels in 3267 participants from the China Antihypertensive Trial in Acute Ischemic Stroke. Outcome data on stroke-specific mortality were collected at two years after stroke onset. RESULTS: During the two years of follow-up, 208 (6.4 %) patients, including 44 drinkers and 164 nondrinkers, died of stroke-specific causes. The patients in the highest quartile of YKL-40 had a 3.52-fold (95 % CI: 1.15-10.76, P for trend = 0.006) risk of stroke-specific mortality compared with those in the lowest quartile among drinkers. However, no significant association between YKL-40 and the outcome was observed among nondrinkers (HR: 1.18, 95 % CI: 0.75-1.86, P for trend = 0.08). Alcohol drinking modified the effect of YKL-40 on the outcome (P for interaction = 0.04). Subgroup analyses revealed that each 1-unit increase in log-transformed YKL-40 was associated with a 72 % greater risk of stroke-specific mortality for light drinkers. This association was amplified with a 226 % increased risk of the outcome among heavy drinkers. CONCLUSIONS: Elevated YKL-40 levels were associated with an increased risk of stroke-specific mortality at two years among drinkers with ischemic stroke. Drinking status substantially modified the effect of plasma YKL-40 levels on the outcome. This effect was amplified with the increased amount of alcohol consumption. REGISTRATION: URL: https://www. CLINICALTRIALS: gov; Unique identifier: NCT01840072.


Subject(s)
Alcohol Drinking , Chitinase-3-Like Protein 1 , Ischemic Stroke , Humans , Chitinase-3-Like Protein 1/blood , Male , Female , Middle Aged , Alcohol Drinking/blood , Alcohol Drinking/mortality , Aged , Ischemic Stroke/blood , Ischemic Stroke/mortality , China/epidemiology , Biomarkers/blood , Follow-Up Studies
10.
Nat Commun ; 15(1): 5013, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38866782

ABSTRACT

Multiple sclerosis (MS) is characterized by heterogeneity in disease course and prediction of long-term outcome remains a major challenge. Here, we investigate five myeloid markers - CHIT1, CHI3L1, sTREM2, GPNMB and CCL18 - in the cerebrospinal fluid (CSF) at diagnostic lumbar puncture in a longitudinal cohort of 192 MS patients. Through mixed-effects and machine learning models, we show that CHIT1 is a robust predictor for faster disability progression. Integrative analysis of 11 CSF and 26 central nervous system (CNS) parenchyma single-cell/nucleus RNA sequencing samples reveals CHIT1 to be predominantly expressed by microglia located in active MS lesions and enriched for lipid metabolism pathways. Furthermore, we find CHIT1 expression to accompany the transition from a homeostatic towards a more activated, MS-associated cell state in microglia. Neuropathological evaluation in post-mortem tissue from 12 MS patients confirms CHIT1 production by lipid-laden phagocytes in actively demyelinating lesions, already in early disease stages. Altogether, we provide a rationale for CHIT1 as an early biomarker for faster disability progression in MS.


Subject(s)
Biomarkers , Disease Progression , Microglia , Multiple Sclerosis , Humans , Microglia/metabolism , Microglia/pathology , Multiple Sclerosis/cerebrospinal fluid , Multiple Sclerosis/genetics , Multiple Sclerosis/metabolism , Multiple Sclerosis/diagnosis , Multiple Sclerosis/pathology , Biomarkers/cerebrospinal fluid , Biomarkers/metabolism , Female , Male , Adult , Middle Aged , Hexosaminidases/metabolism , Hexosaminidases/genetics , Hexosaminidases/cerebrospinal fluid , Longitudinal Studies , Chitinase-3-Like Protein 1/cerebrospinal fluid , Chitinase-3-Like Protein 1/metabolism , Chitinase-3-Like Protein 1/genetics
11.
Int J Mol Sci ; 25(12)2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38928474

ABSTRACT

Chitosan is a natural polymer with numerous biomedical applications. The cellular activity of chitosan has been studied in various types of cancer, including melanoma, and indicates that these molecules can open new perspectives on antiproliferative action and anticancer therapy. This study analyzes how different chitosan conformations, such as α-chitosan (CH) or ß-oligochitosan (CO), with various degrees of deacetylation (DDA) and molar mass (MM), both in different concentrations and in CH-CO mixtures, influence the cellular processes of SK-MEL-28 melanocytes, to estimate the reactivity of these cells to the applied treatments. The in vitro evaluation was carried out, aiming at the cellular metabolism (MTT assay), cellular morphology, and chitinase-like glycoprotein YKL-40 expression. The in vitro effect of the CH-CO mixture application on melanocytes is obvious at low concentrations of α-chitosan/ß-oligochitosan (1:2 ratio), with the cell's response supporting the hypothesis that ß-oligo-chitosan amplifies the effect. This oligochitosan mixture, favored by the ß conformation and its small size, penetrates faster into the cells, being more reactive when interacting with some cellular components. Morphological effects expressed by the loss of cell adhesion and the depletion of YKL-40 synthesis are significant responses of melanocytes. ß-oligochitosan (1.5 kDa) induces an extension of cytophysiological effects and limits the cell viability compared to α-chitosan (400-900 kDa). Statistical analysis using multivariate techniques showed differences between the CH samples and CH-CO mixtures.


Subject(s)
Chitin , Chitinase-3-Like Protein 1 , Chitosan , Melanocytes , Oligosaccharides , Chitosan/chemistry , Chitosan/pharmacology , Melanocytes/drug effects , Melanocytes/metabolism , Humans , Chitin/analogs & derivatives , Chitin/pharmacology , Chitin/chemistry , Oligosaccharides/pharmacology , Chitinase-3-Like Protein 1/metabolism , Cell Survival/drug effects , Cell Proliferation/drug effects , Cell Line, Tumor , Melanoma/drug therapy , Melanoma/metabolism , Melanoma/pathology
12.
Lung ; 202(3): 269-273, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38753183

ABSTRACT

INTRODUCTION: Pulmonary fibrosis is a characteristic of various interstitial lung diseases (ILDs) with differing etiologies. Clinical trials in progressive pulmonary fibrosis (PPF) enroll patients based on previously described clinical criteria for past progression, which include a clinical practice guideline for PPF classification and inclusion criteria from the INBUILD trial. In this study, we compared the ability of past FVC (forced vital capacity) progression and baseline biomarker levels to predict future progression in a cohort of patients from the PFF Patient Registry. METHODS: Biomarkers previously associated with pathobiology and/or progression in pulmonary fibrosis were selected to reflect cellular senescence (telomere length), pulmonary epithelium (SP-D, RAGE), myeloid activation (CXCL13, YKL40, CCL18, OPN) and fibroblast activation (POSTN, COMP, PROC3). RESULTS: PFF or INBUILD-like clinical criteria was used to separate patients into past progressor and non-past progressor groups, and neither clinical criterion appeared to enrich for patients with greater future lung function decline. All baseline biomarkers measured were differentially expressed in patient groups compared to healthy controls. Baseline levels of SP-D and POSTN showed the highest correlations with FVC slope over one year, though correlations were low. CONCLUSIONS: Our findings provide further evidence that prior decline in lung function may not predict future disease progression for ILD patients, and elevate the need for molecular definitions of a progressive phenotype. Across ILD subtypes, certain shared pathobiologies may be present based on the molecular profile of certain biomarker groups observed. In particular, SP-D may be a common marker of pulmonary injury and future lung function decline across ILDs.


Subject(s)
Biomarkers , Disease Progression , Lung Diseases, Interstitial , Registries , Humans , Male , Female , Middle Aged , Vital Capacity , Aged , Lung Diseases, Interstitial/physiopathology , Lung Diseases, Interstitial/diagnosis , Pulmonary Fibrosis/physiopathology , Pulmonary Fibrosis/diagnosis , Pulmonary Surfactant-Associated Protein D/blood , Lung/physiopathology , Predictive Value of Tests , Chitinase-3-Like Protein 1/blood , Chemokines, CC , Osteopontin , Receptor for Advanced Glycation End Products/blood , Idiopathic Pulmonary Fibrosis/physiopathology , Idiopathic Pulmonary Fibrosis/diagnosis
13.
Biomed Pharmacother ; 176: 116825, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38820971

ABSTRACT

Considering the limited efficacy of current therapies in lung, colorectal, and pancreatic cancers, innovative combination treatments with diverse mechanisms of action are needed to improve patients' outcomes. Chitinase-3 like-1 protein (CHI3L1) emerges as a versatile factor with significant implications in various diseases, particularly cancers, fostering an immunosuppressive tumor microenvironment for cancer progression. Therefore, pre-clinical validation is imperative to fully realize its potential in cancer treatment. We developed phage display-derived fully human monoclonal CHI3L1 neutralizing antibodies (nAbs) and verified the nAbs-antigen binding affinity and specificity in lung, pancreatic and colorectal cancer cell lines. Tumor growth signals, proliferation and migration ability were all reduced by CHI3L1 nAbs in vitro. Orthotopic or subcutaneous tumor mice model and humanized mouse model were established for characterizing the anti-tumor properties of two CHI3L1 nAb leads. Importantly, CHI3L1 nAbs not only inhibited tumor growth but also mitigated fibrosis, angiogenesis, and restored immunostimulatory functions of immune cells in pancreatic, lung, and colorectal tumor mice models. Mechanistically, CHI3L1 nAbs directly suppressed the activation of pancreatic stellate cells and the transformation of macrophages into myofibroblasts, thereby attenuating fibrosis. These findings strongly support the therapeutic potential of CHI3L1 nAbs in overcoming clinical challenges, including the failure of gemcitabine in pancreatic cancer.


Subject(s)
Antibodies, Monoclonal , Cell Proliferation , Chitinase-3-Like Protein 1 , Colorectal Neoplasms , Fibrosis , Lung Neoplasms , Neovascularization, Pathologic , Pancreatic Neoplasms , Animals , Chitinase-3-Like Protein 1/metabolism , Chitinase-3-Like Protein 1/antagonists & inhibitors , Humans , Colorectal Neoplasms/pathology , Colorectal Neoplasms/immunology , Colorectal Neoplasms/drug therapy , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/immunology , Pancreatic Neoplasms/drug therapy , Neovascularization, Pathologic/drug therapy , Mice , Cell Line, Tumor , Lung Neoplasms/pathology , Lung Neoplasms/immunology , Lung Neoplasms/drug therapy , Cell Proliferation/drug effects , Antibodies, Monoclonal/pharmacology , Tumor Microenvironment/drug effects , Xenograft Model Antitumor Assays , Antibodies, Neutralizing/pharmacology , Antineoplastic Agents, Immunological/pharmacology , Angiogenesis
14.
Int J Mol Sci ; 25(10)2024 May 19.
Article in English | MEDLINE | ID: mdl-38791588

ABSTRACT

Several clinical studies reported that the elevated expression of Chitinase-3-like 1 (CHI3L1) was observed in patients suffering from a wide range of diseases: cancer, metabolic, and neurological diseases. However, the role of CHI3L1 in AD is still unclear. Our previous study demonstrated that 2-({3-[2-(1-Cyclohexen-1-yl)ethyl]-6,7-dimethoxy-4-oxo-3,4-dihydro-2-quinazolinyl}culfanyl)-N-(4-ethylphenyl)butanamide, a CHI3L1 inhibiting compound, alleviates memory and cognitive impairment and inhibits neuroinflammation in AD mouse models. In this study, we studied the detailed correlation of CHI3L1 and AD using serum from AD patients and using CHI3L1 knockout (KO) mice with Aß infusion (300 pmol/day, 14 days). Serum levels of CHI3L1 were significantly elevated in patients with AD compared to normal subjects, and receiver operating characteristic (ROC) analysis data based on serum analysis suggested that CHI3L1 could be a significant diagnostic reference for AD. To reveal the role of CHI3L1 in AD, we investigated the CHI3L1 deficiency effect on memory impairment in Aß-infused mice and microglial BV-2 cells. In CHI3L1 KO mice, Aß infusion resulted in lower levels of memory dysfunction and neuroinflammation compared to that of WT mice. CHI3L1 deficiency selectively inhibited phosphorylation of ERK and IκB as well as inhibition of neuroinflammation-related factors in vivo and in vitro. On the other hand, treatment with recombinant CHI3L1 increased neuroinflammation-related factors and promoted phosphorylation of IκB except for ERK in vitro. Web-based gene network analysis and our results showed that CHI3L1 is closely correlated with PTX3. Moreover, in AD patients, we found that serum levels of PTX3 were correlated with serum levels of CHI3L1 by Spearman correlation analysis. These results suggest that CHI3L1 deficiency could inhibit AD development by blocking the ERK-dependent PTX3 pathway.


Subject(s)
Amyloid beta-Peptides , Chitinase-3-Like Protein 1 , Cognitive Dysfunction , MAP Kinase Signaling System , Mice, Knockout , Neuroinflammatory Diseases , Animals , Chitinase-3-Like Protein 1/genetics , Chitinase-3-Like Protein 1/metabolism , Mice , Cognitive Dysfunction/metabolism , Cognitive Dysfunction/drug therapy , Cognitive Dysfunction/genetics , Amyloid beta-Peptides/metabolism , Humans , Neuroinflammatory Diseases/metabolism , Neuroinflammatory Diseases/drug therapy , Neuroinflammatory Diseases/etiology , Male , MAP Kinase Signaling System/drug effects , C-Reactive Protein/metabolism , Female , Alzheimer Disease/metabolism , Alzheimer Disease/genetics , Alzheimer Disease/drug therapy , Down-Regulation , Disease Models, Animal , Aged , Mice, Inbred C57BL
15.
Cytokine ; 179: 156631, 2024 07.
Article in English | MEDLINE | ID: mdl-38710115

ABSTRACT

BACKGROUND: Chitinase 3 like-1 (CHI3L1) has been reported to function as an oncogene in many types of cancer. However, the biological function of CHI3L1 in nasopharyngeal carcinoma (NPC) remains unknown. METHODS: Differentially expressed genes (DEGs) in NPC tissues in GSE64634 and GSE12452 were downloaded from Gene Expression Omnibus (GEO). CHI3L1, interleukin 6 (IL-6), and tumor necrosis factor α (TNF-α) mRNA expression was examined by qRT-PCR. Cell proliferation was evaluated by CCK-8 and EdU incorporation assays. Western blot analysis was used to measure the changes of CHI3L1, nuclear factor-κappaB (NF-κB), and protein kinase B (Akt) pathways. Gene ontology (GO) enrichment and Kyoto Encyclopedia of Gene and Genome (KEGG) pathway analyses were performed using DAVID database. RESULTS: We identified 3 overlapping DEGs using Draw Venn diagram, among which CHI3L1 was chosen for the following analyses. CHI3L1 was upregulated in NPC tissues and cells. CHI3L1 silencing suppressed inflammatory response by inactivating the NF-κB pathway and inhibited cell proliferation in NPC cells. On the contrary, CHI3L1 overexpression induced inflammatory response by activating the NF-κB pathway and promoted cell proliferation in NPC cells. According to GO and KEGG analyses, CHI3L1 positive regulates Akt signaling and is enriched in the PI3K-Akt pathway. CHI3L1 knockdown inhibited the Akt pathway, and CHI3L1 overexpression activated the Akt pathway in NPC cells. Akt overexpression abolished the effects of CHI3L1 knockdown on inflammatory response, NF-κB pathway, and proliferation in NPC cells. On the contrary, Akt knockdown abolished the effects of CHI3L1 overexpression on inflammatory response, NF-κB pathway, and proliferation in NPC cells. CONCLUSION: CHI3L1 knockdown inhibited NF-κB-dependent inflammatory response and promoting proliferation in NPC cells by inactivating the Akt pathway.


Subject(s)
Cell Proliferation , Chitinase-3-Like Protein 1 , Cytokines , NF-kappa B , Nasopharyngeal Carcinoma , Nasopharyngeal Neoplasms , Proto-Oncogene Proteins c-akt , Signal Transduction , Humans , Chitinase-3-Like Protein 1/metabolism , Chitinase-3-Like Protein 1/genetics , Proto-Oncogene Proteins c-akt/metabolism , NF-kappa B/metabolism , Nasopharyngeal Carcinoma/metabolism , Nasopharyngeal Carcinoma/genetics , Nasopharyngeal Carcinoma/pathology , Cell Line, Tumor , Cytokines/metabolism , Nasopharyngeal Neoplasms/metabolism , Nasopharyngeal Neoplasms/genetics , Nasopharyngeal Neoplasms/pathology , Gene Expression Regulation, Neoplastic , Inflammation/metabolism , Inflammation/genetics
16.
J Biol Chem ; 300(6): 107365, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38750795

ABSTRACT

YKL-40, also known as human cartilage glycoprotein-39 (HC-gp39) or CHI3L1, shares structural similarities with chitotriosidase (CHIT1), an active chitinase, but lacks chitinase activity. Despite being a biomarker for inflammatory disorders and cancer, the reasons for YKL-40's inert chitinase function have remained elusive. This study reveals that the loss of chitinase activity in YKL-40 has risen from multiple sequence modifications influencing its chitin affinity. Contrary to the common belief associating the lack of chitinase activity with amino acid substitutions in the catalytic motif, attempts to activate YKL-40 by creating two amino acid mutations in the catalytic motif (MT-YKL-40) proved ineffective. Subsequent exploration that included creating chimeras of MT-YKL-40 and CHIT1 catalytic domains (CatDs) identified key exons responsible for YKL-40 inactivation. Introducing YKL-40 exons 3, 6, or 8 into CHIT1 CatD resulted in chitinase inactivation. Conversely, incorporating CHIT1 exons 3, 6, and 8 into MT-YKL-40 led to its activation. Our recombinant proteins exhibited properly formed disulfide bonds, affirming a defined structure in active molecules. Biochemical and evolutionary analysis indicated that the reduced chitinase activity of MT-YKL-40 correlates with specific amino acids in exon 3. M61I and T69W substitutions in CHIT1 CatD diminished chitinase activity and increased chitin binding. Conversely, substituting I61 with M and W69 with T in MT-YKL-40 triggered chitinase activity while reducing the chitin-binding activity. Thus, W69 plays a crucial role in a unique subsite within YKL-40. These findings emphasize that YKL-40, though retaining the structural framework of a mammalian chitinase, has evolved to recognize chitin while surrendering chitinase activity.


Subject(s)
Chitin , Chitinase-3-Like Protein 1 , Chitinase-3-Like Protein 1/metabolism , Chitinase-3-Like Protein 1/genetics , Chitinase-3-Like Protein 1/chemistry , Humans , Chitin/metabolism , Chitin/chemistry , Chitinases/metabolism , Chitinases/genetics , Chitinases/chemistry , Evolution, Molecular , Hexosaminidases/metabolism , Hexosaminidases/chemistry , Hexosaminidases/genetics , Catalytic Domain , Amino Acid Substitution , Exons , Amino Acid Sequence
17.
Clin Rheumatol ; 43(6): 1845-1853, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38696116

ABSTRACT

OBJECTIVE: To investigate the metabolic changes during therapy of tocilizumab (TCZ) and methotrexate (MTX) in non-diabetic rheumatoid arthritis (RA) patients and for the first time explore the associations between metabolic parameters and serum YKL-40 (sYKL-40) levels. METHODS: We enrolled active non-diabetic RA patients who were refractory to MTX. Patients received intravenous TCZ (8 mg/kg) once every 4 weeks combined with MTX for 24 weeks. Metabolic parameters and sYKL-40 levels were measured before TCZ infusion at baseline, week 4, week 12, and week 24. Correlations were assessed by the Spearman's rank correlation analysis. RESULTS: A total of 91 non-diabetic RA patients were enrolled in this study. At week 24, we observed a significant elevation in body mass index (BMI), total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C), and triglycerides (TG) levels. In contrast, there was a significant decrease in TC/HDL­C ratio. No apparent changes in insulin resistance were found. Additionally, we detected a significant reduction in sYKL-40 levels during the study. At week 24, changes in sYKL-40 levels showed a significant negative correlation (r = -0.334, p = 0.002) with changes in TC levels. CONCLUSION: The combined therapy of TCZ and MTX resulted in a significant increase in BMI and lipid levels, while an evident decrease in the TC/HDL­C ratio and sYKL-40 levels in RA patients. Additionally, there was a significant correlation between the decrease in sYKL-40 levels and the increase in TC levels during treatment with TCZ and MTX. Key Points • Lipid levels elevated significantly and sYKL-40 levels decreased obviously after therapy of TCZ combined with MTX in Chinese RA patients. • There was a significant correlation between the increase in TC levels and the decrease in sYKL-40 levels during treatment with TCZ and MTX in RA patients.


Subject(s)
Antibodies, Monoclonal, Humanized , Antirheumatic Agents , Arthritis, Rheumatoid , Chitinase-3-Like Protein 1 , Methotrexate , Humans , Arthritis, Rheumatoid/drug therapy , Arthritis, Rheumatoid/blood , Male , Female , Middle Aged , Chitinase-3-Like Protein 1/blood , Antibodies, Monoclonal, Humanized/therapeutic use , Methotrexate/therapeutic use , Antirheumatic Agents/therapeutic use , Adult , Drug Therapy, Combination , Triglycerides/blood , Body Mass Index , Cholesterol, HDL/blood , Aged , Cholesterol/blood , China , East Asian People
18.
Cell Rep ; 43(5): 114226, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38733586

ABSTRACT

Cognitive dysfunction is a feature in multiple sclerosis (MS), a chronic inflammatory demyelinating disorder. A notable aspect of MS brains is hippocampal demyelination, which is closely associated with cognitive decline. However, the mechanisms underlying this phenomenon remain unclear. Chitinase-3-like (CHI3L1), secreted by activated astrocytes, has been identified as a biomarker for MS progression. Our study investigates CHI3L1's function within the demyelinating hippocampus and demonstrates a correlation between CHI3L1 expression and cognitive impairment in patients with MS. Activated astrocytes release CHI3L1 in reaction to induced demyelination, which adversely affects the proliferation and differentiation of neural stem cells and impairs dendritic growth, complexity, and spine formation in neurons. Our findings indicate that the astrocytic deletion of CHI3L1 can mitigate neurogenic deficits and cognitive dysfunction. We showed that CHI3L1 interacts with CRTH2/receptor for advanced glycation end (RAGE) by attenuating ß-catenin signaling. The reactivation of ß-catenin signaling can revitalize neurogenesis, which holds promise for therapy of inflammatory demyelination.


Subject(s)
Astrocytes , Chitinase-3-Like Protein 1 , Cognition , Hippocampus , Neurogenesis , Signal Transduction , Chitinase-3-Like Protein 1/metabolism , Hippocampus/metabolism , Hippocampus/pathology , Animals , Astrocytes/metabolism , Humans , Mice , Cognition/physiology , Demyelinating Diseases/metabolism , Demyelinating Diseases/pathology , Male , Mice, Inbred C57BL , Neural Stem Cells/metabolism , Cognitive Dysfunction/metabolism , Cognitive Dysfunction/pathology , Receptor for Advanced Glycation End Products/metabolism , Female , Multiple Sclerosis/metabolism , Multiple Sclerosis/pathology , beta Catenin/metabolism , Cell Proliferation , Cell Differentiation
19.
Br J Pharmacol ; 181(17): 3232-3245, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38745399

ABSTRACT

BACKGROUND AND PURPOSE: Chitinase-3-like 1 (CHI3L1) causes skin inflammation in the progression of atopic dermatitis. We investigated if anti-CHI3L1 antibody could prevent the development of atopic dermatitis and its mechanisms of action. EXPERIMENTAL APPROACH: The effect of CHI3L1 antibody on phthalic anhydride-induced atopic dermatitis animal model and in vitro reconstructed human skin (RHS) model were investigated. Expression and release of atopic dermatitis-related cytokines were determined using an enzyme-linked immunosorbent assay, and RT-qPCR, STAT3 and CXCL8 signalling were measured by western blotting. KEY RESULTS: Anti-CHI3L1 antibody suppressed phthalic anhydride-induced epidermal thickening, clinical score, IgE level and infiltration of inflammatory cells, and reduced phthalic anhydride-induced inflammatory cytokines concentration. In addition, CHI3L1 antibody treatment inhibited the expression of STAT3 activity in phthalic anhydride-treated skin. It was also confirmed that CHI3L1 antibody treatment alleviated atopic dermatitis-related inflammation in the RHS model. The inhibitory effects of CHI3L1 antibody was similar or more effective compared with that of the IL-4 antibody. We further found that CHI3L1 is associated with CXCL8 by protein-association network analysis. siRNA of CHI3L1 blocked the mRNA levels of CHI3L1, IL-1ß, IL-4, CXCL8, TSLP, and the expression of CHI3L1 and p-STAT, and the level of CXCL8, whereas recombinant level of CXCL8 was elevated. Moreover, siRNA of STAT3 reduced the mRNA level of these cytokines. CHI3L1 and p-STAT3 expression correlated with the reduced CXCL8 level in the RHS in vitro model. CONCLUSION AND IMPLICATIONS: Our data demonstrated that CHI3L1 antibody could be a promising effective therapeutic drug for atopic dermatitis.


Subject(s)
Chitinase-3-Like Protein 1 , Dermatitis, Atopic , Interleukin-8 , STAT3 Transcription Factor , Dermatitis, Atopic/drug therapy , Dermatitis, Atopic/immunology , Dermatitis, Atopic/metabolism , Dermatitis, Atopic/pathology , STAT3 Transcription Factor/metabolism , STAT3 Transcription Factor/antagonists & inhibitors , Humans , Animals , Interleukin-8/metabolism , Chitinase-3-Like Protein 1/antagonists & inhibitors , Chitinase-3-Like Protein 1/metabolism , Skin/drug effects , Skin/pathology , Skin/metabolism , Male , Mice, Inbred BALB C , Phthalic Anhydrides/pharmacology , Antibodies/pharmacology , Mice , Female , Inflammation/drug therapy , Inflammation/metabolism
20.
Genet Test Mol Biomarkers ; 28(5): 199-206, 2024 May.
Article in English | MEDLINE | ID: mdl-38634621

ABSTRACT

Background: Oxidative stress has been implicated in the pathogenesis of polycystic ovarian syndrome (PCOS). To develop novel antioxidant drugs, it is necessary to explore the key regulatory molecules involved in oxidative stress in PCOS. Plasma YKL-40 levels are elevated in patients with PCOS; however, its role remains unclear. Methods: The follicular fluids of 20 women with PCOS and 12 control subjects with normal ovarian function were collected, and YKL-40 in follicular fluids was measured by enzyme-linked immunosorbent assay. A letrozole-induced PCOS rat model was established and the expression level of YKL-40 in the ovaries was detected by immunohistochemistry. KGN cells were treated with H2O2 to generate an ovarian granulosa cell (OGC) model of oxidative stress. The siRNA was transfected into the cells for knockdown. The effect of YKL-40 knockdown on H2O2-treated KGN cells was evaluated by measuring proliferation, apoptosis, activities of T-SOD, GSH-Px, and CAT, levels of MDA, IL-1ß, IL-6, IL-8, and TNF-α, and the PI3K/AKT/NF-κB signaling pathway. Results: YKL-40 levels were elevated in the follicular fluids of women with PCOS compared with control subjects with normal ovarian function. The expression level of YKL-40 in the ovaries of rats with PCOS is obviously higher than that in the ovaries of the control group rats. H2O2 treatment enhanced YKL-40 mRNA expression and protein secretion. YKL-40 knockdown enhanced cell proliferation and antioxidant capacity while decreasing apoptosis and inflammatory factor levels in KGN cells following H2O2 treatment. The knockdown activated the PI3K/AKT signaling pathway and suppressed NF-κB nuclear translocation from the cytoplasm. Conclusion: YKL-40 levels were elevated in the follicular fluids of women with PCOS and the ovaries of rats with PCOS. YKL-40 expression can be induced by oxidative stress, and YKL-40 knockdown can decrease oxidative stress damage in OGCs.


Subject(s)
Chitinase-3-Like Protein 1 , Follicular Fluid , Granulosa Cells , Oxidative Stress , Polycystic Ovary Syndrome , Signal Transduction , Adult , Animals , Female , Humans , Rats , Apoptosis , Cell Proliferation , Chitinase-3-Like Protein 1/metabolism , Chitinase-3-Like Protein 1/genetics , Disease Models, Animal , Follicular Fluid/metabolism , Gene Knockdown Techniques , Granulosa Cells/metabolism , Hydrogen Peroxide/metabolism , NF-kappa B/metabolism , Ovary/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Polycystic Ovary Syndrome/metabolism , Polycystic Ovary Syndrome/genetics , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL