Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 93
Filter
1.
Molecules ; 29(15)2024 Jul 28.
Article in English | MEDLINE | ID: mdl-39124963

ABSTRACT

Plant glucanases and chitinases are defense proteins that participate in pathogenesis; however, very little is known about the glucanase (GLUC) and chitinase (CHIT) gene families in mango. Some mango cultivars are of great economic importance and can be affected by anthracnose, a postharvest disease caused by fungi of the genus Colletotrichum spp. This study identified and characterized 23 putative glucanases and 16 chitinases in the mango genome cv. Tommy Atkins. We used phylogenetic analyses to classify the glucanases into three subclasses (A, B, and C) and the chitinases into four classes (I, II, IV, and V). Information on the salicylic, jasmonic acid, and ethylene pathways was obtained by analyzing the cis-elements of the GLUC and CHIT class I and IV gene promoters. The expression profile of GLUC, CHIT class I, and CHIT class IV genes in mango cv. Ataulfo inoculated with two Colletotrichum spp. revealed different profile expression related to these fungi's level of virulence. In general, this study provides the basis for the functional validation of these target genes with which the regulatory mechanisms used by glucanases and chitinases as defense proteins in mango can be elucidated.


Subject(s)
Chitinases , Colletotrichum , Gene Expression Regulation, Plant , Mangifera , Phylogeny , Plant Diseases , Colletotrichum/pathogenicity , Colletotrichum/genetics , Mangifera/microbiology , Mangifera/genetics , Chitinases/genetics , Chitinases/metabolism , Plant Diseases/microbiology , Plant Diseases/genetics , Glycoside Hydrolases/genetics , Glycoside Hydrolases/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Oxylipins/metabolism , Cyclopentanes/metabolism , Gene Expression Profiling
2.
Curr Microbiol ; 81(7): 199, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38822161

ABSTRACT

The present study evaluated the acaricidal activity of three Serratia strains isolated from Mimosa pudica nodules in the Lancandon zone Chiapas, Mexico. The analysis of the genomes based on the Average Nucleotide Identity, the phylogenetic relationships allows the isolates to be placed in the Serria ureilytica clade. The size of the genomes of the three strains is 5.4 Mb, with a GC content of 59%. The Serratia UTS2 strain presented the highest mortality with 61.41% against Tyrophagus putrescentiae followed by the Serratia UTS4 strain with 52.66% and Serratia UTS3 with 47.69% at 72 h at a concentration of 1X109 cell/mL. In the bioinformatic analysis of the genomes, genes related to the synthesis of chitinases, proteases and cellulases were identified, which have been reported for the biocontrol of mites. It is the first report of S. ureilytica with acaricidal activity, which may be an alternative for the biocontrol of stored products with high fat and protein content.


Subject(s)
Acaricides , Phylogeny , Serratia , Animals , Serratia/genetics , Acaricides/pharmacology , Genome, Bacterial , Pest Control, Biological , Chitinases/genetics , Chitinases/metabolism , Mexico
3.
Exp Biol Med (Maywood) ; 248(22): 2053-2061, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38057942

ABSTRACT

Chitin is a biopolymer profusely present in nature and of pivotal importance as a structural component in cells. It is degraded by chitinases, enzymes naturally produced by different organisms. Chitinases are proteins enrolled in many cellular mechanisms, including the remodeling process of the fungal cell wall, the cell growth process, the autolysis of filamentous fungi, and cell separation of yeasts, among others. These enzymes also have properties with different biotechnological applications. They are used to produce polymers, for biological control, biofilm formation, and as antitumor and anti-inflammatory target molecules. Chitinases are classified into different glycoside hydrolase (GH) families and are widespread in microorganisms, including viruses. Among them, the GH18 family is highly predominant in the viral genomes, being present and active enzymes in baculoviruses and nucleocytoplasmic large DNA viruses (NCLDV), especially chloroviruses from the Phycodnaviridae family. These viral enzymes contain one or more GH domains and seem to be involved during the viral replication cycle. Curiously, only a few DNA viruses have these enzymes, and studying their properties could be a key feature for biological and biotechnological novelties. Here, we provide an overview of viral chitinases and their probable function in viral infection, showing evidence of at least two distinct origins for these enzymes. Finally, we discuss how these enzymes can be applied as biotechnological tools and what one can expect for the coming years on these GHs.


Subject(s)
Chitinases , Humans , Chitinases/chemistry , Chitinases/genetics , Chitinases/metabolism , Proteins , Chitin/chemistry , Chitin/metabolism , Biotechnology , Fungi
4.
Biochim Biophys Acta Gen Subj ; 1867(1): 130249, 2023 01.
Article in English | MEDLINE | ID: mdl-36183893

ABSTRACT

Chitinases are enzymes that degrade chitin, a polysaccharide found in the exoskeleton of insects, fungi, yeast, and internal structures of other vertebrates. Although chitinases isolated from bacteria, fungi and plants have been reported to have antifungal or insecticide activities, chitinases from insects with these activities have been seldomly reported. In this study, a leaf-cutting ant Atta sexdens DNA fragment containing 1623 base pairs was amplified and cloned into a vector to express the protein (AsChtII-C4B1) in Pichia pastoris. AsChtII-C4B1, which contains one catalytic domain and one carbohydrate-binding module (CBM), was secreted to the extracellular medium and purified by ammonium sulfate precipitation followed by nickel column chromatography. AsChtII-C4B1 showed maximum activity at pH 5.0 and 55 °C when tested against colloidal chitin substrate and maintained >60% of its maximal activity in different temperatures during 48 h. AsChtII-C4B1 decreased the survival of Spodoptera frugiperda larvae fed with an artificial diet that contained AsChtII-C4B1. Our results have indicated that AsChtII-C4B1 has a higher effect on larva-pupa than larva-larva molts. AsChtII-C4B1 activity targets more specifically the growth of filamentous fungus than yeast. This work describes, for the first time, the obtaining a recombinant chitinase from ants and the characterization of its insecticidal and antifungal activities.


Subject(s)
Ants , Chitinases , Animals , Antifungal Agents/chemistry , Ants/enzymology , Ants/genetics , Ants/metabolism , Chitin/chemistry , Chitinases/chemistry , Chitinases/genetics , Chitinases/pharmacology , Cloning, Molecular , Fungi/metabolism , Insecticides/pharmacology , Larva/drug effects , Saccharomyces cerevisiae/drug effects , Spodoptera/drug effects , Catalysis , Catalytic Domain
5.
Braz J Microbiol ; 54(1): 223-238, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36547866

ABSTRACT

It is difficult to produce chitin oligosaccharides by hydrolyzing untreated natural chitinous waste directly. In this study, two fungi Talaromyces allahabadensis Hi-4 and Talaromyces funiculosus Hi-5 from rotten black soldier fly were isolated and identified through multigene phylogenetic and morphological analyses. The chitinolytic enzymes were produced by solid state fermentation, and the growth conditions were optimized by combining single-factor and central composite design. The best carbon sources were powder of molting of mealworms (MMP) and there was no need for additional nitrogen sources in two fungi, then the maximum chitinolytic enzyme production of 46.80 ± 3.30 (Hi-4) and 55.07 ± 2.48 (Hi-5) U/gds were achieved after analyzing the 3D response surface plots. Pure chitin (colloidal chitin) and natural chitinous substrates (represented by MMP) were used to optimize degradation abilities by crude enzymes obtained from the two fungi. The optimum temperature for hydrolyzing MMP (40 °C both in two fungi) were lower and closer to room temperature than colloidal chitin (55 °C for Hi-4 and 45 °C for Hi-5). Then colloidal chitin, MMP and the powder of shrimp shells (SSP) were used for analyzing the products after 5-day degradation. The amounts of chitin oligosaccharides from SSP and MMP were about 1/6 (Hi-4), 1/17 (Hi-5) and 1/8 (Hi-4), 1/10 (Hi-5), respectively, in comparison to colloidal chitin. The main components of the products were GlcNAc for colloidal chitin, (GlcNAc)2 for MMP, and oligosaccharides with higher degree of polymerization (4-6) were obtained when hydrolyzing SSP, which is significant for applications in medicine and health products.


Subject(s)
Chitinases , Diptera , Talaromyces , Animals , Chitin/metabolism , Fermentation , Phylogeny , Powders , Talaromyces/metabolism , Oligosaccharides , Chitinases/genetics , Insecta , Diptera/metabolism
6.
Braz J Microbiol ; 53(3): 1491-1499, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35761009

ABSTRACT

Vibrio parahaemolyticus can degrade insoluble chitin with the help of chitinase enzymes that generate soluble N-acetyl glucosamine oligosaccharides (GlcNAcn) to induce a state of natural competence for the uptake of extracellular DNA. In this study, we had evaluated the role of various regulatory factors such as TfoX, CytR, OpaR, and RpoS during natural transformation of V. parahaemolyticus. The results suggest that TfoX regulates natural competence via CytR in a chitin-dependent manner. CytR controls the release of GlcNAc6 from insoluble chitin and conversion of GlcNAc6 into smaller GlcNAc residues inside the periplasm by modulating the expression of endochitinase and periplasmic chitinases. In addition, CytR was also responsible for GlcNAc6-mediated upregulation of competence-related genes such as pilA, pilB, comEA, and qstR. Next, we found that the quorum sensing regulator OpaR affects the natural transformation through its regulation of extracellular nuclease Dns. The ΔopaR mutant showed increased expression of Dns, which might degrade the eDNA. As a consequence, the transformation efficiency was decreased and eDNA-dependent growth was hugely enhanced. However, when Dns-containing DASW was substituted with fresh DASW, the transformation was detectable in ΔopaR mutant and eDNA-dependent growth was less. These results suggest that the occurrence of natural transformation and eDNA-dependent growth were inversely related to each other. Lastly, the general stress regulator RpoS was required for neither quorum-sensing dependent nor chitin-dependent regulation of natural competence in V. parahaemolyticus.


Subject(s)
Chitinases , Vibrio cholerae , Vibrio parahaemolyticus , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Chitin/metabolism , Chitinases/genetics , Chitinases/metabolism , Gene Expression Regulation, Bacterial , Vibrio cholerae/genetics , Vibrio parahaemolyticus/genetics , Vibrio parahaemolyticus/metabolism
7.
Appl Microbiol Biotechnol ; 106(3): 1185-1197, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35072736

ABSTRACT

Chitinase chi18-5 is an enzyme able to hydrolyze chitin and chitosan producing chitooligosaccharides (COS) of potential technological interest. chi18-5 is produced naturally by the fungus Trichoderma atroviride. It belongs to the glycosyl hydrolase (GH) family 18 of the Carbohydrate Active Enzyme (CAZy) database and it has 83% identity compared to the well-characterized chi42 of Trichoderma harzianum. Several efforts have been made to characterize the biochemical activity of the enzyme and its structure. Here, we studied the biophysical properties of recombinant chi18-5. In order to gain insight into its structure and stability, we studied thermal denaturation by Circular Dichroism (CD), Intrinsic Fluorescence (FL), and attenuated total reflection Fourier transform infrared spectroscopy (ATR-FT-IR) at several pH between 3 and 8. We observed that the conformation of chi18-5 changes near its pI, and the transitions as a function of the temperature involved an increment in ß-sheet secondary structure at the expenses of ⍺-helix. We also performed amide hydrogen exchange dynamics in selected conditions. At pH ≤ 6, the proportion of fast exchanging residues are larger than at pH ≥ 6. Our results suggest that at pH below pI, chi18-5 is in a less compact structure which may have influence in the interaction with substrate and enzyme activity. KEY POINTS: • Characterization of enzyme behavior is critical for their wide applications • We produced and characterized biophysically a chitinase as a function of pH • The pH of optimum activity correlates with a less compact structure of chi18-5.


Subject(s)
Chitinases , Chitin , Chitinases/genetics , Chitinases/metabolism , Hydrogen-Ion Concentration , Protein Structure, Secondary , Spectroscopy, Fourier Transform Infrared , Temperature
8.
FEMS Microbiol Lett ; 368(12)2021 06 29.
Article in English | MEDLINE | ID: mdl-34100915

ABSTRACT

The first line of the Arthropods defense against infections is the hard-structured exoskeleton, a physical barrier, usually rich in insoluble chitin. For entomopathogenic fungi that actively penetrate the host body, an arsenal of hydrolytic enzymes (as chitinases and N-acetylglucosaminidases), that break down chitin, is essential. Notably, twenty-one putative chitinase genes have been identified in the genome of Metarhizium anisopliae, a generalist entomopathogenic fungus. As a multigenic family, with enzymes that, presumably, perform redundant functions, the main goal is to understand the singularity of each one of such genes and to discover their precise role in the fungal life cycle. Specially chitinases that can act as virulence determinants are of interest since these enzymes can lead to more efficient biocontrol agents. Here we explored a horizontally acquired chitinase from M. anisopliae, named chiMaD1. The deletion of this gene did not lead to phenotypic alterations or diminished supernatant's chitinolytic activity. Surprisingly, chiMaD1 deletion enhanced M. anisopliae virulence to the cattle tick (Rhipicephalus microplus) larvae and engorged females, while did not alter the virulence to the mealworm larvae (Tenebrio molitor). These results add up to recent reports of deleted genes that enhanced entomopathogenic virulence, showing the complexity of host-pathogen interactions.


Subject(s)
Chitinases/genetics , Fungal Proteins/genetics , Metarhizium/pathogenicity , Rhipicephalus/microbiology , Animals , Chitin/metabolism , Chitinases/metabolism , Fungal Proteins/metabolism , Gene Deletion , Gene Transfer, Horizontal , Host-Pathogen Interactions , Larva/microbiology , Metarhizium/classification , Metarhizium/enzymology , Metarhizium/genetics , Pest Control, Biological , Phylogeny , Tenebrio/microbiology , Virulence
9.
J Agric Food Chem ; 69(11): 3284-3288, 2021 Mar 24.
Article in English | MEDLINE | ID: mdl-33720714

ABSTRACT

Interest in chitin-degrading enzymes has grown over the years, and microbial chitinases are the most attractive and promising candidates for the control of plant pests (fungi and insects). Currently, there are many studies on chitinases produced by cultivable microorganisms; however, almost none of them have achieved acceptable applicability as a biopesticide in the field. Approximately 99% of the microorganisms from soil cannot be isolated by conventional culture-dependent methods, thus having an enormous biotechnological/genetic potential to be explored. On the basis of this, the present paper aims to provide a brief overview of the metagenomic opportunities that have been emerging and allowing access to the biochemical potential of uncultivable microorganisms through the direct mining of DNA sequences recovered from the environment. This work also shortly discussed the future perspectives of functional and sequence-based metagenomic approaches for the identification of new chitinase-coding genes with potential for applications in several agricultural and biotechnological industries, especially in biological control.


Subject(s)
Chitinases , Animals , Biological Control Agents , Chitin , Chitinases/genetics , Fungi/genetics , Metagenomics
10.
FEMS Microbiol Lett ; 368(2)2021 02 04.
Article in English | MEDLINE | ID: mdl-33351136

ABSTRACT

Bacterial chitinases are a subject of intense scientific research due to their biotechnological applications, particularly their use as biological pesticides against phytopathogenic fungi as a green alternative to avoid the use of synthetic pesticides. Bacillus cereus sensu lato B25 is a rhizospheric bacterium that is a proven antagonist of Fusarium verticillioides, a major fungal pathogen of maize. This bacterium produces two chitinases that degrade the fungal cell wall and inhibit its growth. In this work, we used a heterologous expression system to purify both enzymes to investigate their biochemical traits in terms of Km, Vmax, optimal pH and temperature. ChiA and ChiB work as exochitinases, but ChiB exhibited a dual substrate activity and it is also an endochitinase. In this work, the direct addition of these chitinases inhibited fungal conidial germination and therefore they may play a major role in the antagonism against F. verticillioides.


Subject(s)
Antifungal Agents/pharmacology , Bacillus cereus/enzymology , Chitinases/metabolism , Fusarium/drug effects , Bacillus cereus/genetics , Chitinases/genetics
11.
Phytochemistry ; 180: 112527, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33007618

ABSTRACT

A partial cDNA sequence from Anacardium occidentale CCP 76 was obtained, encoding a GH19 chitinase (AoChi) belonging to class VI. AoChi exhibits distinct structural features in relation to previously characterized plant GH19 chitinases from classes I, II, IV and VII. For example, a conserved Glu residue at the catalytic center of typical GH19 chitinases, which acts as the proton donor during catalysis, is replaced by a Lys residue in AoChi. To verify if AoChi is a genuine chitinase or is a chitinase-like protein that has lost its ability to degrade chitin and inhibit the growth of fungal pathogens, the recombinant protein was expressed in Pichia pastoris, purified and biochemically characterized. Purified AoChi (45 kDa apparent molecular mass) was able to degrade colloidal chitin, with optimum activity at pH 6.0 and at temperatures from 30 °C to 50 °C. AoChi activity was completely lost when the protein was heated at 70 °C for 1 h or incubated at pH values of 2.0 or 10.0. Several cation ions (Al3+, Cd2+, Ca2+, Pb2+, Cu2+, Fe3+, Mn2+, Rb+, Zn2+ and Hg2+), chelating (EDTA) and reducing agents (DTT, ß-mercaptoethanol) and the denaturant SDS, drastically reduced AoChi enzymatic activity. AoChi chitinase activity fitted the classical Michaelis-Menten kinetics, although turnover number and catalytic efficiency were much lower in comparison to typical GH19 plant chitinases. Moreover, AoChi inhibited in vitro the mycelial growth of Lasiodiplodia theobromae, causing several alterations in hyphae morphology. Molecular docking of a chito-oligosaccharide in the substrate-binding cleft of AoChi revealed that the Lys residue (theoretical pKa = 6.01) that replaces the catalytic Glu could act as the proton donor during catalysis.


Subject(s)
Anacardium , Chitinases , Antifungal Agents/pharmacology , Chitin , Chitinases/genetics , Molecular Docking Simulation
12.
Appl Biochem Biotechnol ; 192(4): 1255-1269, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32715415

ABSTRACT

Poor solubility is the main drawback of the direct industrial exploitation of chitin, the second most abundant biopolymer after cellulose. Chemical methods are conventional to solubilize chitin from natural sources. Enzymatic hydrolysis of soluble chitinous substrates is a promising approach to obtain value-added by-products, such as N-acetylglucosamine units or low molecular weight chito-oligomers. Protein display on the bacterial membrane remains attractive to produce active enzymes anchored to a biological surface. The Lpp-OmpA system, a gene fusion of the Lpp signal sequence with the OmpA transmembrane region, represents the traditional system for targeting enzymes to the E. coli surface. EhCHT1, the amoebic chitinase, exhibits an efficient endochitinolytic activity and significant biochemical features, such as stability over a wide range of pH values. Using an extended Lpp-OmpA system as a protein carrier, we engineered E. coli to express the catalytic domain of EhCHT1 on the surface and assess the endochitinase activity as a trait. Engineered bacteria showed a consistent hydrolytic rate over a typical substrate, suggesting that the displayed enzyme has operational stability. This study supports the potential of biomembrane-associated biocatalysts as a reliable technology for the hydrolysis of soluble chitinous substrates.


Subject(s)
Amoeba/enzymology , Catalytic Domain , Chitinases/genetics , Chitinases/metabolism , Escherichia coli/genetics , Genetic Engineering , Chitin/metabolism , Chitinases/chemistry , Gene Expression , Hydrogen-Ion Concentration , Hydrolysis , Solubility
13.
BMC Plant Biol ; 20(1): 1, 2020 Jan 02.
Article in English | MEDLINE | ID: mdl-31898482

ABSTRACT

BACKGROUND: Witches' broom disease (WBD) of cacao (Theobroma cacao L.), caused by Moniliophthora perniciosa, is the most important limiting factor for the cacao production in Brazil. Hence, the development of cacao genotypes with durable resistance is the key challenge for control the disease. Proteomic methods are often used to study the interactions between hosts and pathogens, therefore helping classical plant breeding projects on the development of resistant genotypes. The present study compared the proteomic alterations between two cacao genotypes standard for WBD resistance and susceptibility, in response to M. perniciosa infection at 72 h and 45 days post-inoculation; respectively the very early stages of the biotrophic and necrotrophic stages of the cacao x M. perniciosa interaction. RESULTS: A total of 554 proteins were identified, being 246 in the susceptible Catongo and 308 in the resistant TSH1188 genotypes. The identified proteins were involved mainly in metabolism, energy, defense and oxidative stress. The resistant genotype showed more expressed proteins with more variability associated with stress and defense, while the susceptible genotype exhibited more repressed proteins. Among these proteins, stand out pathogenesis related proteins (PRs), oxidative stress regulation related proteins, and trypsin inhibitors. Interaction networks were predicted, and a complex protein-protein interaction was observed. Some proteins showed a high number of interactions, suggesting that those proteins may function as cross-talkers between these biological functions. CONCLUSIONS: We present the first study reporting the proteomic alterations of resistant and susceptible genotypes in the T. cacao x M. perniciosa pathosystem. The important altered proteins identified in the present study are related to key biologic functions in resistance, such as oxidative stress, especially in the resistant genotype TSH1188, that showed a strong mechanism of detoxification. Also, the positive regulation of defense and stress proteins were more evident in this genotype. Proteins with significant roles against fungal plant pathogens, such as chitinases, trypsin inhibitors and PR 5 were also identified, and they may be good resistance markers. Finally, important biological functions, such as stress and defense, photosynthesis, oxidative stress and carbohydrate metabolism were differentially impacted with M. perniciosa infection in each genotype.


Subject(s)
Agaricales/immunology , Cacao/microbiology , Disease Resistance/genetics , Gene Expression Regulation, Plant/immunology , Plant Diseases , Agaricales/physiology , Biomarkers , Brazil , Cacao/genetics , Chitinases/genetics , Chitinases/metabolism , Gene Expression Profiling , Genotype , Host Microbial Interactions/genetics , Host Microbial Interactions/immunology , Plant Diseases/immunology , Plant Diseases/microbiology , Proline-Rich Protein Domains/genetics , Trypsin Inhibitors/metabolism
14.
Med Mycol ; 58(3): 372-379, 2020 Apr 01.
Article in English | MEDLINE | ID: mdl-31226713

ABSTRACT

The filamentous fungus Trichophyton rubrum is a pathogen that causes superficial mycoses in humans, predominantly in keratinized tissues. The occurrence of dermatophytoses has increased in the last decades, mainly in immunocompromised patients, warranting research on the mechanisms involved in dermatophyte virulence. The genomes of dermatophytes are known to be enriched in genes coding for proteins containing the LysM domain, a carbohydrate-binding module, indicating the possible involvement of these genes in virulence. Although the LysM domains have already been described in other fungi, their biological functions in dermatophytes are unknown. Here we assessed the transcription of genes encoding proteins containing the LysM domains in T. rubrum grown on different substrates using quantitative real-time polymerase chain reaction. Some of these genes showed changes in transcription levels when T. rubrum was grown on keratin. In silico analyses suggest that some of these proteins share features, namely, they are anchored in the plasma membrane and contain the catalytic domain chitinase II and signal peptide domains. Here we show a detailed study of genes encoding the proteins with LysM-containing domains in T. rubrum, aiming to contribute to the understanding of their functions in dermatophytes.


Subject(s)
Fungal Proteins/genetics , Gene Expression Profiling , Trichophyton/growth & development , Trichophyton/genetics , Carbohydrate Metabolism , Chitinases/genetics , Computational Biology , Culture Media , Gene Expression Regulation, Fungal , Humans , Keratins , Protein Sorting Signals/genetics , Tinea/microbiology
15.
Braz. arch. biol. technol ; Braz. arch. biol. technol;63: e20200061, 2020. graf
Article in English | LILACS | ID: biblio-1132157

ABSTRACT

Abstract Chitinase enzymes possess various usages in agriculture, biotechnology and medicine due to their chitin degrading property. Thus, efficient production of chitinase enzymes with desired properties has importance for its use. In this study, chitinase A (chiA) gene from Serratia marcescens Bn10 was cloned and heterologously overexpressed using pHT43 vector in Bacillus subtilis 168. The recombinant chitinase was characterized in terms of temperature, pH, and various effectors. The extracellular chitinase activity in recombinant B. subtilis was found 2.15-fold higher than the parental strain after 2 h of IPTG induction. Optimum temperature and pH for the extracellular chitinase activity in the recombinant B. subtilis were determined as 60 oC and pH 9.0, respectively. NaCl, Ca2+, Mn2+, Cu2+, Zn2+, sodium dodecyl sulfate (SDS), Tween-20, and ethanol increased the chitinase activity whereas Mg2+ caused an inhibition. The most notable increment on the chitinase activity was provided by Zn2+ (3.2 folds) and then by SDS (2.9 folds). The chitinase, overproduced by the recombinant B. subtilis 168 heterologously expressing chiA, was determined to have optimum activity at high temperature and alkaline conditions as well as various effectors increase its activity. The extracellular chitinase of recombinant B. subtilis might be a promising source for agricultural, biotechnological and medical applications.


Subject(s)
Serratia marcescens/enzymology , Bacillus subtilis/enzymology , Chitinases/genetics , Hydrogen-Ion Concentration , Temperature , Gene Expression
16.
Microbiology (Reading) ; 165(11): 1233-1244, 2019 11.
Article in English | MEDLINE | ID: mdl-31526448

ABSTRACT

Serratia marcescens is a γ-Proteobacterium and an opportunistic animal and insect pathogen. The bacterium exhibits a complex extracellular protein 'secretome' comprising numerous enzymes, toxins and effector molecules. One component of the secretome is the 'chitinolytic machinery', which is a set of at least four chitinases that allow the use of insoluble extracellular chitin as sole carbon source. Secretion of the chitinases across the outer membrane is governed by the chiWXYZ operon encoding a holin/endopeptidase pair. Expression of the chiWXYZ operon is co-ordinated with the chitinase genes and is also bimodal, as normally only 1% of the population expresses the chitinolytic machinery. In this study, the role of the ChiR protein in chitinase production has been explored. Using live cell imaging and flow cytometry, ChiR was shown to govern the co-ordinated regulation of chiWXYZ with both chiA and chiC. Moreover, overexpression of chiR alone was able to increase the proportion of the cell population expressing chitinase genes to >60 %. In addition, quantitative label-free proteomic analysis of cells overexpressing chiR established that ChiR regulates the entire chitinolytic machinery. The proteomic experiments also revealed a surprising link between the regulation of the chitinolytic machinery and the production of proteins involved in the metabolism of nitrogen compounds such as nitrate and nitrite. The research demonstrates for the first time that ChiR plays a critical role in controlling bimodal gene expression in S. marcescens, and provides new evidence of a clear link between chitin breakdown and nitrogen metabolism.


Subject(s)
Bacterial Proteins/metabolism , Chitinases/metabolism , Serratia marcescens/physiology , Bacterial Proteins/genetics , Chitinases/genetics , Flow Cytometry , Gene Expression , Gene Expression Regulation, Bacterial , Microscopy, Fluorescence , Mutation , Nitrogen Compounds/metabolism , Operon , Proteomics , Serratia marcescens/genetics , Serratia marcescens/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
17.
Int J Mol Sci ; 20(14)2019 Jul 16.
Article in English | MEDLINE | ID: mdl-31315176

ABSTRACT

In this study we cloned a chitinase gene (SmchiC), from Serratia marcescens isolated from the corpse of a Diatraea magnifactella lepidopteran, which is an important sugarcane pest. The chitinase gene SmchiC amplified from the S. marcescens genome was cloned into the transformation vector p2X35SChiC and used to transform tobacco (Nicotiana tabacum L. cv Petit Havana SR1). The resistance of these transgenic plants to the necrotrophic fungus Botrytis cinerea and to the pest Spodoptera frugiperda was evaluated: both the activity of chitinase as well as the resistance against B. cinerea and S. frugiperda was significantly higher in transgenic plants compared to the wild-type.


Subject(s)
Bacterial Proteins/genetics , Chitinases/genetics , Disease Resistance/genetics , Nicotiana/genetics , Serratia marcescens/genetics , Transgenes , Animals , Bacterial Proteins/metabolism , Botrytis/pathogenicity , Chitinases/metabolism , Spodoptera/pathogenicity , Nicotiana/microbiology , Nicotiana/parasitology
18.
Enzyme Microb Technol ; 126: 50-61, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31000164

ABSTRACT

The biocontrol activity of some soil strains of Chromobacterium sp. against pathogenic fungi has been attributed to secreted chitinases. The aim of this work was to characterize biochemically a recombinant chitinase (CvChi47) from C. violaceum ATCC 12472 and to investigate its effects on phytopathogenic fungi. CvChi47 is a modular enzyme with 450 amino acid residues, containing a type I signal peptide at the N-terminal region, followed by one catalytic domain belonging to family 18 of the glycoside hydrolases, and two type-3 chitin-binding domains at the C-terminal end. The recombinant enzyme was expressed in Escherichia coli as a His-tagged protein and purified to homogeneity. The native signal peptide of CvChi47 was used to direct its secretion into the culture medium, from where the recombinant product was purified by affinity chromatography on chitin and immobilized metal. The purified protein showed an apparent molecular mass of 46 kDa, as estimated by denaturing polyacrylamide gel electrophoresis, indicating the removal of the signal peptide. CvChi47 was a thermostable protein, retaining approximately 53.7% of its activity when heated at 100 °C for 1 h. The optimum hydrolytic activity was observed at 60 °C and pH 5. The recombinant chitinase inhibited the conidia germination of the phytopathogenic fungi Fusarium oxysporum and F. guttiforme, hence preventing mycelial growth. Furthermore, atomic force microscopy experiments revealed a pronounced morphological alteration of the cell surface of conidia incubated with CvChi47 in comparison to untreated cells. Taken together, these results show the potential of CvChi47 as a molecular tool to control plant diseases caused by these Fusarium species.


Subject(s)
Antifungal Agents/pharmacology , Chitinases/metabolism , Chromobacterium/enzymology , Fusarium/growth & development , Plant Diseases/prevention & control , Recombinant Proteins/metabolism , Amino Acid Sequence , Catalytic Domain , Chitinases/chemistry , Chitinases/genetics , Cloning, Molecular , Enzyme Stability , Fusarium/drug effects , Plant Diseases/microbiology , Protein Conformation , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Sequence Homology , Spores, Fungal/drug effects , Spores, Fungal/growth & development , Temperature
19.
Curr Microbiol ; 76(5): 566-574, 2019 May.
Article in English | MEDLINE | ID: mdl-30820638

ABSTRACT

Burkholderia cenocepacia TAtl-371 was isolated from the rhizosphere of a tomato plant growing in Atlatlahucan, Morelos, Mexico. This strain exhibited a broad antimicrobial spectrum against bacteria, yeast, and fungi. Here, we report and describe the improved, high-quality permanent draft genome of B. cenocepacia TAtl-371, which was sequenced using a combination of PacBio RS and PacBio RS II sequencing methods. The 7,496,106 bp genome of the TAtl-371 strain is arranged in three scaffolds, contains 6722 protein-coding genes, and 99 RNA only-encoding genes. Genome analysis revealed genes related to biosynthesis of antimicrobials such as non-ribosomal peptides, siderophores, chitinases, and bacteriocins. Moreover, analysis of bacterial growth on different carbon and nitrogen sources shows that the strain retains its antimicrobial ability.


Subject(s)
Antibiosis , Burkholderia cenocepacia/genetics , Burkholderia cepacia complex , Carbon/metabolism , Genome, Bacterial , Nitrogen/metabolism , Bacteriocins/genetics , Burkholderia cenocepacia/isolation & purification , Chitinases/genetics , Solanum lycopersicum/microbiology , Mexico , Rhizosphere , Sequence Analysis, DNA , Siderophores/genetics , Soil Microbiology
20.
Int J Biol Macromol ; 124: 80-87, 2019 Mar 01.
Article in English | MEDLINE | ID: mdl-30471401

ABSTRACT

Our objective was to determine whether a recombinant chitinase ChiA74∆sp of Bacillus thuringiensis and its truncated versions (ChiA74∆sp-60, ChiA74∆sp-50) could be produced in B. thuringiensis HD1 with no detrimental effect on the size and insecticidal activity of the native bipyramidal Cry crystal. chiA-p, the promoter used to drive chitinase gene expression, was active during vegetative growth of Cry-B. HD1 recombinants showed increases from ~7- to 12-fold in chitinase activity when compared with parental HD1 and negligible or no effect on the volume of bipyramidal crystals was observed. HD1/ChiA74∆sp-60 showed increases from 20% to 40% in the yield of Cry1A per unit of culture medium when compared with parental HD1 and HD1/ChiA74∆sp-50, HD1/ChiA74∆sp. Inclusion bodies presumably composed of the enzyme attached to native Cry1A crystals of recombinant strains were observed; these inclusions were likely responsible for the enhancements in chitinase activity. Western blot analysis using polyclonal anti-ChiA74∆sp showed a weak signal with proteins of ~50 kDa in sporulated and lysed cells of recombinant strains. Bioassays against Spodoptera frugiperda using sporulated/lysed samples of the recombinant strains did not show statistically significant differences in LC50s when compared with HD1.


Subject(s)
Bacterial Proteins/genetics , Chitinases/genetics , Endotoxins/genetics , Hemolysin Proteins/genetics , Recombinant Proteins/genetics , Spodoptera/drug effects , Animals , Bacillus thuringiensis/chemistry , Bacillus thuringiensis/genetics , Bacillus thuringiensis Toxins , Bacterial Proteins/biosynthesis , Bacterial Proteins/chemistry , Bacterial Proteins/pharmacology , Endotoxins/biosynthesis , Endotoxins/chemistry , Endotoxins/pharmacology , Gene Expression Regulation, Enzymologic/drug effects , Hemolysin Proteins/biosynthesis , Hemolysin Proteins/chemistry , Hemolysin Proteins/pharmacology , Inclusion Bodies/genetics , Insecticides/chemistry , Promoter Regions, Genetic/genetics , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/pharmacology , Spodoptera/pathogenicity
SELECTION OF CITATIONS
SEARCH DETAIL