Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 15.523
Filter
1.
Microbiology (Reading) ; 170(9)2024 Sep.
Article in English | MEDLINE | ID: mdl-39230258

ABSTRACT

Klebsiella pneumoniae is a pathogen of major concern in the global rise of antimicrobial resistance and has been implicated as a reservoir for the transfer of resistance genes between species. The upregulation of efflux pumps is a particularly concerning mechanism of resistance acquisition as, in many instances, a single point mutation can simultaneously provide resistance to a range of antimicrobials and biocides. The current study investigated mutations in oqxR, which encodes a negative regulator of the RND-family efflux pump genes, oqxAB, natively found in the chromosome of K. pneumoniae. Resistant mutants in four K. pneumoniae strains (KP6870155, NTUH-K2044, SGH10, and ATCC43816) were selected from single exposures to 30 µg/mL chloramphenicol and 12 mutants were selected for whole genome sequencing to identify mutations associated with resistance. Resistant mutants generated by single exposures to chloramphenicol, tetracycline, or ciprofloxacin at ≥4 X MIC were replica plated onto all three antibiotics to observe simultaneous cross-resistance to all compounds, indicative of a multidrug resistance phenotype. A variety of novel mutations, including single point mutations, deletions, and insertions, were found to disrupt oqxR leading to significant and simultaneous increases in resistance to chloramphenicol, tetracycline, and ciprofloxacin. The oqxAB-oqxR locus has been mobilized and dispersed on plasmids in many Enterobacteriaceae species and the diversity of these loci was examined to evaluate the evolutionary pressures acting on these genes. Comparison of the promoter regions of oqxR in plasmid-borne copies of the oqxR-oqxAB operon indicated that some constructs may produce truncated versions of the oqxR transcript, which may impact on oqxAB regulation and expression. In some instances, co-carriage of chromosomal and plasmid encoded oqxAB-oqxR was found in K. pneumoniae, implying that there is selective pressure to maintain and expand the efflux pump. Given that OqxR is a repressor of oqxAB, any mutation affecting its expression or function can lead to multidrug resistance. This is in contrast to antibiotic target site mutations that must occur in limited sequence space to be effective and not impact the fitness of the cell. Therefore, oqxR may act as a simple genetic switch to facilitate resistance via OqxAB mediated efflux.


Subject(s)
Anti-Bacterial Agents , Bacterial Proteins , Drug Resistance, Multiple, Bacterial , Klebsiella pneumoniae , Microbial Sensitivity Tests , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/drug effects , Klebsiella pneumoniae/metabolism , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Drug Resistance, Multiple, Bacterial/genetics , Mutation , Chloramphenicol/pharmacology , Whole Genome Sequencing , Tetracycline/pharmacology , Gene Expression Regulation, Bacterial , Ciprofloxacin/pharmacology , Membrane Transport Proteins/genetics , Membrane Transport Proteins/metabolism , Drug Resistance, Bacterial/genetics , Klebsiella Infections/microbiology
2.
Water Res ; 265: 122285, 2024 Nov 01.
Article in English | MEDLINE | ID: mdl-39167975

ABSTRACT

Microalgae-based biotechnology is one of the most promising alternatives to conventional methods for the removal of antibiotic contaminants from diverse water matrices. However, current knowledge regarding the biochemical mechanisms and catabolic enzymes involved in microalgal biodegradation of antibiotics is scant, which limits the development of enhancement strategies to increase their engineering feasibility. In this study, we investigated the removal dynamics of amphenicols (chloramphenicol, thiamphenicol, and florfenicol), which are widely used in aquaculture, by Chlamydomonas reinhardtii under different growth modes (autotrophy, heterotrophy, and mixotrophy). We found C. reinhardtii removed >92 % chloramphenicol (CLP) in mixotrophic conditions. Intriguingly, gamma-glutamyl hydrolase (GGH) in C. reinhardtii was most significantly upregulated according to the comparative proteomics, and we demonstrated that GGH can directly bind to CLP at the Pro77 site to induce acetylation of the hydroxyl group at C3 position, which generated CLP 3-acetate. This identified role of microalgal GGH is mechanistically distinct from that of animal counterparts. Our results provide a valuable enzyme toolbox for biocatalysis and reveal a new enzymatic function of microalgal GGH. As proof of concept, we also analyzed the occurrence of these three amphenicols and their degradation intermediate worldwide, which showed a frequent distribution of the investigated chemicals at a global scale. This study describes a novel catalytic enzyme to improve the engineering feasibility of microalgae-based biotechnologies. It also raises issues regarding the different microalgal enzymatic transformations of emerging contaminants because these enzymes might function differently from their counterparts in animals.


Subject(s)
Biotransformation , Chlamydomonas reinhardtii , Chloramphenicol , Chlamydomonas reinhardtii/metabolism , Chloramphenicol/metabolism , Hydrolases/metabolism , Anti-Bacterial Agents/metabolism , Biodegradation, Environmental , Microalgae/metabolism
3.
J Hazard Mater ; 478: 135615, 2024 Oct 05.
Article in English | MEDLINE | ID: mdl-39181003

ABSTRACT

The misuse of chloramphenicol (CAP) has jeopardized environmental safety. It is critical to create an effective and sensitive CAP detection technique. In this paper, a composite of chitosan (CS)-derived carbon material modified hollow spherical hydroxylated poly(3,4-propylenedioxythiophene) (PProDOT-2CH2OH) was designed, which innovatively used o-phenylenediamine and p-aminobenzoic acid as bi-functional monomers to prepare molecular imprinting polymer (MIP) sensors for highly sensitive analysis and determination of CAP. It was found that the hollow spherical structure of PProDOT-2CH2OH significantly enhanced the rapid electron migration. When combined with the CS-derived carbon material, which has multi-functional sites, it improved the electrical activity and stability of the sensor. It also provided more active centers for the MIP layer to specifically recognize CAP. Therefore, this MIP sensor had a wide linear response (0.0001 ∼ 125 µM), a low limit of detection (LOD, 6.6 pM), excellent selectivity and stability. In addition, studies showed that the sensor has potential practical value. ENVIRONMENTAL IMPLICATION: Chloramphenicol (CAP) is one of the most widely used antibiotics with the highest dosage due to its low price and broad-spectrum antimicrobial properties. Due to its incomplete metabolism in living organisms and its difficulty in degrading in the environment, contamination caused by it can pose a threat to public health. In this study, a novel molecularly imprinted sensor (MIP/PC2C1/GCE) was designed to provide a new idea for rapid and precise removal of CAP by adsorption. The detection of CAP in pharmaceutical, water quality, and food fields was realized.


Subject(s)
Anti-Bacterial Agents , Carbon , Chitosan , Chloramphenicol , Electrochemical Techniques , Limit of Detection , Molecular Imprinting , Chloramphenicol/analysis , Chitosan/chemistry , Carbon/chemistry , Anti-Bacterial Agents/analysis , Anti-Bacterial Agents/chemistry , Water Pollutants, Chemical/analysis , Molecularly Imprinted Polymers/chemistry , Polymers/chemistry
4.
Mikrochim Acta ; 191(9): 552, 2024 08 21.
Article in English | MEDLINE | ID: mdl-39167265

ABSTRACT

N-doped hollow carbon spheres (NHCSs) with different shell thicknesses are constructed using various amounts of SiO2 precursor. An interconnected framework with diminished wall thickness ensures an efficient and continuous electron transport which helps to enhance the performance of NHCS. Improvement of the electrocatalytic performance was shown in the determination of antibiotic drug chloramphenicol (CAP) due to the unique hollow thin shell morphology, ample defect sites, accessible surface area, higher surface-to-volume ratio and an synergistic effect. Boosted electrocatalytic activity of 1.5 N-doped HCS (1.5 NHCS) was applied to detect CAP with a linear range and detection limit of 1-1150 µM and 0.098 µM (n = 3), respectively, with superior storage stability and considerable sensitivity. These results suggest that the proposed work can be successfully applied to the determination of CAP in milk and water samples.


Subject(s)
Anti-Bacterial Agents , Carbon , Chloramphenicol , Electrochemical Techniques , Limit of Detection , Milk , Chloramphenicol/analysis , Chloramphenicol/chemistry , Electrochemical Techniques/methods , Electrochemical Techniques/instrumentation , Carbon/chemistry , Anti-Bacterial Agents/analysis , Milk/chemistry , Animals , Water Pollutants, Chemical/analysis , Electrodes , Nitrogen/chemistry , Silicon Dioxide/chemistry
5.
Analyst ; 149(18): 4623-4632, 2024 Sep 09.
Article in English | MEDLINE | ID: mdl-39101528

ABSTRACT

The "antenna effect" is one of the most important energy transfer modes in lanthanide light-emitting polymers. In this study, novel luminescent nanostructured coordination polymers (Eu-PCP) were synthesized in one step using Eu3+ as the central metal ion and 5,10,15,20-tetrakis (4-carboxyphenyl) porphyrin (TCPP) as the organic ligand. The unique "antenna effect" observed between Eu3+ and TCPP leads to a substantial improvement in the electrochemiluminescence (ECL) emission efficiency. Eu-PCP exhibits good cathodic ECL characteristics. Additionally, Au@SnS2 nanosheets exhibit favorable electrical conductivity, biocompatibility, and a significant specific surface area. This makes them a suitable choice as substrate materials for the modification of electrode surfaces and capturing antigens. Being well known, the development of sensitive and rapid methods to detect chloramphenicol is essential for food safety. Based on this, we report a novel competitive electrochemiluminescence immunoassay to achieve ultra-sensitive and highly specific detection of chloramphenicol. The linear range was 0.0002-500 ng mL-1 and the detection limit was 0.09 pg mL-1. Apart from that, the experimental results proved that it provided a new analytical tool for the detection of antibiotic residues in food safety.


Subject(s)
Chloramphenicol , Electrochemical Techniques , Europium , Gold , Limit of Detection , Luminescent Measurements , Polymers , Porphyrins , Europium/chemistry , Chloramphenicol/analysis , Chloramphenicol/chemistry , Immunoassay/methods , Porphyrins/chemistry , Luminescent Measurements/methods , Electrochemical Techniques/methods , Gold/chemistry , Polymers/chemistry , Food Contamination/analysis , Anti-Bacterial Agents/analysis , Anti-Bacterial Agents/chemistry , Tin Compounds/chemistry , Animals , Coordination Complexes/chemistry
6.
Food Chem ; 460(Pt 3): 140711, 2024 Dec 01.
Article in English | MEDLINE | ID: mdl-39111047

ABSTRACT

We have carefully built a new chloramphenicol (CAP) electrochemical sensor, which takes the zinc tungstate @ cobalt magnetic nanoporous carbon @ molecularly imprinted polymer (ZnWO4@Co-MNPC@MIP) as the core. First, we successfully prepared Co-MNPC nanomaterials using an efficient one-step hydrothermal method and a direct carbonization method. Next, we recombined ZnWO4 with Co-MNPC and synthesized the completely new ZnWO4@Co-MNPC complex by using the hydrothermal method. To further improve its performance, we combined ZnWO4@Co-MNPC with a molecular imprinted polymer and coated a molecular imprinted (MIP) shell on the surface of ZnWO4@Co-MNPC by precipitation polymerization. This shell not only gives the sensor a new performance but also gives it a stronger peak current, resulting in a more accurate detection of CAP. Under optimal conditions, the ZnWO4@Co-MNPC@MIP (MMIP) electrode has a stronger CAP detection peak current than the one-component electrode, with a fairly wide linear range: 0.007-200 µM and 200-1400 µM. Even more surprisingly, the detection limit is as low as 0.0027 µM, which allows the sensor to maintain excellent selectivity and stability in the face of various interferences, making it an excellent electrochemically modified electrode. Compared to magnetic non-molecular imprint sensors (MNIPs), MMIP sensors have higher detection efficiency. After practical application, we found that the ZnWO4@Co-MNPC@MIP modified electrode was satisfactory in milk samples.


Subject(s)
Chloramphenicol , Electrochemistry , Food Analysis , Milk , Electrochemistry/instrumentation , Chloramphenicol/analysis , Milk/chemistry , Food Analysis/instrumentation , Food Analysis/methods , Limit of Detection , Nanostructures/chemistry , Nanostructures/ultrastructure , Microscopy, Electron, Scanning , Electrodes/standards , Polymers/chemical synthesis
7.
Water Res ; 263: 122121, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39094200

ABSTRACT

Magnetite (Fe3O4) is extensively applied to enhance efficacy of anaerobic biological treatment systems designed for refractory wastewater. However, the interaction between magnetite, organic pollutants and microorganisms in digestion solution is constrained by magnetic attraction. To overcome this limitation and prevent magnetite aggregation, the core-shell composite materials with carbon outer layer enveloping magnetite core particles (Fe3O4@C) were developed. The impact of Fe3O4@C with varying Fe3O4 mass ratios on the anaerobic methanogenesis capability in the treatment of chloramphenicol (CAP) wastewater was investigated. Experimental results demonstrated that Fe3O4@C not only enhanced chemical oxygen demand (COD) removal efficiency and biogas production by 2.42-13.18% and by 7.53%-23.25%, respectively, but also reduced the inhibition of microbial activity caused by toxic substances and the secretion of extracellular polymeric substances (EPS) by microorganisms responding to adverse environments. The reinforcing capability of Fe3O4@C increased with the rise in Fe3O4 content. Furthermore, High-throughput pyrosequencing illustrated that Fe3O4@C enhanced the relative abundance of Methanobacterium, a hydrogen-utilizing methanogen capable of participating in direct interspecies electron transfer (DIET), by 5%. Metagenomic analysis indicated that Fe3O4@C improved the decomposition of complex organics into simpler compounds by elevating functional genes encoding key enzymes associated with organic matter metabolism, acetogenesis, and hydrogenophilic methanogenesis pathways. These findings suggest that Fe3O4@C have the potential to strengthen both the hydrogenophilic methanogenesis and DIET processes. This insight offers a novel perspective on the anaerobic bioaugmentation of high-concentration refractory organic wastewater.


Subject(s)
Chloramphenicol , Ferrosoferric Oxide , Methane , Wastewater , Wastewater/chemistry , Ferrosoferric Oxide/chemistry , Anaerobiosis , Methane/metabolism , Carbon , Waste Disposal, Fluid/methods , Biological Oxygen Demand Analysis
8.
Structure ; 32(9): 1429-1442.e6, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39019034

ABSTRACT

Chloramphenicol (CHL) is an antibiotic targeting the peptidyl transferase center in bacterial ribosomes. We synthesized a new analog, CAM-BER, by substituting the dichloroacetyl moiety of CHL with a positively charged aromatic berberine group. CAM-BER suppresses bacterial cell growth, inhibits protein synthesis in vitro, and binds tightly to the 70S ribosome. Crystal structure analysis reveals that the bulky berberine group folds into the P site of the peptidyl transferase center (PTC), where it competes with the formyl-methionine residue of the initiator tRNA. Our toe-printing data confirm that CAM-BER acts as a translation initiation inhibitor in stark contrast to CHL, a translation elongation inhibitor. Moreover, CAM-BER induces a distinct rearrangement of conformationally restrained nucleotide A2059, suggesting that the 23S rRNA plasticity is significantly higher than previously thought. CAM-BER shows potential in avoiding CHL resistance and presents opportunities for developing novel berberine derivatives of CHL through medicinal chemistry exploration.


Subject(s)
Berberine , Chloramphenicol , Ribosomes , Chloramphenicol/pharmacology , Chloramphenicol/chemistry , Chloramphenicol/metabolism , Berberine/pharmacology , Berberine/chemistry , Berberine/analogs & derivatives , Berberine/metabolism , Ribosomes/metabolism , Ribosomes/drug effects , Crystallography, X-Ray , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Models, Molecular , Escherichia coli/metabolism , Escherichia coli/genetics , Escherichia coli/drug effects , Binding Sites , RNA, Ribosomal, 23S/metabolism , RNA, Ribosomal, 23S/chemistry , Peptidyl Transferases/metabolism , Peptidyl Transferases/chemistry , Protein Biosynthesis/drug effects , Nucleic Acid Conformation
9.
Anal Bioanal Chem ; 416(20): 4435-4445, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38981911

ABSTRACT

Rapid, efficient, versatile, easy-to-use, and non-expensive analytical approaches are globally demanded for food analysis. Many ambient ionization approaches based on electrospray ionization (ESI) have been developed recently for the rapid molecular characterization of food products. However, those approaches mainly suffer from insufficient signal duration for comprehensive chemical characterization by tandem MS analysis. Here, a commercially available disposable gel loading tip is used as a low-cost emitter for the direct ionization of untreated food samples. The most important advantages of our approach include high stability, and durability of the signal (> 10 min), low cost (ca. 0.1 USD per run), low sample and solvent consumption, prevention of tip clogging and discharge, operational simplicity, and potential for automation. Quantitative analysis of sulfapyridine, HMF (hydroxymethylfurfural), and chloramphenicol in real sample shows the limit-of-detection 0.1 µg mL-1, 0.005 µg mL-1, 0.01 µg mL-1; the linearity range 0.1-5 µg mL-1, 0.005-0.25 µg mL-1, 0.01-1 µg mL-1; and the linear fits R2 ≥ 0.980, 0.991, 0.986. Moreover, we show that tip-ESI can also afford sequential molecular ionization of untreated viscous samples, which is difficult to achieve by conventional ESI. We conclude that tip-ESI-MS is a versatile analytical approach for the rapid chemical analysis of untreated food samples.


Subject(s)
Food Analysis , Limit of Detection , Spectrometry, Mass, Electrospray Ionization , Spectrometry, Mass, Electrospray Ionization/methods , Food Analysis/methods , Gels/chemistry , Chloramphenicol/analysis , Food Contamination/analysis , Furaldehyde/analysis , Furaldehyde/analogs & derivatives
10.
Food Chem ; 458: 140184, 2024 Nov 15.
Article in English | MEDLINE | ID: mdl-38968708

ABSTRACT

The public health concern of antibiotic residues in animal-origin food has been a long-standing issue. In this work, we present a novel method for antibiotic detection, leveraging optical weak value amplification and harnessing an indirect competitive inhibition assay, which significantly boosts the system's sensitivity in identifying small molecule antibiotics. We chose chloramphenicol as a model compound and mixed it with chloramphenicol-bovine serum albumin conjugates to bind to the chloramphenicol antibody competitively. We achieved a broad linear detection range of up to 3.24 ng/mL and a high concentration resolution of 33.20 pg/mL. To further validate the universality of our proposed detection methodology, we successfully applied it to testing gibberellin and tetracycline. Moreover, we conducted regeneration experiments and real-sample correlation studies. This study introduces a novel strategy for the label-free optical sensing of small molecule antibiotics, greatly expanding the range of applications for sensors utilizing optical weak value amplification.


Subject(s)
Anti-Bacterial Agents , Chloramphenicol , Chloramphenicol/analysis , Anti-Bacterial Agents/analysis , Anti-Bacterial Agents/pharmacology , Food Contamination/analysis , Animals , Serum Albumin, Bovine/chemistry , Limit of Detection
11.
PLoS One ; 19(7): e0305137, 2024.
Article in English | MEDLINE | ID: mdl-38950036

ABSTRACT

Electrospun (ES) fibrous nanomaterials have been widely investigated as novel biomaterials. These biomaterials have to be safe and biocompatible; hence, they need to be tested for cytotoxicity before being administered to patients. The aim of this study was to develop a suitable and biorelevant in vitro cytotoxicity assay for ES biomaterials (e.g. wound dressings). We compared different in vitro cytotoxicity assays, and our model wound dressing was made from polycaprolactone and polyethylene oxide and contained chloramphenicol as the active pharmaceutical ingredient. Baby Hamster Kidney cells (BHK-21), human primary fibroblasts and MTS assays together with real-time cell analysis were selected. The extract exposure and direct contact safety evaluation setups were tested together with microscopic techniques. We found that while extract exposure assays are suitable for the initial testing, the biocompatibility of the biomaterial is revealed in in vitro direct contact assays where cell interactions with the ES wound dressing are evaluated. We observed significant differences in the experimental outcome, caused by the experimental set up modification such as cell line choice, cell medium and controls used, conducting the phosphate buffer washing step or not. A more detailed technical protocol for the in vitro cytotoxicity assessment of ES wound dressings was developed.


Subject(s)
Bandages , Biocompatible Materials , Wound Healing , Animals , Wound Healing/drug effects , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Humans , Cell Line , Materials Testing , Cricetinae , Polyesters/chemistry , Fibroblasts/drug effects , Anti-Infective Agents/pharmacology , Polyethylene Glycols/chemistry , Chloramphenicol/pharmacology
12.
Spectrochim Acta A Mol Biomol Spectrosc ; 322: 124732, 2024 Dec 05.
Article in English | MEDLINE | ID: mdl-38971083

ABSTRACT

Three functional magnetic nanocatalytic probe, which integrates recognition, catalytic amplification, and separation enrichment, is a new approach to construct a simple, fast, highly selective, and sensitive analytical method. In this article, a new magnetic nanosurface molecularly imprinted polymer nanoprobe (Fe3O4@MIP) with trifunctionality was rapidly prepared using a microwave-assisted method with magnetic Fe3O4 nanoparticles as a substrate, chloramphenicol (CAP) as a template molecule, and methacrylic acid as a functional monomer. The characterized nanoprobe was found that could specifically recognize CAP, strongly catalyze the new indicator nanoreaction of fructose (DF)-HAuCl4. The gold nanoparticles (AuNPs) exhibit strong resonance Rayleigh scattering (RRS) and surface enhanced Raman scattering (SERS) effects. Upon addition of CAP, the SERS/RRS signals were linearly weakened. Accordingly, a new SERS/RRS analysis platform for highly sensitive and selective determination of CAP was constructed. The SERS linear range was 0.0125-0.1 nmol/L, with detection limit (DL) of 0.004 nmol/L CAP. Furthermore, it could be combined with magnet-enriched separation to further improve the sensitivity, with a DL of 0.04 pmol/L CAP. The SERS method has been used for the determination of CAP in real samples, with relative standard deviations of 2.37-9.89 % and the recovery of 95.24-107.1 %.


Subject(s)
Chloramphenicol , Limit of Detection , Spectrum Analysis, Raman , Chloramphenicol/analysis , Spectrum Analysis, Raman/methods , Gold/chemistry , Molecularly Imprinted Polymers/chemistry , Magnetite Nanoparticles/chemistry , Catalysis , Metal Nanoparticles/chemistry
13.
Arch Microbiol ; 206(7): 298, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38860999

ABSTRACT

A decreased chloramphenicol susceptibility in Haemophilus influenzae is commonly caused by the activity of chloramphenicol acetyltransferases (CATs). However, the involvement of membrane proteins in chloramphenicol susceptibility in H. influenzae remains unclear. In this study, chloramphenicol susceptibility testing, whole-genome sequencing, and analyses of membrane-related genes were performed in 51 H. influenzae isolates. Functional complementation assays and structure-based protein analyses were conducted to assess the effect of proteins with sequence substitutions on the minimum inhibitory concentration (MIC) of chloramphenicol in CAT-negative H. influenzae isolates. Six isolates were resistant to chloramphenicol and positive for type A-2 CATs. Of these isolates, A3256 had a similar level of CAT activity but a higher chloramphenicol MIC relative to the other resistant isolates; it also had 163 specific variations in 58 membrane genes. Regarding the CAT-negative isolates, logistic regression and receiver operator characteristic curve analyses revealed that 48T > G (Asn16Lys), 85 C > T (Leu29Phe), and 88 C > A (Leu30Ile) in HI_0898 (emrA), and 86T > G (Phe29Cys) and 141T > A (Ser47Arg) in HI_1177 (artM) were associated with enhanced chloramphenicol susceptibility, whereas 997G > A (Val333Ile) in HI_1612 (hmrM) was associated with reduced chloramphenicol susceptibility. Furthermore, the chloramphenicol MIC was lower in the CAT-negative isolates with EmrA-Leu29Phe/Leu30Ile or ArtM-Ser47Arg substitution and higher in those with HmrM-Val333Ile substitution, relative to their counterparts. The Val333Ile substitution was associated with enhanced HmrM protein stability and flexibility and increased chloramphenicol MICs in CAT-negative H. influenzae isolates. In conclusion, the substitution in H. influenzae multidrug efflux pump HmrM associated with reduced chloramphenicol susceptibility was characterised.


Subject(s)
Amino Acid Substitution , Anti-Bacterial Agents , Bacterial Proteins , Chloramphenicol , Haemophilus influenzae , Humans , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Chloramphenicol/pharmacology , Chloramphenicol O-Acetyltransferase/genetics , Chloramphenicol O-Acetyltransferase/metabolism , Chloramphenicol Resistance/genetics , Drug Resistance, Multiple, Bacterial/genetics , Haemophilus Infections/microbiology , Haemophilus influenzae/drug effects , Haemophilus influenzae/genetics , Membrane Transport Proteins/genetics , Membrane Transport Proteins/metabolism , Microbial Sensitivity Tests , Whole Genome Sequencing
14.
Microbiol Spectr ; 12(8): e0354823, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-38916360

ABSTRACT

The aim of this study was to evaluate the proportion of resistance to a temocillin, tigecycline, ciprofloxacin, and chloramphenicol phenotype called t2c2 that resulted from mutations within the ramAR locus among extended-spectrum ß-lactamases-Enterobacterales (ESBL-E) isolated in three intensive care units for 3 years in a French university hospital. Two parallel approaches were performed on all 443 ESBL-E included: (i) the minimal inhibitory concentrations of temocillin, tigecycline, ciprofloxacin, and chloramphenicol were determined and (ii) the genomes obtained from the Illumina sequencing platform were analyzed to determine multilocus sequence types, resistomes, and diversity of several tetR-associated genes including ramAR operon. Among the 443 ESBL-E strains included, isolates of Escherichia coli (n = 194), Klebsiella pneumoniae (n = 122), and Enterobacter cloacae complex (Ecc) (n = 127) were found. Thirty-one ESBL-E strains (7%), 16 K. pneumoniae (13.1%), and 15 Ecc (11.8%) presented the t2c2 phenotype in addition to their ESBL profile, whereas no E. coli presented these resistances. The t2c2 phenotype was invariably reversible by the addition of Phe-Arg-ß-naphthylamide, indicating a role of resistance-nodulation-division pumps in these observations. Mutations associated with the t2c2 phenotype were restricted to RamR, the ramAR intergenic region (IR), and AcrR. Mutations in RamR consisted of C- or N-terminal deletions and amino acid substitutions inside its DNA-binding domain or within key sites of protein-substrate interactions. The ramAR IR showed nucleotide substitutions involved in the RamR DNA-binding domain. This diversity of sequences suggested that RamR and the ramAR IR represent major genetic events for bacterial antimicrobial resistance.IMPORTANCEMorbimortality caused by infectious diseases is very high among patients hospitalized in intensive care units (ICUs). A part of these outcomes can be explained by antibiotic resistance, which delays the appropriate therapy. The transferable antibiotic resistance gene is a well-known mechanism to explain the high rate of multidrug resistance (MDR) bacteria in ICUs. This study describes the prevalence of chromosomal mutations, which led to additional antibiotic resistance among MDR bacteria. More than 12% of Klebsiella pneumoniae and Enterobacter cloacae complex strains presented mutations within the ramAR locus associated with a dysregulation of an efflux pump called AcrAB-TolC and a porin: OmpF. These dysregulations led to an increase in antibiotic output notably tigecycline, ciprofloxacin, and chloramphenicol associated with a decrease of input for beta-lactam, especially temocillin. Mutations within transcriptional regulators such as ramAR locus played a major role in antibiotic resistance dissemination and need to be further explored.


Subject(s)
Anti-Bacterial Agents , Bacterial Proteins , Drug Resistance, Multiple, Bacterial , Klebsiella pneumoniae , beta-Lactamases , Humans , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , beta-Lactamases/genetics , beta-Lactamases/metabolism , Chloramphenicol/pharmacology , Ciprofloxacin/pharmacology , Drug Resistance, Multiple, Bacterial/genetics , Enterobacter cloacae/genetics , Enterobacter cloacae/drug effects , Enterobacter cloacae/enzymology , Enterobacteriaceae/genetics , Enterobacteriaceae/drug effects , Enterobacteriaceae/enzymology , Enterobacteriaceae Infections/microbiology , Escherichia coli/genetics , Escherichia coli/drug effects , Intensive Care Units , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/drug effects , Microbial Sensitivity Tests , Multilocus Sequence Typing , Mutation , Tigecycline/pharmacology
15.
Food Chem ; 457: 140100, 2024 Nov 01.
Article in English | MEDLINE | ID: mdl-38901352

ABSTRACT

Chloramphenicol (CAP) poses a threat to human health due to its toxicity and bioaccumulation, and it is very important to measure it accurately and sensitively. This work explored a host-guest recognition strategy to mediate dual aggregation-induced electrochemiluminescence (AIECL) of 1,1,2,2-tetrakis(4-(pyridin-4-yl) phenyl)-ethene (TPPE) for ratio detection of CAP, in which, cucurbit[8]uril (CB[8]) served as host to assemble guest TPPE. The resulting supramolecular complex CB[8]-TPPE exhibited excellent dual-AIECL-emission with signal strength approximately four times that of TPPE aggregates and black hole quencher-1 (BHQ1) could efficiently quench dual-AIECL signal. CB[8]-TPPE coupled dual-function quencher BHQ1 and high-efficiency DNA reactor to achieve ultra-sensitive detection of CAP, exhibiting a linearity range of 10 fmol·L-1-100 nmol·L-1 and limit of detection of 1.81 fmol·L-1. CB[8]-TPPE provides a novel way to improve the dual-emission of TPE derivatives and sets up a promising platform for CAP detection, demonstrating a good practical application potential.


Subject(s)
Chloramphenicol , Electrochemical Techniques , Luminescent Measurements , Chloramphenicol/analysis , Chloramphenicol/chemistry , Electrochemical Techniques/instrumentation , Luminescent Measurements/instrumentation , Luminescent Measurements/methods , Limit of Detection , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/analysis , Food Contamination/analysis , Bridged-Ring Compounds/chemistry , Luminescence , Imidazoles/chemistry , Heterocyclic Compounds, 2-Ring , Macrocyclic Compounds , Imidazolidines
16.
Food Chem ; 457: 140026, 2024 Nov 01.
Article in English | MEDLINE | ID: mdl-38924909

ABSTRACT

Despite the beneficial effects of antibiotics such as chloramphenicol (CAP), they exert some destructive impacts on human health. We designed an electrochemical sensor based on reduced graphene oxide (rGO)/Au/Co2CuS4 nanohybrid for determination of CAP in food and biological samples. The Co2CuS4 was synthesized from binuclear metal-organic framework (CoCu-BDC) through a two-step process. Nanohybrid was characterized by X-ray photoelectron spectroscopy and transmission electron microscopy. The rGO/Au/Co2CuS4 provides more active sites and good electrical conductivity to reduce charge transfer resistance and improve the electrocatalytic activity for determination of CAP. The prepared sensor has a wide linear range from 7 to 141 nM with a limit of detection of 2.5 nM and a limit of quantification of 21.92 nM. It also provided high selectivity and repeatability with a relative standard deviation of 2.6%. Stability studies showed that the electrode has acceptable performance with efficiency of 95% after 33 days.


Subject(s)
Chloramphenicol , Cobalt , Electrochemical Techniques , Gold , Graphite , Graphite/chemistry , Chloramphenicol/analysis , Chloramphenicol/chemistry , Electrochemical Techniques/instrumentation , Gold/chemistry , Cobalt/chemistry , Metal-Organic Frameworks/chemistry , Food Contamination/analysis , Limit of Detection , Anti-Bacterial Agents/analysis , Anti-Bacterial Agents/chemistry , Nanoparticles/chemistry , Animals , Oxides/chemistry
17.
Environ Res ; 259: 119447, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-38908660

ABSTRACT

The worldwide demand for antibiotics has experienced a notable surge, propelled by the repercussions of the COVID-19 pandemic and advancements in the global healthcare sector. A prominent challenge confronting humanity is the unregulated release of antibiotic-laden wastewater into the environment, posing significant threats to public health. The adoption of affordable carbon-based adsorbents emerges as a promising strategy for mitigating the contamination of antibiotic wastewater. Here, we report the synthesis of novel porous carbons (MPC) through a direct pyrolysis of MIL-53-NH2(Al) and tannic acid (TANA) under N2 atmosphere at 800 °C for 4 h. The effect of TANA amount ratios (0%-20%, wt wt-1) on porous carbon structure and adsorption performance was investigated. Results showed that TANA modification resulted in decreased surface area (1,600 m2 g-1-949 m2 g-1) and pore volume (2.3 cm3 g-1-1.7 cm3 g-1), but supplied hydroxyl functional groups. Adsorption kinetic, intraparticle diffusion, and isotherm were examined, indicating the best fit of Elovich and Langmuir models. 10%-TANA-MPC obtained an ultrahigh adsorption capacity of 564.4 mg g-1, which was approximately 2.1 times higher than that of unmodified porous carbon. 10%-TANA-MPC could be easily recycled up to 5 times, and after reuse, this adsorbent still remained highly stable in morphology and surface area. The contribution of H bonding, pore-filling, electrostatic and π-π interactions to chloramphenicol adsorption was clarified. It is recommended that TANA-modified MIL-53-NH2(Al)-derived porous carbons act as a potential adsorbent for removal of pollutants effectively.


Subject(s)
Carbon , Chloramphenicol , Tannins , Water Pollutants, Chemical , Tannins/chemistry , Adsorption , Chloramphenicol/chemistry , Porosity , Carbon/chemistry , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/analysis , Anti-Bacterial Agents/chemistry , Metal-Organic Frameworks/chemistry , Polyphenols
18.
Anal Methods ; 16(24): 3867-3877, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38828675

ABSTRACT

A Ti3C2Tx/MoS2/MWCNT@rGONR nanocomposite was prepared for the first time for building a sensitive electrochemical aptasening platform to simultaneously detect kanamycin (Kana) and chloramphenicol (Cap). Owing to their accordion-like structure, rich surface groups, and high charge mobility, Ti3C2Tx/MoS2/MWCNT@rGONR composites provided a spacious covalent immobilization surface and a better electrochemical aptasensing platform. The aptamers of Kana and Cap used in sensors enhance the selectivity. Furthermore, TiP, an ion exchanger, was used for loading more different metal ions functioning as labels to form a sandwich-type sensor together with Ti3C2Tx/MoS2/MWCNT@rGONR, improving the electrochemical sensitivity and obtaining a highly distinguishable signal readout. Under the optimized conditions, the sensor has good detection limits of 0.135 nmol L-1 and 0.173 nmol L-1 for Kana and Cap, respectively, at the same linearity concentration of 0.5-2500 nmol L-1. Finally, it was successfully applied for detection in milk and fish meat, and the results were compared with the standard method HPLC, indicating its great potential for food safety monitoring.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , Chloramphenicol , Electrochemical Techniques , Food Contamination , Kanamycin , Milk , Titanium , Chloramphenicol/analysis , Chloramphenicol/chemistry , Kanamycin/analysis , Kanamycin/chemistry , Electrochemical Techniques/methods , Aptamers, Nucleotide/chemistry , Titanium/chemistry , Animals , Milk/chemistry , Food Contamination/analysis , Biosensing Techniques/methods , Molybdenum/chemistry , Limit of Detection , Nanotubes, Carbon/chemistry , Graphite/chemistry , Nanocomposites/chemistry , Food Analysis/methods , Anti-Bacterial Agents/analysis , Anti-Bacterial Agents/chemistry , Fishes , Disulfides
19.
Talanta ; 277: 126430, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38878510

ABSTRACT

In the present work, we developed an aptasensor to determine chloramphenicol (CAP) based on the dual signal output of photoelectrochemistry (PEC) and colorimetry. The Fe3+-doped porous tungsten trioxide was prepared by sol-gel method and coated on the ITO conductive glass to form ITO/p-W(Fe)O3. After assembling the captured DNA (cDNA) and the aptamer of CAP (apt) successively, the constructed ITO/p-W(Fe)O3-cDNA/apt aptasensor exhibited excellent photocurrent response under visible light irradiation in the presence of glucose, which provided the feasibility for PEC measurement with high sensitivity. In the presence of CAP, the apt left the ITO/p-W(Fe)O3 surface and AuNPs linked on the probe DNA would be assembled on it, which led to the decrease of photocurrent. Thanks to the oxidase-mimic catalytic performance of AuNPs and the recycling catalytic hydrolysis by exonuclease I, the measurement signal of the aptasensor could be amplified significantly, and the photocurrent decrease of the aptasensor was linearly related to the concentration of CAP in the range of 1.0 pM-10.0 nM and low detection limit was 0.36 pM. Meanwhile, the H2O2 produced from catalytic oxidation of glucose could oxidize TMB to blue oxTMB under HRP catalysis, which absorbance at 652 nm was linearly related to the concentration of CAP in the range of 5.0 pM-10.0 nM and low detection limit was 1.72 pM. Therefore, an aptasensor that determine CAP in real samples was successfully constructed with good precision of the relative standard deviation less than 5.7 % for PEC method and 7.3 % for colorimetric method, which can meet the analysis needs in different scenarios.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , Chloramphenicol , Colorimetry , Electrochemical Techniques , Gold , Metal Nanoparticles , Chloramphenicol/analysis , Chloramphenicol/chemistry , Aptamers, Nucleotide/chemistry , Colorimetry/methods , Biosensing Techniques/methods , Electrochemical Techniques/methods , Gold/chemistry , Metal Nanoparticles/chemistry , Limit of Detection , Oxides/chemistry , Photochemical Processes , Anti-Bacterial Agents/analysis , Anti-Bacterial Agents/chemistry , Tungsten
20.
J Colloid Interface Sci ; 672: 236-243, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-38838631

ABSTRACT

This study reports the development of a photocatalytic electrochemical aptasensor for the purpose of detecting chloramphenicol (CAP) antibiotic residues in water by utilizing SYBR Green I (SG) and chemically exfoliated MoS2 (ce-MoS2) as synergistically signal-amplification platforms. The Au nanoparticles (AuNPs) were electrodeposited onto the surface of an indium tin oxide (ITO) electrode. After that, the thiolate-modified cDNA, also known as capture DNA, was combined with the aptamer. Subsequently, photosensitized SG molecules and ce-MoS2 nanomaterial were inserted into the groove of the resultant double-stranded DNA (dsDNA). The activation of the photocatalytic process upon exposure to light resulted in the generation of singlet oxygen. The singlet oxygen effectively split the dsDNA, resulting in significant enhancement in the current of [Fe(CN)6]3-/4-. When the CAP was present, both SG molecules and ce-MoS2 broke away from the dsDNA, which turned off the photosensitization response, leading to significant reduction in the current of [Fe(CN)6]3-/4-. Under the optimal conditions, the aptasensor exhibited a linear relationship between the current of [Fe(CN)6]3-/4- with logarithmic concentrations of CAP from 20 to 1000 nM, with a detection of limit (3σ) of 3.391 nM. The aptasensor also demonstrated good selectivity towards CAP in the presence of interfering antibiotics, such as tetracycline, streptomycin, levofloxacin, ciprofloxacin, and sulfadimethoxine. Additionally, the results obtained from the analysis of natural water samples using the proposed aptasensor were consistent with the findings acquired through the use of a liquid chromatograph-mass spectrometer. Therefore, with its simplicity and high selectivity, this aptasensor can potentially detect alternative antibiotics in environmental water samples by replacing the aptamers based on photosensitization.


Subject(s)
Aptamers, Nucleotide , Benzothiazoles , Biosensing Techniques , Chloramphenicol , Diamines , Disulfides , Electrochemical Techniques , Molybdenum , Organic Chemicals , Quinolines , Chloramphenicol/analysis , Aptamers, Nucleotide/chemistry , Electrochemical Techniques/methods , Molybdenum/chemistry , Diamines/chemistry , Disulfides/chemistry , Benzothiazoles/chemistry , Quinolines/chemistry , Organic Chemicals/chemistry , Biosensing Techniques/methods , Metal Nanoparticles/chemistry , Gold/chemistry , Photosensitizing Agents/chemistry , Anti-Bacterial Agents/analysis , Limit of Detection , Water Pollutants, Chemical/analysis , Photochemical Processes , Particle Size
SELECTION OF CITATIONS
SEARCH DETAIL