Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 9.379
Filter
1.
J Am Soc Mass Spectrom ; 35(7): 1394-1402, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38905538

ABSTRACT

Mass-spectrometry based assays in structural biology studies measure either intact or digested proteins. Typically, different mass spectrometers are dedicated for such measurements: those optimized for rapid analysis of peptides or those designed for high molecular weight analysis. A commercial trapped ion mobility-quadrupole-time-of-flight (TIMS-Q-TOF) platform is widely utilized for proteomics and metabolomics, with ion mobility providing a separation dimension in addition to liquid chromatography. The ability to perform high-quality native mass spectrometry of protein complexes, however, remains largely uninvestigated. Here, we evaluate a commercial TIMS-Q-TOF platform for analyzing noncovalent protein complexes by utilizing the instrument's full range of ion mobility, MS, and MS/MS (both in-source activation and collision cell CID) capabilities. The TIMS analyzer is able to be tuned gently to yield collision cross sections of native-like complexes comparable to those previously reported on various instrument platforms. In-source activation and collision cell CID were robust for both small and large complexes. TIMS-CID was performed on protein complexes streptavidin (53 kDa), avidin (68 kDa), and cholera toxin B (CTB, 58 kDa). Complexes pyruvate kinase (237 kDa) and GroEL (801 kDa) were beyond the trapping capabilities of the commercial TIMS analyzer, but TOF mass spectra could be acquired. The presented results indicate that the commercial TIMS-Q-TOF platform can be used for both omics and native mass spectrometry applications; however, modifications to the commercial RF drivers for both the TIMS analyzer and quadrupole (currently limited to m/z 3000) are necessary to mobility analyze protein complexes greater than about 60 kDa.


Subject(s)
Ion Mobility Spectrometry , Ion Mobility Spectrometry/methods , Tandem Mass Spectrometry/methods , Proteomics/methods , Pyruvate Kinase/chemistry , Pyruvate Kinase/analysis , Streptavidin/chemistry , Streptavidin/analysis , Cholera Toxin/analysis , Cholera Toxin/chemistry , Avidin/chemistry , Avidin/analysis , Proteins/analysis , Proteins/chemistry
2.
Clin Nutr ESPEN ; 62: 157-163, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38901937

ABSTRACT

AIMS: Patients with chronic obstructive pulmonary disease (COPD) frequently exhibit an inability to maintain postural balance. However, the contribution of increased intestinal permeability or leaky gut to the postural imbalance in COPD is not known. METHODS: We measured plasma zonulin, a marker of leaky gut, with relevance to postural balance in male controls (n = 70) and patients with mild (n = 67), moderate (n = 66), and severe (n = 58) COPD. We employed a short physical performance battery to evaluate postural balance in supine, tandem, and semi-tandem positions. We also measured handgrip strength (HGS), gait speed, plasma c-reactive proteins (CRP), and 8-isoprostanes as potential mechanistic connections between postural imbalance and leaky gut. RESULTS: COPD patients demonstrated higher plasma zonulin, CRP, and 8-isoprostanes levels and lower balance, HGS, and gait speed than controls (all p < 0.05). These findings were more robust in patients with moderate and severe than mild COPD. In addition, plasma zonulin exhibited significant potential in diagnosing poor balance, low HGS, and gait speed in COPD patients (all p < 0.05). We also found significant correlations of plasma zonulin with CRP and 8-isoprostanes, providing heightened inflammation and oxidative stress as mechanistic connections between leaky gut and postural imbalance. CONCLUSION: Plasma zonulin may be helpful in evaluating postural imbalance in COPD patients. Repairing intestinal leaks can be a therapeutic target to improve postural control in COPD.


Subject(s)
Biomarkers , C-Reactive Protein , Haptoglobins , Postural Balance , Pulmonary Disease, Chronic Obstructive , Humans , Male , Pulmonary Disease, Chronic Obstructive/physiopathology , Pulmonary Disease, Chronic Obstructive/blood , Aged , Middle Aged , C-Reactive Protein/metabolism , Biomarkers/blood , Hand Strength , Protein Precursors/blood , Cholera Toxin/blood , Case-Control Studies , Permeability , Dinoprost/analogs & derivatives
3.
Nanoscale ; 16(26): 12406-12410, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38819090

ABSTRACT

The optimal structure of synthetic glycopolymers for GM1 mimetics was determined through Bayesian optimization. The interactions of glycopolymers carrying galactose and neuraminic acid units in different compositions with cholera toxin B subunit (CTB) were assessed by an enzyme-linked immunosorbent assay (ELISA). Gaussian process regression, using the ELISA results, predicted the composition of glycopolymers that would exhibit stronger interactions with CTB. Following five cycles of optimization, the glycopolymers carrying 60 mol% galactose and 25 mol% neuraminic acid demonstrated an IC50 value of 75 µM for CTB, representing the lowest value among the synthesized glycopolymers.


Subject(s)
Bayes Theorem , Cholera Toxin , Galactose , Cholera Toxin/chemistry , Cholera Toxin/metabolism , Galactose/chemistry , Polymers/chemistry , Enzyme-Linked Immunosorbent Assay , G(M1) Ganglioside/chemistry
4.
Biochem Biophys Res Commun ; 716: 149991, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38704888

ABSTRACT

Cholera toxin (Ctx) is a major virulence factor produced by Vibrio cholerae that can cause gastrointestinal diseases, including severe watery diarrhea and dehydration, in humans. Ctx binds to target cells through multivalent interactions between its B-subunit pentamer and the receptor ganglioside GM1 present on the cell surface. Here, we identified a series of tetravalent peptides that specifically bind to the receptor-binding region of the B-subunit pentamer using affinity-based screening of multivalent random-peptide libraries. These tetravalent peptides efficiently inhibited not only the cell-elongation phenotype but also the elevated cAMP levels, both of which are induced by Ctx treatment in CHO cells or a human colon carcinoma cell line (Caco-2 cells), respectively. Importantly, one of these peptides, NRR-tet, which was highly efficient in these two activities, markedly inhibited fluid accumulation in the mouse ileum caused by the direct injection of Ctx. In consistent, NRR-tet reduced the extensive Ctx-induced damage of the intestinal villi. After NRR-tet bound to Ctx, the complex was incorporated into the cultured epithelial cells and accumulated in the recycling endosome, affecting the retrograde transport of Ctx from the endosome to the Golgi, which is an essential process for Ctx to exert its toxicity in cells. Thus, NRR-tet may be a novel type of therapeutic agent against cholera, which induces the aberrant transport of Ctx in the intestinal epithelial cells, detoxifying the toxin.


Subject(s)
Cholera Toxin , Cricetulus , Cholera Toxin/metabolism , Humans , Animals , Mice , CHO Cells , Caco-2 Cells , Peptides/pharmacology , Peptides/metabolism , Peptides/chemistry , Protein Transport/drug effects , Cholera/drug therapy , Cholera/metabolism , Intestinal Mucosa/metabolism , Intestinal Mucosa/drug effects
5.
Front Immunol ; 15: 1362289, 2024.
Article in English | MEDLINE | ID: mdl-38812523

ABSTRACT

Introduction: Innate immune training is a metabolic, functional, and epigenetic long-term reprogramming of innate cells triggered by different stimuli. This imprinting also reaches hematopoietic precursors in the bone marrow to sustain a memory-like phenotype. Dendritic cells (DCs) can exhibit memory-like responses, enhanced upon subsequent exposure to a pathogen; however, whether this imprinting is lineage and stimulus-restricted is still being determined. Nevertheless, the functional consequences of DCs training on the adaptive and protective immune response against non-infectious diseases remain unresolved. Methods: We evaluated the effect of the nontoxic cholera B subunit (CTB), LPS and LTA in the induction of trained immunity in murine DCs revealed by TNFa and LDH expression, through confocal microscopy. Additionally, we obtained bone marrow DCs (BMDCs) from mice treated with CTB, LPS, and LTA and evaluated training features in DCs and their antigen-presenting cell capability using multiparametric cytometry. Finally, we design an experimental melanoma mouse model to demonstrate protection induced by CTB-trained DCs in vivo. Results: CTB-trained DCs exhibit increased expression of TNFa, and metabolic reprogramming indicated by LDH expression. Moreover, CTB training has an imprint on DC precursors, increasing the number and antigen-presenting function in BMDCs. We found that training by CTB stimulates the recruitment of DC precursors and DCs infiltration at the skin and lymph nodes. Interestingly, training-induced by CTB promotes a highly co-stimulatory phenotype in tumor-infiltrating DCs (CD86+) and a heightened functionality of exhausted CD8 T cells (Ki67+, GZMB+), which were associated with a protective response against melanoma challenge in vivo. Conclusion: Our work indicates that CTB can induce innate immune training on DCs, which turns into an efficient adaptive immune response in the melanoma model and might be a potential immunotherapeutic approach for tumor growth control.


Subject(s)
CD8-Positive T-Lymphocytes , Cholera Toxin , Dendritic Cells , Melanoma, Experimental , Mice, Inbred C57BL , Animals , Dendritic Cells/immunology , Dendritic Cells/metabolism , Mice , CD8-Positive T-Lymphocytes/immunology , Cholera Toxin/immunology , Cholera Toxin/pharmacology , Melanoma, Experimental/immunology , Immunity, Innate , Female , Immunologic Memory , Trained Immunity
7.
Rheumatol Int ; 44(8): 1487-1499, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38743252

ABSTRACT

BACKGROUND: A significant number of patients with axial spondyloarthritis (axSpA) do not respond to biological therapy. Therefore, we decided to investigate the specificity of this group of patients and, in particular, whether haptoglobin (Hp), its polymorphism and zonulin, in addition to other clinical features, are predictors of poor response to biological treatment. METHODS: 48 patients with axSpA who were unsuccessfully treated with standard drugs were converted to biological treatment, and from this time on, a 12-week follow-up was started to assess the failure of biological treatment (Bath Ankylosing Spondylitis Disease Activity Index (BASDAI) decrease < 2 points). Predictors of treatment failure were identified using logistic regression analysis. RESULTS: 21% of subjects had biological treatment failure. Patients who had a higher zonulin level, a history of frequent infections, were older, had inflammatory bowel disease (IBD), had a lower Hp level at the time of inclusion in biological therapy showed an increased risk of treatment failure. CONCLUSIONS: The results of the study support the hypothesis that the effectiveness of biological treatment of axSpA is limited by changed microbiota and intestinal epithelial barrier dysfunction, as an increased risk of biological treatment failure was observed in patients who were older, had higher zonulin level, IBD and repeated courses of antibiotics due to frequent infections. Therefore, starting biological treatment should be followed by reducing intestinal permeability and regulating the disturbed gut microbiome.


Subject(s)
Axial Spondyloarthritis , Cholera Toxin , Dysbiosis , Haptoglobins , Permeability , Treatment Failure , Humans , Female , Male , Adult , Prospective Studies , Middle Aged , Axial Spondyloarthritis/drug therapy , Protein Precursors , Gastrointestinal Microbiome , Biological Products/therapeutic use , Biological Products/adverse effects , Intestinal Mucosa/drug effects , Intestinal Mucosa/microbiology , Polymorphism, Genetic , Risk Factors , Intestinal Barrier Function
8.
AIDS ; 38(8): 1163-1171, 2024 07 01.
Article in English | MEDLINE | ID: mdl-38564437

ABSTRACT

The relationships between alterations in the intestinal barrier, and bacterial translocation with the development of metabolic complications in youth with perinatally acquired HIV (YPHIV) have not been investigated. The PHACS Adolescent Master Protocol enrolled YPHIV across 15 U.S. sites, including Puerto Rico, from 2007 to 2009. For this analysis, we included YPHIV with HIV viral load 1000 c/ml or less, with at least one measurement of homeostatic assessment of insulin resistance (HOMA-IR) or nonhigh density lipoprotein (non-HDLc) between baseline and year 3 and plasma levels of intestinal fatty-acid binding protein (I-FABP), lipopolysaccharide-binding protein (LBP), and zonulin levels at baseline. We fit linear regression models using generalized estimating equations to assess the association of baseline log 10 gut markers with log 10 HOMA-IR and non-HDLc at all timepoints. HOMA-IR or non-HDLc was measured in 237, 189, and 170 PHIV at baseline, Yr2, and Yr3, respectively. At baseline, median age (Q1, Q3) was 12 years (10, 14), CD4 + cell count was 762 cells/µl (574, 984); 90% had HIV RNA less than 400 c/ml. For every 10-fold higher baseline I-FABP, HOMA-IR dropped 0.85-fold at baseline and Yr2. For a 10-fold higher baseline zonulin, there was a 1.35-fold increase in HOMA-IR at baseline, 1.23-fold increase in HOMA-IR at Yr2, and 1.20-fold increase in HOMA-IR at Yr3 in adjusted models. For a 10-fold higher baseline LBP, there was a 1.23-fold increase in HOMA-IR at baseline in the unadjusted model, but this was slightly attenuated in the adjusted model. Zonulin was associated with non-HDLc at baseline, but not for the other time points. Despite viral suppression, intestinal damage may influence downstream insulin sensitivity in YPHIV.


Subject(s)
Fatty Acid-Binding Proteins , HIV Infections , Haptoglobins , Insulin Resistance , Humans , Male , Adolescent , Female , Child , Fatty Acid-Binding Proteins/blood , Haptoglobins/analysis , Haptoglobins/metabolism , Puerto Rico , Protein Precursors/blood , United States , Carrier Proteins/blood , Cholera Toxin/blood , Membrane Glycoproteins/blood , Permeability , Acute-Phase Proteins/analysis , Viral Load
9.
J Cell Biol ; 223(7)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38578285

ABSTRACT

IRE1α is an endoplasmic reticulum (ER) sensor that recognizes misfolded proteins to induce the unfolded protein response (UPR). We studied cholera toxin (CTx), which invades the ER and activates IRE1α in host cells, to understand how unfolded proteins are recognized. Proximity labeling colocalized the enzymatic and metastable A1 segment of CTx (CTxA1) with IRE1α in live cells, where we also found that CTx-induced IRE1α activation enhanced toxicity. In vitro, CTxA1 bound the IRE1α lumenal domain (IRE1αLD), but global unfolding was not required. Rather, the IRE1αLD recognized a seven-residue motif within an edge ß-strand of CTxA1 that must locally unfold for binding. Binding mapped to a pocket on IRE1αLD normally occupied by a segment of the IRE1α C-terminal flexible loop implicated in IRE1α oligomerization. Mutation of the CTxA1 recognition motif blocked CTx-induced IRE1α activation in live cells, thus linking the binding event with IRE1α signal transduction and induction of the UPR.


Subject(s)
Cholera Toxin , Endoribonucleases , Protein Serine-Threonine Kinases , Unfolded Protein Response , Cholera Toxin/genetics , Cholera Toxin/metabolism , Endoplasmic Reticulum Stress , Endoribonucleases/genetics , Endoribonucleases/metabolism , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Signal Transduction , Humans , Animals , Mice , Cell Line
10.
Toxins (Basel) ; 16(4)2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38668619

ABSTRACT

Cholera toxoid is an established tool for use in cellular tracing in neuroscience and cell biology. We use a sortase labeling approach to generate site-specific N-terminally modified variants of both the A2-B5 heterohexamer and B5 pentamer forms of the toxoid. Both forms of the toxoid are endocytosed by GM1-positive mammalian cells, and while the heterohexameric toxoid was principally localized in the ER, the B5 pentamer showed an unexpectedly specific localization in the medial/trans-Golgi. This study suggests a future role for specifically labeled cholera toxoids in live-cell imaging beyond their current applications in neuronal tracing and labeling of lipid rafts in fixed cells.


Subject(s)
Cholera Toxin , Cysteine Endopeptidases , Golgi Apparatus , Humans , Cholera Toxin/metabolism , Cysteine Endopeptidases/metabolism , Golgi Apparatus/metabolism , Animals , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Aminoacyltransferases/metabolism , Aminoacyltransferases/genetics , Endocytosis
11.
Emerg Microbes Infect ; 13(1): 2343910, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38618740

ABSTRACT

Japanese encephalitis (JE), caused by the Japanese encephalitis virus (JEV), is a highly threatening disease with no specific treatment. Fortunately, the development of vaccines has enabled effective defense against JE. However, re-emerging genotype V (GV) JEV poses a challenge as current vaccines are genotype III (GIII)-based and provide suboptimal protection. Given the isolation of GV JEVs from Malaysia, China, and the Republic of Korea, there is a concern about the potential for a broader outbreak. Under the hypothesis that a GV-based vaccine is necessary for effective defense against GV JEV, we developed a pentameric recombinant antigen using cholera toxin B as a scaffold and mucosal adjuvant, which was conjugated with the E protein domain III of GV by genetic fusion. This GV-based vaccine antigen induced a more effective immune response in mice against GV JEV isolates compared to GIII-based antigen and efficiently protected animals from lethal challenges. Furthermore, a bivalent vaccine approach, inoculating simultaneously with GIII- and GV-based antigens, showed protective efficacy against both GIII and GV JEVs. This strategy presents a promising avenue for comprehensive protection in regions facing the threat of diverse JEV genotypes, including both prevalent GIII and GI as well as emerging GV strains.


Subject(s)
Encephalitis Virus, Japanese , Encephalitis, Japanese , Genotype , Japanese Encephalitis Vaccines , Encephalitis Virus, Japanese/genetics , Encephalitis Virus, Japanese/immunology , Encephalitis Virus, Japanese/classification , Animals , Encephalitis, Japanese/prevention & control , Encephalitis, Japanese/immunology , Encephalitis, Japanese/virology , Japanese Encephalitis Vaccines/immunology , Japanese Encephalitis Vaccines/administration & dosage , Japanese Encephalitis Vaccines/genetics , Mice , Antibodies, Viral/immunology , Antibodies, Viral/blood , Humans , Mice, Inbred BALB C , Female , Antigens, Viral/immunology , Antigens, Viral/genetics , Vaccine Efficacy , Cholera Toxin/genetics , Cholera Toxin/immunology
12.
Cell Rep ; 43(4): 113981, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38520688

ABSTRACT

Cholera toxin (CT), a bacterial exotoxin composed of one A subunit (CTA) and five B subunits (CTB), functions as an immune adjuvant. CTB can induce production of interleukin-1ß (IL-1ß), a proinflammatory cytokine, in synergy with a lipopolysaccharide (LPS), from resident peritoneal macrophages (RPMs) through the pyrin and NLRP3 inflammasomes. However, how CTB or CT activates these inflammasomes in the macrophages has been unclear. Here, we clarify the roles of inositol-requiring enzyme 1 alpha (IRE1α), an endoplasmic reticulum (ER) stress sensor, in CT-induced IL-1ß production in RPMs. In RPMs, CTB is incorporated into the ER and induces ER stress responses, depending on GM1, a cell membrane ganglioside. IRE1α-deficient RPMs show a significant impairment of CT- or CTB-induced IL-1ß production, indicating that IRE1α is required for CT- or CTB-induced IL-1ß production in RPMs. This study demonstrates the critical roles of IRE1α in activation of both NLRP3 and pyrin inflammasomes in tissue-resident macrophages.


Subject(s)
Cholera Toxin , Endoplasmic Reticulum Stress , Endoribonucleases , Interleukin-1beta , Protein Serine-Threonine Kinases , Interleukin-1beta/metabolism , Animals , Endoribonucleases/metabolism , Protein Serine-Threonine Kinases/metabolism , Endoplasmic Reticulum Stress/drug effects , Mice , Cholera Toxin/pharmacology , Cholera Toxin/metabolism , Inflammasomes/metabolism , Mice, Inbred C57BL , Macrophages/metabolism , Macrophages/drug effects , Macrophages, Peritoneal/metabolism , Macrophages, Peritoneal/drug effects , Macrophages, Peritoneal/immunology , Lipopolysaccharides/pharmacology , Endoplasmic Reticulum/metabolism
13.
J Appl Microbiol ; 135(3)2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38449342

ABSTRACT

Cholera, caused by Vibrio cholerae, is a severe diarrheal disease that necessitates prompt diagnosis and effective treatment. This review comprehensively examines various diagnostic methods, from traditional microscopy and culture to advanced nucleic acid testing like polymerase spiral reaction and rapid diagnostic tests, highlighting their advantages and limitations. Additionally, we explore evolving treatment strategies, with a focus on the challenges posed by antibiotic resistance due to the activation of the SOS response pathway in V. cholerae. We discuss promising alternative treatments, including low-pressure plasma sterilization, bacteriophages, and selenium nanoparticles. The paper emphasizes the importance of multidisciplinary approaches combining novel diagnostics and treatments in managing and preventing cholera, a persistent global health challenge. The current re-emergent 7th pandemic of cholera commenced in 1961 and shows no signs of abeyance. This is probably due to the changing genetic profile of V. cholerae concerning bacterial pathogenic toxins. Given this factor, we argue that the disease is effectively re-emergent, particularly in Eastern Mediterranean countries such as Lebanon, Syria, etc. This review considers the history of the current pandemic, the genetics of the causal agent, and current treatment regimes. In conclusion, cholera remains a significant global health challenge that requires prompt diagnosis and effective treatment. Understanding the history, genetics, and current treatments is crucial in effectively addressing this persistent and re-emergent disease.


Subject(s)
Bacteriophages , Cholera , Vibrio cholerae , Humans , Cholera/diagnosis , Cholera/epidemiology , Cholera/prevention & control , Vibrio cholerae/genetics , Bacteriophages/physiology , Phylogeny , Cholera Toxin/genetics , Cholera Toxin/metabolism
14.
Parkinsonism Relat Disord ; 123: 106948, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38554664

ABSTRACT

INTRODUCTION: Intestinal inflammation and gut microbiota dysbiosis can stimulate degeneration of dopaminergic neurons and development of Parkinson's disease (PD) via the gut-brain axis in certain patients. METHODS: In a case-control study, fecal markers of intestinal inflammation and permeability were measured using the ELISA method in PD patients and healthy controls. Motor and nonmotor symptoms were assessed using the Movement Disorder Society (MDS) Unified PD Rating Scale, Hoehn & Yahr scale, MDS Non-Motor Symptom Scale, Scales for Outcomes in PD - Autonomic Dysfunction, PD Sleep Scale - 2, Montreal Cognitive Assessment, Beck Anxiety Inventory, and Beck Depression Inventory-II. A correlation was established between the intestinal inflammation and permeability markers and PD symptoms. RESULTS: Higher levels of beta-defensin 2, zonulin and lactoferrin were recorded in PD patients compared to controls. Calprotectin and secretory immunoglobulin A showed no significant differences. Regression analysis indicated the roles of beta-defensin 2 and lactoferrin in predicting PD likelihood. Calprotectin yielded positive correlations with disease duration, depression, motor fluctuations, and gastrointestinal symptoms; beta defensin 2 with thermoregulation; and secretory immunoglobulin A with depression. Secretory immunoglobulin A showed negative correlation with age and age at disease onset, while zonulin showed negative correlation with the MDS Unified PD Rating Scale total score. CONCLUSIONS: Fecal markers differed in PD patients compared to controls and correlated with age, disease duration, and some nonmotor symptoms. Future studies should identify the subgroups of PD patients that are likely to develop intestinal inflammation.


Subject(s)
Haptoglobins , Lactoferrin , Parkinson Disease , Protein Precursors , beta-Defensins , Humans , Parkinson Disease/complications , Parkinson Disease/metabolism , Female , Male , Middle Aged , Aged , Case-Control Studies , Cholera Toxin/metabolism , Biomarkers , Leukocyte L1 Antigen Complex/analysis , Permeability , Feces/chemistry , Gastroenteritis/complications
15.
Toxins (Basel) ; 16(3)2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38535799

ABSTRACT

Mastering selective molecule trafficking across human cell membranes poses a formidable challenge in healthcare biotechnology while offering the prospect of breakthroughs in drug delivery, gene therapy, and diagnostic imaging. The cholera toxin B-subunit (CTB) has the potential to be a useful cargo transporter for these applications. CTB is a robust protein that is amenable to reengineering for diverse applications; however, protein redesign has mostly focused on modifications of the N- and C-termini of the protein. Exploiting the full power of rational redesign requires a detailed understanding of the contributions of the surface residues to protein stability and binding activity. Here, we employed Rosetta-based computational saturation scans on 58 surface residues of CTB, including the GM1 binding site, to analyze both ligand-bound and ligand-free structures to decipher mutational effects on protein stability and GM1 affinity. Complimentary experimental results from differential scanning fluorimetry and isothermal titration calorimetry provided melting temperatures and GM1 binding affinities for 40 alanine mutants among these positions. The results showed that CTB can accommodate diverse mutations while maintaining its stability and ligand binding affinity. These mutations could potentially allow modification of the oligosaccharide binding specificity to change its cellular targeting, alter the B-subunit intracellular routing, or impact its shelf-life and in vivo half-life through changes to protein stability. We anticipate that the mutational space maps presented here will serve as a cornerstone for future CTB redesigns, paving the way for the development of innovative biotechnological tools.


Subject(s)
Cholera Toxin , Mutagens , Humans , G(M1) Ganglioside , Ligands , Mutagenesis
16.
World J Gastroenterol ; 30(3): 268-279, 2024 Jan 21.
Article in English | MEDLINE | ID: mdl-38314127

ABSTRACT

BACKGROUND: Enterotoxins produce diarrhea through direct epithelial action and indirectly by activating the enteric nervous system. Calcium-sensing receptor (CaSR) inhibits both actions. The latter has been well documented in vitro but not in vivo. The hypothesis to be tested was that activating CaSR inhibits diarrhea in vivo. AIM: To determine whether CaSR agonists ameliorate secretory diarrhea evoked by cholera toxin (CTX) in mice. METHODS: CTX was given orally to C57BL/6 mice to induce diarrhea. Calcium and calcimimetic R568 were used to activate CaSR. To maximize their local intestinal actions, calcium was administered luminally via oral rehydration solution (ORS), whereas R568 was applied serosally using an intraperitoneal route. To verify that their actions resulted from the intestine, effects were also examined on Cre-lox intestine-specific CaSR knockouts. Diarrhea outcome was measured biochemically by monitoring changes in fecal Cl- or clinically by assessing stool consistency and weight loss. RESULTS: CTX induced secretory diarrhea, as evidenced by increases in fecal Cl-, stool consistency, and weight loss following CTX exposure, but did not alter CaSR, neither in content nor in function. Accordingly, calcium and R568 were each able to ameliorate diarrhea when applied to diseased intestines. Intestinal CaSR involvement is suggested by gene knockout experiments where the anti-diarrheal actions of R568 were lost in intestinal epithelial CaSR knockouts (villinCre/Casrflox/flox) and neuronal CaSR knockouts (nestinCre/Casrflox/flox). CONCLUSION: Treatment of acute secretory diarrheas remains a global challenge. Despite advances in diarrhea research, few have been made in the realm of diarrhea therapeutics. ORS therapy has remained the standard of care, although it does not halt the losses of intestinal fluid and ions caused by pathogens. There is no cost-effective therapeutic for diarrhea. This and other studies suggest that adding calcium to ORS or using calcimimetics to activate intestinal CaSR might represent a novel approach for treating secretory diarrheal diseases.


Subject(s)
Calcium , Diarrhea , Receptors, Calcium-Sensing , Animals , Mice , Cholera Toxin/adverse effects , Diarrhea/chemically induced , Diarrhea/drug therapy , Mice, Inbred C57BL , Receptors, Calcium-Sensing/genetics , Weight Loss
17.
mSphere ; 9(3): e0056523, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38391226

ABSTRACT

Vaccination is important to prevent cholera. There are limited data comparing anti-O-specific polysaccharide (OSP) and anti-cholera toxin-specific immune responses following oral whole-cell with cholera toxin B-subunit (WC-rBS) vaccine (Dukoral, Valneva) administration in different age groups. An understanding of the differences is relevant because young children are less well protected by oral cholera vaccines than older children and adults. We compared responses in 50 adults and 49 children (ages 2 to <18) who were administered two doses of WC-rBS at a standard 14-day interval. All age groups had significant IgA and IgG plasma-blast responses to the OSP and cholera toxin B-subunit (CtxB) antigens that peaked 7 days after vaccination. However, in adults and older children (ages 5 to <18), antibody responses directed at the OSP antigen were largely IgA and IgG, with a minimal IgM response, while younger children (ages 2 to <5) mounted significant increases in IgM with minimal increases in IgA and IgG antibody responses 30 days after vaccination. In adults, anti-OSP and CtxB memory B-cell responses were detected after completion of the vaccination series, while children only mounted CtxB-specific IgG memory B-cell responses and no OSP-memory B-cell responses. In summary, children and adults living in a cholera endemic area mounted different responses to the WC-rBS vaccine, which may be a result of more prior exposure to Vibrio cholerae in older participants. The absence of class-switched antibody responses and memory B-cell responses to OSP may explain why protection wanes more rapidly after vaccination in young children compared to older vaccinees.IMPORTANCEVaccination is an important strategy to prevent cholera. Though immune responses targeting the OSP of V. cholerae are believed to mediate protection against cholera, there are limited data on anti-OSP responses after vaccination in different age groups, which is important as young children are not well protected by current oral cholera vaccines. In this study, we found that adults mounted memory B-cell responses to OSP, which were not seen in children. Adults and older children mounted class-switched (IgG and IgA) serum antibody responses to OSP, which were not seen in young children who had only IgM responses to OSP. The lack of class-switched antibody responses and memory B-cell responses to OSP in younger participants may be due to lack of prior exposure to V. cholerae and could explain why protection wanes more rapidly after vaccination in young children.


Subject(s)
Cholera Vaccines , Cholera , Vibrio cholerae O1 , Adult , Child , Humans , Adolescent , Child, Preschool , Aged , Infant, Newborn , Cholera/prevention & control , Cholera Toxin , O Antigens , Immunoglobulin M , Antibodies, Bacterial , Immunoglobulin A , Vaccination , Antibody Formation , Immunoglobulin G
18.
Vaccine ; 42(7): 1549-1560, 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38320931

ABSTRACT

Tumor subunit vaccines have great potential in personalized cancer immunotherapy. They are usually administered with adjuvant owing to their low immunogenicity. Cholera toxin (CT) is a biological adjuvant with diverse biological functions and a long history of use. Our earlier study revealed that a CT-like chimeric protein co-delivered with murine granulocyte-macrophage colony stimulating factor (mGM-CSF) and prostate cancer antigen epitope could co-stimulate dendritic cells (DCs) and enhance cross presentation of tumor epitope. To further study the molecular mechanism of CT-like chimeric protein in cross presentation, major histocompatibility complex class I (MHC I)-restricted epitope 257-264 of ovalbumin (OVAT) was used as a model antigen peptide in this study. Recombinant A subunit and pentameric B subunit of CT protein were respectively genetically constructed and purified. Then both assembled into AB5 chimeric protein in vitro. Three different chimeric biomacromolecules containing mGM-CSF and OVAT were constructed according to the different fusion sites and whether the endoplasmic reticulum (ER) retention sequence was included. It was found that A2 domain and B subunit of CT were both available for loading epitopes and retaining GM1 affinity. The binding activity of GM1 was positively correlated with antigen endocytosis. Once internalized, DCs became mature and cross-presented antigen. KDEL helped the whole molecule to be retained in the ER, and this improved the cross presentation of antigen on MHC I molecules. In conclusion, hexameric CT-like chimeric protein with dual effects of GM1 affinity and ER retention sequence were potential in improvement of cross presentation. The results laid a foundation for designing personalized tumor vaccine based on CT-like chimeric protein molecular structure.


Subject(s)
Cholera Toxin , Neoplasms , Mice , Animals , Humans , Cholera Toxin/metabolism , Cross-Priming , G(M1) Ganglioside/metabolism , G(M1) Ganglioside/pharmacology , Recombinant Proteins/pharmacology , Adjuvants, Immunologic/pharmacology , Recombinant Fusion Proteins/genetics , Epitopes , Antigen Presentation
19.
Biochemistry ; 63(5): 587-598, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38359344

ABSTRACT

Production of soluble proteins is essential for structure/function studies; however, this usually requires milligram amounts of protein, which can be difficult to obtain with traditional expression systems. Recently, the Gram-negative bacterium Vibrio natriegens emerged as a novel and alternative host platform for production of proteins in high yields. Here, we used a commercial strain derived from V. natriegens (Vmax X2) to produce soluble bacterial and fungal proteins in milligram scale, which we struggled to achieve in Escherichia coli. These proteins include the cholera toxin (CT) and N-acetyl glucosamine-binding protein A (GbpA) from Vibrio cholerae, the heat-labile enterotoxin (LT) from E. coli and the fungal nematotoxin CCTX2 from Coprinopsis cinerea. CT, GbpA, and LT are secreted by the Type II secretion system in their natural hosts. When these three proteins were produced in Vmax, they were also secreted and could be recovered from the growth media. This simplified the downstream purification procedure and resulted in considerably higher protein yields compared to production in E. coli (6- to 26-fold increase). We also tested Vmax for protein perdeuteration using deuterated minimal media with deuterium oxide as solvent and achieved a 3-fold increase in yield compared to the equivalent protocol in E. coli. This is good news, since isotopic labeling is expensive and often ineffective but represents a necessary prerequisite for some structural biology techniques. Thus, Vmax represents a promising host for production of challenging expression targets and for protein perdeuteration in amounts suitable for structural biology studies.


Subject(s)
Escherichia coli , Vibrio , Escherichia coli/genetics , Escherichia coli/metabolism , Enterotoxins/metabolism , Cholera Toxin/metabolism
20.
Curr Opin Microbiol ; 77: 102421, 2024 02.
Article in English | MEDLINE | ID: mdl-38215547

ABSTRACT

Vibrio cholerae (V. cholerae), the etiological agent of cholera, uses cholera toxin (CT) to cause severe diarrheal disease. Cholera is still a significant cause of mortality worldwide with about half of all cholera cases and deaths occurring in children under five. Owing to the lack of cost-effective vaccination and poor vaccine efficacy in children, there is a need for alternative preventative and therapeutic strategies. Recent advances in our knowledge of the interplay between CT-induced disease and host-pathogen metabolism have opened the door for investigating how modulation of intestinal metabolism by V. cholerae during disease impacts host intestinal immunity, the gut microbiota, and pathogen-phage interactions. In this review article, we examine recent progress in our understanding of host-pathogen interactions during V. cholerae infection and discuss future work deciphering how modulation of gut metabolism during cholera intersects these processes to enable successful fecal-oral transmission of the pathogen.


Subject(s)
Bacteriophages , Cholera , Vibrio cholerae , Child , Humans , Vibrio cholerae/metabolism , Cholera Toxin/metabolism , Host-Pathogen Interactions , Bacteriophages/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...