Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.548
Filter
1.
Biointerphases ; 19(4)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-39051723

ABSTRACT

Once damaged, cartilage has poor intrinsic capacity to repair itself. Current cartilage repair strategies cannot restore the damaged tissue sufficiently. It is hypothesized that biomimetic scaffolds, which can recapitulate important properties of the cartilage extracellular matrix, play a beneficial role in supporting cell behaviors such as growth, cartilage differentiation, and integration with native cartilage, ultimately facilitating tissue recovery. Adipose-derived stem cells regenerated cartilage upon the sequential release of transforming growth factor ß1(TGFß1) and fibroblast growth factor 2(FGF2) using a nanofibrous scaffold, in order to get the recovery of functional cartilage. Experiments in vitro have demonstrated that the release sequence of growth factors FGF2 to TGFß1 is the most essential to promote adipose-derived stem cells into chondrocytes that then synthesize collagen II. Mouse subcutaneous implantation indicated that the treatment sequence of FGF2 to TGFß1 was able to significantly induce multiple increase in cartilage regeneration in vivo. This result demonstrates that the group treated with FGF2 to TGFß1 released from a nanofibrous scaffold provides a good strategy for cartilage regeneration by making a favorable microenvironment for cell growth and cartilage regeneration.


Subject(s)
Cell Differentiation , Fibroblast Growth Factor 2 , Nanofibers , Stem Cells , Tissue Scaffolds , Transforming Growth Factor beta1 , Animals , Fibroblast Growth Factor 2/pharmacology , Transforming Growth Factor beta1/metabolism , Transforming Growth Factor beta1/pharmacology , Mice , Nanofibers/chemistry , Cell Differentiation/drug effects , Tissue Scaffolds/chemistry , Stem Cells/cytology , Stem Cells/drug effects , Stem Cells/physiology , Chondrogenesis/drug effects , Cartilage/drug effects , Cartilage/cytology , Cartilage/physiology , Adipose Tissue/cytology , Chondrocytes/cytology , Chondrocytes/drug effects , Chondrocytes/physiology , Cells, Cultured , Tissue Engineering/methods
2.
Sci Rep ; 14(1): 15022, 2024 07 01.
Article in English | MEDLINE | ID: mdl-38951570

ABSTRACT

Cartilage tissue engineering aims to develop functional substitutes for treating cartilage defects and osteoarthritis. Traditional two-dimensional (2D) cell culture systems lack the complexity of native cartilage, leading to the development of 3D regenerative cartilage models. In this study, we developed a 3D model using Gelatin Methacryloyl (GelMA)-based hydrogels seeded with Y201 cells, a bone marrow mesenchymal stem cell line. The model investigated chondrogenic differentiation potential in response to Wnt3a stimulation within the GelMA scaffold and validated using known chondrogenic agonists. Y201 cells demonstrated suitability for the model, with increased proteoglycan content and upregulated chondrogenic marker expression under chondrogenic conditions. Wnt3a enhanced cell proliferation, indicating activation of the Wnt/ß-catenin pathway, which plays a role in cartilage development. GelMA hydrogels provided an optimal scaffold, supporting cell viability and proliferation. The 3D model exhibited consistent responses to chondrogenic agonists, with TGF-ß3 enhancing cartilage-specific extracellular matrix (ECM) production and chondrogenic differentiation. The combination of Wnt3a and TGF-ß3 showed synergistic effects, promoting chondrogenic differentiation and ECM production. This study presents a 3D regenerative cartilage model with potential for investigating cartilage biology, disease mechanisms, and drug screening. The model provides insights into complex cartilage regeneration mechanisms and offers a platform for developing therapeutic approaches for cartilage repair and osteoarthritis treatment.


Subject(s)
Cell Differentiation , Cell Proliferation , Chondrogenesis , Hydrogels , Mesenchymal Stem Cells , Tissue Engineering , Wnt3A Protein , Wnt3A Protein/metabolism , Chondrogenesis/drug effects , Tissue Engineering/methods , Cell Proliferation/drug effects , Hydrogels/chemistry , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/drug effects , Humans , Cartilage/metabolism , Gelatin/chemistry , Tissue Scaffolds/chemistry , Transforming Growth Factor beta3/metabolism , Transforming Growth Factor beta3/pharmacology , Cell Line , Extracellular Matrix/metabolism , Wnt Signaling Pathway/drug effects , Chondrocytes/metabolism , Chondrocytes/cytology , Animals
3.
Anal Cell Pathol (Amst) ; 2024: 1083143, 2024.
Article in English | MEDLINE | ID: mdl-38946863

ABSTRACT

Objectives: Osteochondral defects (OCDs) are localized areas of damaged cartilage and underlying subchondral bone that can produce pain and seriously impair joint function. Literature reports indicated that icariin (ICA) has the effect of promoting cartilage repair. However, its mechanism remains unclear. Here, we explored the effects of icariin and extracellular vesicles (EVs) from rabbit synovial-derived mesenchymal stem cells (rSMSCs) on repairing of OCDs. Materials and Methods: Rabbit primary genicular chondrocytes (rPGCs), knee skeletal muscle cells (rSMCKs), and rSMSCs, and extracellular vesicles derived from the latter two cells (rSMCK-EVs and rSMSC-EVs) were isolated and identified. The rPGCs were stimulated with ICA, rSMSC-EVs either separately or in combination. The rSMCK-EVs were used as a control. After stimulation, chondrogenic-related markers were analyzed by quantitative RT-PCR and western blotting. Cell proliferation was determined by the CCK-8 assay. The preventative effects of ICA and SMSC-EVs in vivo were determined by H&E and toluidine blue staining. Immunohistochemical analyses were performed to evaluate the levels of COL2A1 and ß-catenin in vivo. Results. In vitro, the proliferation of rPGCs was markedly increased by ICA treatment in a dose-dependent manner. When compared with ICA or rSMSC-EVs treatment alone, combined treatment with ICA and SMSC-EVs produced stronger stimulative effects on cell proliferation. Moreover, combined treatment with ICA and rSMSC-EVs promoted the expression of chondrogenic-related gene, including COL2A1, SOX-9, and RUNX2, which may be via the activation of the Wnt/ß-catenin pathway. In vivo, combined treatment with rSMSC-EVs and ICA promoted cartilage repair in joint bone defects. Results also showed that ICA or rSMSC-EVs both promoted the COL2A1 and ß-catenin protein accumulation in articular cartilage, and that was further enhanced by combined treatment with rSMSC-EVs and ICA. Conclusion: Our findings highlight the promising potential of using combined treatment with ICA and rSMSC-EVs for promoting osteochondral repair.


Subject(s)
Chondrocytes , Chondrogenesis , Extracellular Vesicles , Flavonoids , Mesenchymal Stem Cells , Synovial Membrane , Wnt Signaling Pathway , Animals , Rabbits , Flavonoids/pharmacology , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Wnt Signaling Pathway/drug effects , Extracellular Vesicles/metabolism , Chondrocytes/metabolism , Chondrocytes/drug effects , Synovial Membrane/metabolism , Synovial Membrane/cytology , Chondrogenesis/drug effects , Cell Proliferation/drug effects , beta Catenin/metabolism , Cartilage, Articular/metabolism , Cartilage, Articular/drug effects
4.
Sci Rep ; 14(1): 16396, 2024 07 16.
Article in English | MEDLINE | ID: mdl-39013921

ABSTRACT

Most of the conditions involving cartilaginous tissues are irreversible and involve degenerative processes. The aim of the present study was to fabricate a biocompatible fibrous and film scaffolds using electrospinning and casting techniques to induce chondrogenic differentiation for possible application in cartilaginous tissue regeneration. Polycaprolactone (PCL) electrospun nanofibrous scaffolds and PCL film were fabricated and incorporated with multi-walled carbon nanotubes (MWCNTs). Thereafter, coating of chondroitin sulfate (CS) on the fibrous and film structures was applied to promote chondrogenic differentiation of human dental pulp stem cells (hDPSCs). First, the morphology, hydrophilicity and mechanical properties of the scaffolds were characterized by scanning electron microscopy (SEM), spectroscopic characterization, water contact angle measurements and tensile strength testing. Subsequently, the effects of the fabricated scaffolds on stimulating the proliferation of human dental pulp stem cells (hDPSCs) and inducing their chondrogenic differentiation were evaluated via electron microscopy, flow cytometry and RT‒PCR. The results of the study demonstrated that the different forms of the fabricated PCL-MWCNTs scaffolds analyzed demonstrated biocompatibility. The nanofilm structures demonstrated a higher rate of cellular proliferation, while the nanofibrous architecture of the scaffolds supported the cellular attachment and differentiation capacity of hDPSCs and was further enhanced with CS addition. In conclusion, the results of the present investigation highlighted the significance of this combination of parameters on the viability, proliferation and chondrogenic differentiation capacity of hDPSCs seeded on PCL-MWCNT scaffolds. This approach may be applied when designing PCL-based scaffolds for future cell-based therapeutic approaches developed for chondrogenic diseases.


Subject(s)
Cell Differentiation , Chondrogenesis , Chondroitin Sulfates , Dental Pulp , Nanofibers , Nanotubes, Carbon , Polyesters , Stem Cells , Tissue Scaffolds , Humans , Dental Pulp/cytology , Chondroitin Sulfates/chemistry , Chondroitin Sulfates/pharmacology , Polyesters/chemistry , Polyesters/pharmacology , Nanofibers/chemistry , Cell Differentiation/drug effects , Chondrogenesis/drug effects , Stem Cells/cytology , Stem Cells/drug effects , Stem Cells/metabolism , Tissue Scaffolds/chemistry , Nanotubes, Carbon/chemistry , Cell Proliferation/drug effects , Cells, Cultured , Tissue Engineering/methods
5.
ACS Appl Mater Interfaces ; 16(29): 37683-37697, 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-38980692

ABSTRACT

Tissue engineering is theoretically considered a promising approach for repairing osteochondral defects. Nevertheless, the insufficient osseous support and integration of the cartilage layer and the subchondral bone frequently lead to the failure of osteochondral repair. Drawing from this, it was proposed that incorporating glycine-modified attapulgite (GATP) into poly(1,8-octanediol-co-citrate) (POC) scaffolds via the one-step chemical cross-linking is proposed to enhance cartilage and subchondral bone defect repair simultaneously. The effects of the GATP incorporation ratio on the physicochemical properties, chondrocyte and MC3T3-E1 behavior, and osteochondral defect repair of the POC scaffold were also evaluated. In vitro studies indicated that the POC/10% GATP scaffold improved cell proliferation and adhesion, maintained cell phenotype, and upregulated chondrogenesis and osteogenesis gene expression. Animal studies suggested that the POC/10% GATP scaffold has significant repair effects on both cartilage and subchondral bone defects. Therefore, the GATP-incorporated scaffold system with dual-lineage bioactivity showed potential application in osteochondral regeneration.


Subject(s)
Tissue Engineering , Tissue Scaffolds , Animals , Tissue Scaffolds/chemistry , Mice , Chondrocytes/cytology , Chondrocytes/drug effects , Chondrocytes/metabolism , Bone Regeneration/drug effects , Chondrogenesis/drug effects , Osteogenesis/drug effects , Cell Proliferation/drug effects , Rabbits , Bone and Bones/drug effects , Regeneration/drug effects
6.
J Nanobiotechnology ; 22(1): 445, 2024 Jul 28.
Article in English | MEDLINE | ID: mdl-39069607

ABSTRACT

BACKGROUND: The incidence of osteochondral defects caused by trauma, arthritis or tumours is increasing annually, but progress has not been made in terms of treatment methods. Due to the heterogeneous structure and biological characteristics of cartilage and subchondral bone, the integration of osteochondral repair is still a challenge. RESULTS: In the present study, a novel bilayer hydrogel scaffold was designed based on anatomical characteristics to imitate superficial cartilage and subchondral bone. The scaffold showed favourable biocompatibility, and the addition of an antioxidant nanozyme (LiMn2O4) promoted reactive oxygen species (ROS) scavenging by upregulating antioxidant proteins. The cartilage layer effectively protects against chondrocyte degradation in the inflammatory microenvironment. Subchondral bionic hydrogel scaffolds promote osteogenic differentiation of rat bone marrow mesenchymal stem cells (BMSCs) by regulating the AMPK pathway in vitro. Finally, an in vivo rat preclinical osteochondral defect model confirmed that the bilayer hydrogel scaffold efficiently promoted cartilage and subchondral bone regeneration. CONCLUSIONS: In general, our biomimetic hydrogel scaffold with the ability to regulate the inflammatory microenvironment can effectively repair osteochondral defects. This strategy provides a promising method for regenerating tissues with heterogeneous structures and biological characteristics.


Subject(s)
Bone Regeneration , Hydrogels , Mesenchymal Stem Cells , Osteogenesis , Rats, Sprague-Dawley , Tissue Scaffolds , Animals , Hydrogels/chemistry , Hydrogels/pharmacology , Tissue Scaffolds/chemistry , Rats , Mesenchymal Stem Cells/drug effects , Bone Regeneration/drug effects , Osteogenesis/drug effects , Chondrocytes/drug effects , Male , Cell Differentiation/drug effects , Inflammation , Tissue Engineering/methods , Reactive Oxygen Species/metabolism , Chondrogenesis/drug effects , Cartilage/drug effects , Cartilage, Articular/drug effects , Cells, Cultured
7.
J Nanobiotechnology ; 22(1): 453, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39080653

ABSTRACT

Bioactive agents have demonstrated regenerative potential for cell-free bone tissue engineering. Nevertheless, certain challenges persist, including ineffective delivery methods and confined therapeutic potency. Here, we demonstrated that the biomimetic calcium phosphate coating system (BioCaP) could effectively uptake and slowly release the incorporated bioactive agents compared to the surface absorption system via osteoclast-mediated degradation of BioCaP coatings. The release kinetics were determined as a function of time. The release rate was stable without remarkable burst release during the first 1 day, followed by a sustained release from day 7 to day 19. Then, we developed the bi-functional BioCaP-coated silk fibroin scaffolds enabling the effective co-delivery of TGF-ß3 and BMP-2 (SFI-T/SFI-B) and the corresponding slow release of TGF-ß3 and BMP-2 exhibited superior potential in promoting chondrogenesis and osteogenesis without impairing cell vitality in vitro. The SFI-T/SFI-B scaffolds could improve cartilage and bone regeneration in 5 × 4 mm rabbit osteochondral (OC) defect. These findings indicate that the biomimetic calcium-phosphate coated silk fibroin scaffolds with slowly co-released TGF-ß3 and BMP-2 effectively promote the repair of OC defects, hence facilitating the future clinical translation of controlled drug delivery in tissue engineering.


Subject(s)
Bone Morphogenetic Protein 2 , Bone Regeneration , Calcium Phosphates , Fibroins , Osteogenesis , Tissue Engineering , Tissue Scaffolds , Transforming Growth Factor beta3 , Fibroins/chemistry , Fibroins/pharmacology , Animals , Bone Morphogenetic Protein 2/pharmacology , Transforming Growth Factor beta3/pharmacology , Calcium Phosphates/chemistry , Calcium Phosphates/pharmacology , Rabbits , Tissue Scaffolds/chemistry , Bone Regeneration/drug effects , Tissue Engineering/methods , Osteogenesis/drug effects , Chondrogenesis/drug effects , Biomimetic Materials/chemistry , Biomimetic Materials/pharmacology , Bombyx , Male
8.
J Mater Sci Mater Med ; 35(1): 43, 2024 Jul 29.
Article in English | MEDLINE | ID: mdl-39073623

ABSTRACT

Collagen hydrogel has been shown promise as an inducer for chondrogenic differentiation of bone marrow mesenchymal stem cells (BMSCs), contributing to the repair of cartilage defects. However, the precise molecular mechanism underlying this phenomenon remains poorly elucidated. Here, we induced chondrogenic differentiation of BMSCs using collagen hydrogel and identified 4451 differentially expressed genes (DEGs) through transcriptomic sequencing. Our analysis revealed that DEGs were enriched in the focal adhesion pathway, with a notable decrease in expression levels in the collagen hydrogel group compared to the control group. Protein-protein interaction network analysis suggested that actinin alpha 1 (ACTN1) and actinin alpha 4 (ACTN4), two proteins also involved in cytoskeletal recombination, may be crucial in collagen hydrogel-induced chondrogenic differentiation of BMSCs. Additionally, we found that N6-methyladenosine RNA methylation (m6A) modification was involved in collagen hydrogel-mediated chondrogenic differentiation, with fat mass and obesity-associated protein (FTO) implicated in regulating the expression of ACTN1 and ACTN4. These findings suggest that collagen hydrogel might regulate focal adhesion and actin cytoskeletal signaling pathways through down-regulation of ACTN1 and ACTN4 mRNA via FTO-mediated m6A modification, ultimately driving chondrogenic differentiation of BMSCs. In conclusion, our study provides valuable insights into the molecular mechanisms of collagen hydrogel-induced chondrogenic differentiation of BMSCs, which may aid in developing more effective strategies for cartilage regeneration.


Subject(s)
Cell Differentiation , Chondrogenesis , Collagen , Gene Expression Profiling , Hydrogels , Mesenchymal Stem Cells , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/drug effects , Chondrogenesis/drug effects , Chondrogenesis/genetics , Cell Differentiation/drug effects , Hydrogels/chemistry , Collagen/chemistry , Animals , Adenosine/analogs & derivatives , Adenosine/pharmacology , Adenosine/chemistry , Transcriptome/drug effects , Actinin/metabolism , Actinin/genetics , Cells, Cultured , Methylation , Alpha-Ketoglutarate-Dependent Dioxygenase FTO/metabolism , Alpha-Ketoglutarate-Dependent Dioxygenase FTO/genetics , Rats
9.
J Nanobiotechnology ; 22(1): 325, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38858695

ABSTRACT

BACKGROUND: Osteoarthritis (OA) is an aging-related degenerative joint disorder marked by joint discomfort and rigidity. Senescent chondrocytes release pro-inflammatory cytokines and extracellular matrix-degrading proteins, creating an inflammatory microenvironment that hinders chondrogenesis and accelerates matrix degradation. Targeting of senescent chondrocytes may be a promising approach for the treatment of OA. Herein, we describe the engineering of an injectable peptide-hydrogel conjugating a stem cell-homing peptide PFSSTKT for carrying plasmid DNA-laden nanoparticles and Tanshinon IIA (pPNP + TIIA@PFS) that was designed to attenuate OA progression by improving the senescent microenvironment and fostering cartilage regeneration. RESULTS: Specifically, pPNP + TIIA@PFS elevates the concentration of the anti-aging protein Klotho and blocks the transmission of senescence signals to adjacent healthy chondrocytes, significantly mitigating chondrocyte senescence and enhancing cartilage integrity. Additionally, pPNP + TIIA@PFS recruit bone mesenchymal stem cells and directs their subsequent differentiation into chondrocytes, achieving satisfactory chondrogenesis. In surgically induced OA model rats, the application of pPNP + TIIA@PFS results in reduced osteophyte formation and attenuation of articular cartilage degeneration. CONCLUSIONS: Overall, this study introduces a novel approach for the alleviation of OA progression, offering a foundation for potential clinical translation in OA therapy.


Subject(s)
Chondrocytes , Chondrogenesis , Glucuronidase , Hydrogels , Klotho Proteins , Mesenchymal Stem Cells , Osteoarthritis , Plasmids , Rats, Sprague-Dawley , Animals , Osteoarthritis/therapy , Osteoarthritis/drug therapy , Hydrogels/chemistry , Rats , Chondrocytes/metabolism , Chondrocytes/drug effects , Glucuronidase/metabolism , Glucuronidase/pharmacology , Chondrogenesis/drug effects , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/drug effects , Male , Cartilage, Articular/drug effects , Cartilage, Articular/metabolism , Disease Progression , Nanoparticles/chemistry , Humans , DNA , Cellular Senescence/drug effects , Cell Differentiation/drug effects
10.
Int J Biol Macromol ; 272(Pt 1): 132848, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38830491

ABSTRACT

Collagen-based (COL) hydrogels could be a promising treatment option for injuries to the articular cartilage (AC) becuase of their similarity to AC native extra extracellular matrix. However, the high hydration of COL hydrogels poses challenges for AC's mechanical properties. To address this, we developed a hydrogel platform that incorporating cellulose nanocrystals (CNCs) within COL and followed by plastic compression (PC) procedure to expel the excessive fluid out. This approach significantly improved the mechanical properties of the hydrogels and enhanced the chondrogenic differentiation of mesenchymal stem cells (MSCs). Radially confined PC resulted in higher collagen fibrillar densities together with reducing fibril-fibril distances. Compressed hydrogels containing CNCs exhibited the highest compressive modulus and toughness. MSCs encapsulated in these hydrogels were initially affected by PC, but their viability improved after 7 days. Furthermore, the morphology of the cells and their secretion of glycosaminoglycans (GAGs) were positively influenced by the compressed COL-CNC hydrogel. Our findings shed light on the combined effects of PC and CNCs in improving the physical and mechanical properties of COL and their role in promoting chondrogenesis.


Subject(s)
Cell Differentiation , Cellulose , Chondrogenesis , Collagen , Hydrogels , Mesenchymal Stem Cells , Nanoparticles , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/metabolism , Cellulose/chemistry , Cellulose/pharmacology , Chondrogenesis/drug effects , Cell Differentiation/drug effects , Nanoparticles/chemistry , Collagen/chemistry , Collagen/pharmacology , Hydrogels/chemistry , Hydrogels/pharmacology , Animals , Plastics/chemistry , Plastics/pharmacology , Cell Survival/drug effects , Glycosaminoglycans/metabolism , Cartilage/cytology , Cartilage/drug effects
11.
Biomed Pharmacother ; 177: 117052, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38943988

ABSTRACT

Adipose-derived mesenchymal stromal cells (AD-MSCs) are an essential issue in modern medicine. Extensive preclinical and clinical studies have shown that mesenchymal stromal/stem cells, including AD-MSCs, have specific properties (ability to differentiate into other cells, recruitment to the site of injury) of particular importance in the regenerative process. Ongoing research aims to elucidate factors supporting AD-MSC culture and differentiation in vitro. Angiopoietin-like proteins (ANGPTLs), known for their pleiotropic effects in lipid and glucose metabolism, may play a significant role in this context. Regeneration is a complex and dynamic process controlled by many factors. ANGPTL6 (Angiopoietin-related growth factor, AGF), among many activities modulated the biological activity of stem cells. This study examined the influence of synthesized AGF-derived peptides, designated as AGF9 and AGF27, on AD-MSCs. AGF9 and AGF27 enhanced the viability and migration of AD-MSCs and acted as a chemotactic factor for these cells. AGF9 stimulated chondrogenesis and lipid synthesis during AD-MSCs differentiation, influenced AD-MSCs cytokine secretion and modulated transcriptome for such basic cell activities as migration, transport of molecules, and apoptosis. The ability of AGF9 to modulate the biological activity of AD-MSCs warrants the consideration of this peptide a noteworthy therapeutic agent that deserves further investigation for applications in regenerative medicine.


Subject(s)
Adipose Tissue , Angiopoietin-like Proteins , Cell Differentiation , Chondrogenesis , Mesenchymal Stem Cells , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/metabolism , Humans , Adipose Tissue/cytology , Adipose Tissue/metabolism , Cell Differentiation/drug effects , Angiopoietin-like Proteins/metabolism , Chondrogenesis/drug effects , Cell Survival/drug effects , Cells, Cultured , Peptides/pharmacology , Cell Movement/drug effects , Apoptosis/drug effects , Cytokines/metabolism
12.
Chemosphere ; 359: 142299, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38761826

ABSTRACT

Sulfur mustard (SM, dichlorodiethyl sulfide) is a potent erosive chemical poison that can cause pulmonary lung, skin and eye disease complications in humans. Currently, there is no designated remedy for SM, and its operation's toxicological process remains unidentified. This work employed zebrafish as a model organism to investigate the toxic manifestations and mechanisms of exposure to SM, aiming to offer novel insights for preventing and treating this condition. The results showed that SM caused a decrease in the survival rate of the zebrafish larvae (LC50 = 2.47 mg/L), a reduction in the hatching rate, an increase in the pericardial area, and small head syndrome. However, T-5224 (a selective inhibitor of c-Fos/activator protein) attenuated the reduction in mortality (LC50 = 2.79 mg/L), the reduction in hatching rate, and the worsening of morphological changes. We discovered that SM causes cartilage developmental disorders in zebrafish larvae. The reverse transcription-quantitative polymerase chain reaction found that SM increased the expression of inflammation-related genes (IL-1ß, IL-6, and TNF-α) and significantly increased cartilage development-related gene expression (fosab, mmp9, and atf3). However, the expression of sox9a, sox9b, and Col2a1a was reduced. The protein level detection also found an increase in c-fos protein expression and a significant decrease in COL2A1 expression. However, T-5224,also and mitigated the changes in gene expression, and protein levels caused by SM exposure. The results of this study indicate that SM-induced cartilage development disorders are closely related to the c-Fos/AP-1 pathway in zebrafish.


Subject(s)
Chondrogenesis , Larva , Mustard Gas , Proto-Oncogene Proteins c-fos , Transcription Factor AP-1 , Zebrafish , Animals , Mustard Gas/toxicity , Larva/drug effects , Proto-Oncogene Proteins c-fos/metabolism , Proto-Oncogene Proteins c-fos/genetics , Chondrogenesis/drug effects , Transcription Factor AP-1/metabolism , Zebrafish Proteins/metabolism , Zebrafish Proteins/genetics
13.
Biofabrication ; 16(3)2024 May 28.
Article in English | MEDLINE | ID: mdl-38697073

ABSTRACT

Osteochondral tissue (OC) repair remains a significant challenge in the field of musculoskeletal tissue engineering. OC tissue displays a gradient structure characterized by variations in both cell types and extracellular matrix components, from cartilage to the subchondral bone. These functional gradients observed in the native tissue have been replicated to engineer OC tissuein vitro. While diverse fabrication methods have been employed to create these microenvironments, emulating the natural gradients and effective regeneration of the tissue continues to present a significant challenge. In this study, we present the design and development of CMC-silk interpenetrating (IPN) hydrogel with opposing dual biochemical gradients similar to native tissue with the aim to regenerate the complete OC unit. The gradients of biochemical cues were generated using an in-house-built extrusion system. Firstly, we fabricated a hydrogel that exhibits a smooth transition of sulfated carboxymethyl cellulose (sCMC) and TGF-ß1 (SCT gradient hydrogel) from the upper to the lower region of the IPN hydrogel to regenerate the cartilage layer. Secondly, a hydrogel with a hydroxyapatite (HAp) gradient (HAp gradient hydrogel) from the lower to the upper region was fabricated to facilitate the regeneration of the subchondral bone layer. Subsequently, we developed a dual biochemical gradient hydrogel with a smooth transition of sCMC + TGF-ß1 and HAp gradients in opposing directions, along with a blend of both biochemical cues in the middle. The results showed that the dual biochemical gradient hydrogels with biochemical cues corresponding to the three zones (i.e. cartilage, interface and bone) of the OC tissue led to differentiation of bone-marrow-derived mesenchymal stem cells to zone-specific lineages, thereby demonstrating their efficacy in directing the fate of progenitor cells. In summary, our study provided a simple and innovative method for incorporating gradients of biochemical cues into hydrogels. The gradients of biochemical cues spatially guided the differentiation of stem cells and facilitated tissue growth, which would eventually lead to the regeneration of the entire OC tissue with a smooth transition from cartilage (soft) to bone (hard) tissues. This promising approach is translatable and has the potential to generate numerous biochemical and biophysical gradients for regeneration of other interface tissues, such as tendon-to-muscle and ligament-to-bone.


Subject(s)
Hydrogels , Tissue Engineering , Hydrogels/chemistry , Animals , Tissue Scaffolds/chemistry , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Chondrogenesis/drug effects , Cartilage/cytology , Cartilage/physiology , Cell Differentiation/drug effects , Bone and Bones/cytology , Durapatite/chemistry , Durapatite/pharmacology
14.
Connect Tissue Res ; 65(3): 237-252, 2024 May.
Article in English | MEDLINE | ID: mdl-38739041

ABSTRACT

PURPOSE/AIM OF STUDY: During the development of the vertebrate skeleton, the progressive differentiation and maturation of chondrocytes from mesenchymal progenitors is precisely coordinated by multiple secreted factors and signaling pathways. The WNT signaling pathway has been demonstrated to play a major role in chondrogenesis. However, the identification of secreted factors that fine-tune WNT activity has remained elusive. Here, in this study, we have identified PI15 (peptidase inhibitor 15, protease Inhibitor 15, SugarCrisp), a member of the CAP (cysteine rich secretory proteins, antigen 5, and pathogenesis related 1 proteins) protein superfamily, as a novel secreted WNT antagonist dynamically upregulated during chondrocyte differentiation. MATERIALS AND METHODS: ATDC5 cells, C3H10T1/2 micromass cultures and primary chondrocyte cells were used as in vitro models of chondrogenesis. PI15 levels were stably depleted or overexpressed by viral shRNA or expression vectors. Chondrogenesis was evaluated by qPCR gene expression analysis and Alcian blue staining. Protein interactions were determined by coimmunoprecipitation assays. RESULTS AND CONCLUSIONS: shRNA-mediated knockdown of PI15 in ATDC5 cells, C3H10T1/2 cells or primary chondrocytes inhibits chondrogenesis, whereas the overexpression of PI15 strongly enhances chondrogenic potential. Mechanistically, PI15 binds to the LRP6 WNT co-receptor and blocks WNT-induced LRP6 phosphorylation, thus repressing WNT-induced transcriptional activity and alleviating the inhibitory effect of WNT signaling on chondrogenesis. Altogether, our findings suggest that PI15 acts as a key regulator of chondrogenesis and unveils a mechanism through which chondrocyte-derived molecules can modulate WNT activity as differentiation proceeds, thereby creating a positive feedback loop that further drives differentiation.


Subject(s)
Cell Differentiation , Chondrocytes , Chondrogenesis , Wnt Signaling Pathway , Chondrocytes/metabolism , Chondrocytes/drug effects , Chondrocytes/cytology , Cell Differentiation/drug effects , Animals , Wnt Signaling Pathway/drug effects , Mice , Chondrogenesis/drug effects , Cell Line , Low Density Lipoprotein Receptor-Related Protein-6/metabolism
15.
Colloids Surf B Biointerfaces ; 239: 113959, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38772085

ABSTRACT

Cartilage repair remains a major challenge in clinical trials. These current cartilage repair materials can not effectively promote chondrocyte generation, limiting their practical application in cartilage repair. In this work, we develop an implantable scaffold of RADA-16 peptide hydrogel incorporated with TGF-ß1 to provide a microenvironment for stem cell-directed differentiation and chondrocyte adhesion growth. The longest release of growth factor TGF-ß1 release can reach up to 600 h under physiological conditions. TGF-ß1/RADA-16 hydrogel was demonstrated to be a lamellar porous structure. Based on the cell culture with hBMSCs, TGF-ß1/RADA-16 hydrogel showed excellent ability to promote cell proliferation, directed differentiation into chondrocytes, and functional protein secretion. Within 14 days, 80% of hBMSCs were observed to be directed to differentiate into vigorous chondrocytes in the co-culture of TGF-ß1/RADA-16 hydrogels with hBMSCs. Specifically, these newly generated chondrocytes can secrete and accumulate large amounts of collagen II within 28 days, which can effectively promote the formation of cartilage tissue. Finally, the exploration of RADA-16 hydrogel-based scaffolds incorporated with TGF-ß1 bioactive species would further greatly promote the practical clinical trials of cartilage remediation, which might have excellent potential to promote cartilage regeneration in areas of cartilage damage.


Subject(s)
Cartilage , Cell Differentiation , Chondrocytes , Hydrogels , Regeneration , Tissue Scaffolds , Transforming Growth Factor beta1 , Transforming Growth Factor beta1/metabolism , Transforming Growth Factor beta1/pharmacology , Regeneration/drug effects , Tissue Scaffolds/chemistry , Hydrogels/chemistry , Hydrogels/pharmacology , Humans , Chondrocytes/drug effects , Chondrocytes/cytology , Chondrocytes/metabolism , Cell Differentiation/drug effects , Cartilage/drug effects , Cartilage/physiology , Cartilage/metabolism , Cell Proliferation/drug effects , Tissue Engineering/methods , Cells, Cultured , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/cytology , Animals , Chondrogenesis/drug effects , Peptides
16.
J Mater Chem B ; 12(22): 5360-5376, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38700242

ABSTRACT

Articular cartilage tissue has limited self-repair capabilities, with damage frequently progressing to irreversible degeneration. Engineered tissues constructed through bioprinting and embedded with stem cell aggregates offer promising therapeutic alternatives. Aggregates of bone marrow mesenchymal stromal cells (BMSCs) demonstrate enhanced and more rapid chondrogenic differentiation than isolated cells, thus facilitating cartilage repair. However, it remains a key challenge to precisely control biochemical microenvironments to regulate cellular adhesion and cohesion within bioprinted matrices simultaneously. Herein, this work reports a bioprintable hydrogel matrix with high cellular adhesion and aggregation properties for cartilage repair. The hydrogel comprises an enhanced cell-adhesive gelatin methacrylate and a cell-cohesive chitosan methacrylate (CHMA), both of which are subjected to photo-initiated crosslinking. By precisely adjusting the CHMA content, the mechanical stability and biochemical cues of the hydrogels are finely tuned to promote cellular aggregation, chondrogenic differentiation and cartilage repair implantation. Multi-layer constructs encapsulated with BMSCs, with high cell viability reaching 91.1%, are bioprinted and photo-crosslinked to support chondrogenic differentiation for 21 days. BMSCs rapidly form aggregates and display efficient chondrogenic differentiation both on the hydrogels and within bioprinted constructs, as evidenced by the upregulated expression of Sox9, Aggrecan and Collagen 2a1 genes, along with high protein levels. Transplantation of these BMSC-laden bioprinted hydrogels into cartilaginous defects demonstrates effective hyaline cartilage repair. Overall, this cell-responsive hydrogel scaffold holds immense promise for applications in cartilage tissue engineering.


Subject(s)
Bioprinting , Chondrogenesis , Hydrogels , Mesenchymal Stem Cells , Regeneration , Chondrogenesis/drug effects , Hydrogels/chemistry , Hydrogels/pharmacology , Animals , Mesenchymal Stem Cells/cytology , Regeneration/drug effects , Cartilage, Articular , Biomimetic Materials/chemistry , Biomimetic Materials/pharmacology , Cell Differentiation/drug effects , Tissue Engineering , Methacrylates/chemistry , Cell Survival/drug effects , Cartilage/metabolism , Cartilage/cytology , Cells, Cultured , Humans
17.
Biomacromolecules ; 25(6): 3312-3324, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38728671

ABSTRACT

3D-printed hydrogel scaffolds biomimicking the extracellular matrix (ECM) are key in cartilage tissue engineering as they can enhance the chondrogenic differentiation of mesenchymal stem cells (MSCs) through the presence of active nanoparticles such as graphene oxide (GO). Here, biomimetic hydrogels were developed by cross-linking alginate, gelatin, and chondroitin sulfate biopolymers in the presence of GO as a bioactive filler, with excellent processability for developing bioactive 3D printed scaffolds and for the bioprinting process. A novel bioink based on our hydrogel with embedded human MSCs presented a cell survival rate near 100% after the 3D bioprinting process. The effects of processing and filler concentration on cell differentiation were further quantitatively evaluated. The nanocomposited hydrogels render high MSC proliferation and viability, exhibiting intrinsic chondroinductive capacity without any exogenous factor when used to print scaffolds or bioprint constructs. The bioactivity depended on the GO concentration, with the best performance at 0.1 mg mL-1. These results were explained by the rational combination of the three biopolymers, with GO nanoparticles having carboxylate and sulfate groups in their structures, therefore, biomimicking the highly negatively charged ECM of cartilage. The bioactivity of this biomaterial and its good processability for 3D printing scaffolds and 3D bioprinting techniques open up a new approach to developing novel biomimetic materials for cartilage repair.


Subject(s)
Alginates , Bioprinting , Cell Differentiation , Chondrogenesis , Chondroitin Sulfates , Gelatin , Hydrogels , Mesenchymal Stem Cells , Nanocomposites , Printing, Three-Dimensional , Tissue Scaffolds , Humans , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/cytology , Chondroitin Sulfates/chemistry , Chondroitin Sulfates/pharmacology , Alginates/chemistry , Alginates/pharmacology , Gelatin/chemistry , Bioprinting/methods , Cell Differentiation/drug effects , Chondrogenesis/drug effects , Nanocomposites/chemistry , Tissue Scaffolds/chemistry , Hydrogels/chemistry , Hydrogels/pharmacology , Tissue Engineering/methods , Biomimetic Materials/chemistry , Biomimetic Materials/pharmacology , Graphite/chemistry , Graphite/pharmacology , Cell Proliferation/drug effects , Cells, Cultured
18.
Biomed Mater ; 19(4)2024 May 22.
Article in English | MEDLINE | ID: mdl-38729192

ABSTRACT

In this study, we coated electrospun polycaprolactone (PCL) fibers with polydopamine (PDA) to modify their hydrophobicity and fabricated a matrix for culturing mesenchymal stem cells (MSCs). Additionally, we incorporated Arg-Gly-Asp (RGD) peptides into PDA to enhance MSCs culture performance on PCL fibers. PDA and RGD were successfully coated in one step by immersing the electrospun fibers in a coating solution, without requiring an additional surface activation process. The characteristics of functionalized PCL fibers were analyzed by scanning electron microscopy with energy-dispersive x-ray analysis, Fourier transform infrared spectroscopy, water contact angle measurement, and fluorescence measurements using a carboxylic-modified fluorescent microsphere. MSCs cultured on the modified PCL fibers demonstrated enhanced cell adhesion, proliferation, and osteogenic- and chondrogenic differentiation. This study provides insight into potential applications for scaffold fabrication in MSCs-based tissue engineering, wound dressing, implantation, and a deeper understanding of MSCs behaviorin vitro.


Subject(s)
Cell Adhesion , Cell Differentiation , Cell Proliferation , Indoles , Mesenchymal Stem Cells , Osteogenesis , Polyesters , Polymers , Tissue Engineering , Tissue Scaffolds , Mesenchymal Stem Cells/cytology , Humans , Polymers/chemistry , Indoles/chemistry , Cell Differentiation/drug effects , Cell Proliferation/drug effects , Tissue Engineering/methods , Tissue Scaffolds/chemistry , Polyesters/chemistry , Osteogenesis/drug effects , Cells, Cultured , Oligopeptides/chemistry , Oligopeptides/pharmacology , Microscopy, Electron, Scanning , Spectroscopy, Fourier Transform Infrared , Chondrogenesis/drug effects , Cell Culture Techniques , Hydrophobic and Hydrophilic Interactions
19.
Sci Rep ; 14(1): 11553, 2024 05 21.
Article in English | MEDLINE | ID: mdl-38773312

ABSTRACT

Knee osteoarthritis is a chronic joint disease mainly characterized by cartilage degeneration. The treatment is challenging due to the lack of blood vessels and nerve supplies in cartilaginous tissue, causing a prominent limitation of regenerative capacity. Hence, we investigated the cellular promotional and anti-inflammatory effects of sericin, Bombyx mori-derived protein, on three-dimensional chondrogenic ATDC5 cell models. The results revealed that a high concentration of sericin promoted chondrogenic proliferation and differentiation and enhanced matrix production through the increment of glycosaminoglycans, COL2A1, COL X, and ALP expressions. SOX-9 and COL2A1 gene expressions were notably elevated in sericin treatment. The proteomic analysis demonstrated the upregulation of phosphoglycerate mutase 1 and triosephosphate isomerase, a glycolytic enzyme member, reflecting the proliferative enhancement of sericin. The differentiation capacity of sericin was indicated by the increased expressions of procollagen12a1, collagen10a1, rab1A, periostin, galectin-1, and collagen6a3 proteins. Sericin influenced the differentiation capacity via the TGF-ß signaling pathway by upregulating Smad2 and Smad3 while downregulating Smad1, BMP2, and BMP4. Importantly, sericin exhibited an anti-inflammatory effect by reducing IL-1ß, TNF-α, and MMP-1 expressions and accelerating COL2A1 production in the early inflammatory stage. In conclusion, sericin demonstrates potential in promoting chondrogenic proliferation and differentiation, enhancing cartilaginous matrix synthesis through glycolysis and TGF-ß signaling pathways, and exhibiting anti-inflammatory properties.


Subject(s)
Cell Differentiation , Cell Proliferation , Chondrogenesis , Glycolysis , Inflammation , Sericins , Signal Transduction , Smad2 Protein , Smad3 Protein , Transforming Growth Factor beta , Cell Differentiation/drug effects , Cell Proliferation/drug effects , Smad2 Protein/metabolism , Animals , Signal Transduction/drug effects , Smad3 Protein/metabolism , Transforming Growth Factor beta/metabolism , Chondrogenesis/drug effects , Sericins/pharmacology , Glycolysis/drug effects , Mice , Inflammation/metabolism , Inflammation/pathology , Inflammation/drug therapy , Chondrocytes/metabolism , Chondrocytes/drug effects , Cell Line , Bombyx/metabolism
20.
In Vitro Cell Dev Biol Anim ; 60(6): 609-615, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38727898

ABSTRACT

Osteoblast-derived semaphorin3A (Sema3A) has been reported to be involved in bone protection, and Sema3A knockout mice have been reported to exhibit chondrodysplasia. From these reports, Sema3A is considered to be involved in chondrogenic differentiation and skeletal formation, but there are many unclear points about its function and mechanism in chondrogenic differentiation. This study investigated the pharmacological effects of Sema3A in chondrogenic differentiation. The amount of Sema3A secreted into the culture supernatant was measured using an enzyme-linked immunosorbent assay. The expression of chondrogenic differentiation-related factors, such as Type II collagen (COL2A1), Aggrecan (ACAN), hyaluronan synthase 2 (HAS2), SRY-box transcription factor 9 (Sox9), Runt-related transcription factor 2 (Runx2), and Type X collagen (COL10A1) in ATDC5 cells treated with Sema3A (1,10 and 100 ng/mL) was examined using real-time reverse transcription polymerase chain reaction. Further, to assess the deposition of total glycosaminoglycans during chondrogenic differentiation, ATDC5 cells were stained with Alcian Blue. Moreover, the amount of hyaluronan in the culture supernatant was measured by enzyme-linked immunosorbent assay. The addition of Sema3A to cultured ATDC5 cells increased the expression of Sox9, Runx2, COL2A1, ACAN, HAS2, and COL10A1 during chondrogenic differentiation. Moreover, it enhanced total proteoglycan and hyaluronan synthesis. Further, Sema3A was upregulated in the early stages of chondrogenic differentiation, and its secretion decreased later. Sema3A increases extracellular matrix production and promotes chondrogenic differentiation. To the best of our knowledge, this is the first study to demonstrate the role of Sema3A on chondrogenic differentiation.


Subject(s)
Cell Differentiation , Chondrogenesis , Semaphorin-3A , Animals , Cell Differentiation/drug effects , Semaphorin-3A/metabolism , Chondrogenesis/drug effects , Mice , Chondrocytes/metabolism , Chondrocytes/cytology , Hyaluronic Acid/metabolism , Hyaluronic Acid/pharmacology , Cell Line , SOX9 Transcription Factor/metabolism , SOX9 Transcription Factor/genetics , Core Binding Factor Alpha 1 Subunit/metabolism , Core Binding Factor Alpha 1 Subunit/genetics , Collagen Type II/metabolism , Collagen Type II/genetics , Aggrecans/metabolism , Aggrecans/genetics , Hyaluronan Synthases/metabolism , Hyaluronan Synthases/genetics , Glycosaminoglycans/metabolism , Collagen Type X/metabolism , Collagen Type X/genetics
SELECTION OF CITATIONS
SEARCH DETAIL