Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
Add more filters











Publication year range
1.
Biochimie ; 222: 18-27, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38395337

ABSTRACT

Dioclea violacea seed mannose-binding lectin (DvL) has attracted considerable attention because of its interesting biological activities, including antitumor, antioxidant, and anti-inflammatory activities. This study evaluated the cytotoxic effect of DvL on tumor and normal cells using the mitochondrial activity reduction (MTT) assay, the carcinogenic and anti-carcinogenic activity by the epithelial tumor test (ETT) in Drosophila melanogaster, and the anti-angiogenic effect by the chick embryo chorioallantoic membrane (CAM) assay. Data demonstrated that DvL promoted strong selective cytotoxicity against tumor cell lines, especially A549 and S180 cells, whereas normal cell lines were weakly affected. Furthermore, DvL did not promote carcinogenesis in D. melanogaster at any concentration tested, but modulated DXR-induced carcinogenesis at the highest concentrations tested. In the CAM and immunohistochemical assays, DvL inhibited sarcoma 180-induced angiogenesis and promoted the reduction of VEGF and TGF-ß levels at all concentrations tested. Therefore, our results demonstrated that DvL is a potent anticancer, anti-angiogenic, and selective cytotoxic agent for tumor cells, suggesting its potential application as a prototype molecule for the development of new drugs with chemoprotective and/or antitumor effects.


Subject(s)
Dioclea , Drosophila melanogaster , Neovascularization, Pathologic , Animals , Neovascularization, Pathologic/drug therapy , Neovascularization, Pathologic/metabolism , Humans , Dioclea/chemistry , Chick Embryo , Drosophila melanogaster/drug effects , Carcinogenesis/drug effects , Angiogenesis Inhibitors/pharmacology , Chorioallantoic Membrane/drug effects , Chorioallantoic Membrane/blood supply , Plant Lectins/pharmacology , A549 Cells , Cell Line, Tumor , Mice , Angiogenesis
2.
Microvasc Res ; 151: 104615, 2024 01.
Article in English | MEDLINE | ID: mdl-37797833

ABSTRACT

Pedunculagin (PD) and tellimagrandin-I (TL), isolated from Myrciaria cauliflora seeds and Eucaliptus microcorys leaves, respectively, have attracted great attention owing to their relevant biological activities, such as antitumor, antioxidant, and hepatoprotective activities. This study investigated the angiogenic potential of PD and TL using a chick embryo chorioallantoic membrane (CAM) assay. Using the CAM assay, our results showed that both PD and TL promoted a significant increase in the number and caliber of blood vessels, the thickness of the CAM, and the presence of fibroblasts and inflammatory cells. Moreover, an increase of tumor necrosis factor-α and vascular endothelial growth factor was observed in the CAM treated with PD and TL, indicating the induction of angiogenic factors. Thus, the remarkable profile of PD and TL in inducing angiogenesis opens up new perspectives for their potential utilization in different therapeutic approaches involving neovascularization.


Subject(s)
Tumor Necrosis Factor-alpha , Vascular Endothelial Growth Factor A , Animals , Chick Embryo , Vascular Endothelial Growth Factor A/metabolism , Tumor Necrosis Factor-alpha/pharmacology , Angiogenesis , Neovascularization, Physiologic , Vascular Endothelial Growth Factors , Chorioallantoic Membrane/blood supply , Inflammation
3.
Microvasc Res ; 139: 104253, 2022 01.
Article in English | MEDLINE | ID: mdl-34520773

ABSTRACT

Chalcones and sulfonamides are well-known chemical groups associated with several biological activities such as antibiotic, anti-inflammatory, and antitumor activities. Over the past few decades, a series of sulfonamide-chalcone hybrids have been synthesized and assessed to develop compounds with interesting biological properties for application in disease therapy. In the present study, a new sulfonamide-chalcone hybrid µ - (2,5-dichloro-N-{4-[(3E)-4-(3-nitrophenyl) buta-1,3-dien-2-yl] phenyl} benzene sulfonamide), or simply CL185, was synthesized, and its angiogenic activity was assessed using the chick embryo chorioallantoic membrane (CAM) assay at different concentrations (12.5, 25, and 50 µg/µL). To further investigate the role of CL185 in the angiogenic process, we evaluated the levels of vascular endothelial growth factor (VEGF) in all treated CAMs. The results showed that all concentrations of CL185 significantly increased tissue vascularization (p < 0.05) as well as the parameters associated with angiogenesis, in which inflammation was the most marked phenomenon observed. In all CAMs treated with CL185, VEGF levels were significantly higher than those in the negative control (p < 0.05), and at the highest concentration, VEGF levels were even higher than in the positive control (p < 0.05). The pronounced angiogenic activity displayed by CL185 may be related to the increase in VEGF levels that were stimulated by inflammatory processes observed in our study. Therefore, CL185 presents a favorable profile for the development of drugs that can be used in pro-angiogenic and tissue repair therapies.


Subject(s)
Angiogenesis Inducing Agents/pharmacology , Chalcones/pharmacology , Chorioallantoic Membrane/blood supply , Inflammation/metabolism , Neovascularization, Physiologic/drug effects , Vascular Endothelial Growth Factor A/metabolism , Angiogenesis Inducing Agents/toxicity , Animals , Chalcones/toxicity , Chick Embryo , Inflammation/chemically induced , Up-Regulation
4.
Microvasc Res ; 138: 104234, 2021 11.
Article in English | MEDLINE | ID: mdl-34478745

ABSTRACT

Azathioprine (AZA) is the main drug used in immunomodulatory therapy in post-transplant patients or with autoimmune diseases. However, no study has evaluated the AZA angiogenic response. Therefore, this study investigated the effects of AZA on the angiogenic process through macroscopic, histological, and immunohistochemical analyses in chick embryo chorioallantoic membrane (CAM). Our results showed potent anti-angiogenic activity of AZA at the higher concentrations tested in the CAM assay. The histological analysis of CAM confirmed this effect, since AZA induced a significant reduction in all parameters evaluated. In addition, immunohistochemical evaluation of CAM revealed that AZA decreased TGF-ß and VEGF levels, important cytokines involved in the angiogenic process. Therefore, the AZA anti-angiogenic effect identified in our study provides new information for the possible application of this drug in anticancer treatment.


Subject(s)
Angiogenesis Inhibitors/pharmacology , Azathioprine/pharmacology , Blood Vessels/drug effects , Chorioallantoic Membrane/blood supply , Neovascularization, Physiologic/drug effects , Animals , Blood Vessels/metabolism , Chick Embryo , Transforming Growth Factor beta/metabolism , Tumor Necrosis Factor-alpha/metabolism , Vascular Endothelial Growth Factor A/metabolism
5.
Methods Mol Biol ; 2240: 175-195, 2021.
Article in English | MEDLINE | ID: mdl-33423234

ABSTRACT

Historically, the ocular toxicity of manufactured consumer materials has been evaluated using the rabbit in vivo Draize rabbit eye test. The animal data obtained were used by the United Nations Globally Harmonized System of Classification and Labelling of Chemicals (UN GHS) to define the classification and labelling (C&L) for eye damage/irritation endpoint. However, the Draize test, a method which was never formally validated, has been widely criticized because of its technical limitations. In addition, ethical and economic issues and advances in scientific knowledge, and political and public pressures have made animal experimentation unsustainable. This scenario has consequently led to the development of nonanimal testing and protocols/approaches with considerable predictive value and relevance for humans. It is widely accepted that one single nonanimal method cannot cover all the criteria of damage/inflammation assessed by regulatory adopted in vivo animal testing. Thus, integrated testing strategies (ITS) have been proposed, including a tiered testing approach combining different nonanimal testing with different endpoints, which have been used for regulatory purposes, on a case-by-case basis and within integrated approaches to testing and assessment (IATA), to identify materials according to their ability to trigger eye damage. In particular, the top-down and bottom-up approaches have been recommended for the C&L of materials, which cause serious eye damage or eye irritation, respectively. This chapter describes detailed protocols for eye irritation testing based on cells (Short Time Exposure-STE, OECD No. 491/2017), a vascularized membrane (the Hen's Egg Test-Chorioallantoic Membrane-HET-CAM) and corneal tissue (Bovine Corneal Opacity and Permeability-BCOP, OECD No. 437/2017), which can be applied using top-down or bottom-up approaches. In addition, it suggests making a corneal histomorphometric evaluation as an additional parameter in the BCOP method to differentiate materials that cause serious eye tissue damage (UN GHS Cat. 1) from materials that have reversible eye irritation effects (UN GHS Cat. 2).


Subject(s)
Animal Testing Alternatives , Biological Assay , Chorioallantoic Membrane/blood supply , Chorioallantoic Membrane/drug effects , Cornea/drug effects , Irritants/toxicity , Toxic Optic Neuropathy , Toxicity Tests , Animals , Cattle , Cell Line , Cell Survival/drug effects , Chick Embryo , Cornea/pathology , Rabbits
6.
Arch Pharm (Weinheim) ; 353(11): e2000130, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32667721

ABSTRACT

Vascular endothelial growth factor receptor 2 (VEGFR-2) is a tyrosine kinase that mediates a large number of cell responses associated with angiogenesis. The control of the angiogenic pathway in tumorigenesis by the inhibition of VEGFR-2 is considered a promising therapeutic strategy for the prevention and control of solid tumor growth. In this study, the design, synthesis, and biological evaluation of a novel series of VEGFR-2 inhibitors with an N-acylhydrazone (NAH) scaffold (9a-h) are reported. The molecular design is validated by docking studies and by in vitro inhibitory activity assays. Compounds 9b, 9c, 9d, and 9f effectively inhibited neovascularization induced by VEGF in the chorioallantoic membrane assay. Thus, these NAH derivatives are promising antiangiogenic prototypes.


Subject(s)
Angiogenesis Inhibitors/pharmacology , Chorioallantoic Membrane/blood supply , Hydrazones/pharmacology , Neovascularization, Physiologic/drug effects , Protein Kinase Inhibitors/pharmacology , Vascular Endothelial Growth Factor Receptor-2/antagonists & inhibitors , Angiogenesis Inhibitors/chemical synthesis , Animals , Chick Embryo , Drug Design , Hydrazones/chemical synthesis , Molecular Docking Simulation , Molecular Structure , Molecular Targeted Therapy , Protein Kinase Inhibitors/chemical synthesis , Structure-Activity Relationship , Vascular Endothelial Growth Factor Receptor-2/metabolism
7.
Toxicol In Vitro ; 66: 104851, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32259559

ABSTRACT

Considering the successful employment of alternative methods for eye toxicity assessment of products for regulatory purposes, and the recent advances in Brazilian legislative scenario, which adopted the UN GHS classification system for agrochemical formulations toxicity assessment, there is an emerging demand for strategies that allow the evaluation of such products. Based on this, the present study aimed to address the applicability of a mechanistic-based defined approach for eye toxicity assessment of agrochemical formulations. It was investigated the opacity/permeability, depth and location of corneal injury in bovine cornea, and vascular events in chorioallantoic membrane induced for different Brazilian agrochemicals using a Sequential Testing Strategy (STS). Cytotoxicity induced by the agrochemical formulations was evaluated by Short Time exposure (STE) (OECD TG 491) assay (step 1), corneal injury was investigated by standard Bovine Corneal Opacity and Permeability (BCOP) (OECD TG 437) followed by histopathological evaluation (step 2), and Hen Chorionic-allantoic Membrane test (HET-CAM) was used to evaluate vascular injury (step 3). The results demonstrated that the proposed defined approach enabled a classification corresponding UN GHS classification of agrochemical formulations while minimizing the use of live animals. Therefore, this approach may be useful for categorization of agrochemicals in Brazil according to the new regulatory scenario.


Subject(s)
Agrochemicals/toxicity , Animal Testing Alternatives , Chorioallantoic Membrane/drug effects , Cornea/drug effects , Irritants/toxicity , Animals , Biological Assay , Brazil , Cattle , Chickens , Chorioallantoic Membrane/blood supply , Cornea/metabolism , Cornea/pathology , Corneal Opacity/chemically induced , Permeability , Toxicity Tests, Acute/methods
8.
Invest New Drugs ; 38(4): 1044-1055, 2020 08.
Article in English | MEDLINE | ID: mdl-31781904

ABSTRACT

Gliomas account for nearly 70% of the central nervous system tumors and present a median survival of approximately 12-17 months. Studies have shown that administration of novel natural antineoplastic agents is been highly effective for treating gliomas. This study was conducted to investigate the antitumor potential (in vitro and in vivo) of Miconia chamissois Naudin for treating glioblastomas. We investigated the cytotoxicity of the chloroform partition and its sub-fraction in glioblastoma cell lines (GAMG and U251MG) and one normal cell line of astrocytes. The fraction showed cytotoxicity and was selective for tumor cells. Characterization of this fraction revealed a single compound, Matteucinol, which was first identified in the species M. chamissois. Matteucinol promoted cell death via intrinsic apoptosis in the adult glioblastoma lines. In addition, Matteucinol significantly reduced the migration, invasion, and clonogenicity of the tumor cells. Notably, it also reduced tumor growth and angiogenesis in vivo. Moreover, this agent showed synergistic effects with temozolomide, a chemotherapeutic agent commonly used in clinical practice. Our study demonstrates that Matteucinol from M chamissois is a promising compound for the treatment of glioblastomas and may be used along with the existing chemotherapeutic agents for more effective treatment.


Subject(s)
Antineoplastic Agents, Phytogenic/therapeutic use , Chromones/therapeutic use , Glioblastoma/drug therapy , Animals , Antineoplastic Agents, Phytogenic/isolation & purification , Antineoplastic Agents, Phytogenic/pharmacology , Apoptosis/drug effects , Cell Line, Tumor , Cell Movement/drug effects , Cell Survival/drug effects , Chick Embryo , Chorioallantoic Membrane/blood supply , Chorioallantoic Membrane/drug effects , Chromones/isolation & purification , Chromones/pharmacology , Glioblastoma/blood supply , Humans , Melastomataceae , Membrane Potential, Mitochondrial/drug effects , Neovascularization, Pathologic/drug therapy , Plant Extracts , Plant Leaves
9.
Biochim Biophys Acta Mol Basis Dis ; 1865(6): 1540-1554, 2019 06 01.
Article in English | MEDLINE | ID: mdl-30890427

ABSTRACT

Growth differentiation factor 11 (GDF11) has been characterized as a key regulator of differentiation in cells that retain stemness features, despite some controversies in age-related studies. GDF11 has been poorly investigated in cancer, particularly in those with stemness capacity, such as hepatocellular carcinoma (HCC), one of the most aggressive cancers worldwide. Here, we focused on investigating the effects of GDF11 in liver cancer cells. GDF11 treatment significantly reduced proliferation, colony and spheroid formation in HCC cell lines. Consistently, down-regulation of CDK6, cyclin D1, cyclin A, and concomitant upregulation of p27 was observed after 24 h of treatment. Interestingly, cell viability was unchanged, but cell functionality was compromised. These effects were potentially induced by the expression of E-cadherin and occludin, as well as Snail and N-cadherin repression, in a time-dependent manner. Furthermore, GDF11 treatment for 72 h induced that cells were incapable of sustaining colony and sphere capacity in the absent of GDF11, up to 5 days, indicating that the effect of GDF11 on self-renewal capacity is not transient. Finally, in vivo invasion studies revealed a significant decrease in cell migration of hepatocellular carcinoma cells treated with GDF11 associated to a decreased proliferation judged by Ki67 staining. Data show that exogenous GDF11 displays tumor suppressor properties in HCC cells.


Subject(s)
Bone Morphogenetic Proteins/pharmacology , Cell Movement/drug effects , Cell Proliferation/drug effects , Gene Expression Regulation, Neoplastic , Growth Differentiation Factors/pharmacology , Neovascularization, Pathologic/prevention & control , Animals , Antigens, CD/genetics , Antigens, CD/metabolism , Bone Morphogenetic Proteins/genetics , Bone Morphogenetic Proteins/metabolism , Cadherins/genetics , Cadherins/metabolism , Cell Differentiation/drug effects , Cell Line, Tumor , Chick Embryo , Chorioallantoic Membrane/blood supply , Chorioallantoic Membrane/drug effects , Cyclin A/genetics , Cyclin A/metabolism , Cyclin D1/genetics , Cyclin D1/metabolism , Cyclin-Dependent Kinase 6/genetics , Cyclin-Dependent Kinase 6/metabolism , Cyclin-Dependent Kinase Inhibitor p27/genetics , Cyclin-Dependent Kinase Inhibitor p27/metabolism , Growth Differentiation Factors/genetics , Growth Differentiation Factors/metabolism , Hep G2 Cells , Humans , Neovascularization, Pathologic/genetics , Neovascularization, Pathologic/metabolism , Neovascularization, Pathologic/pathology , Occludin/genetics , Occludin/metabolism , Signal Transduction , Snail Family Transcription Factors/genetics , Snail Family Transcription Factors/metabolism , Spheroids, Cellular/drug effects , Spheroids, Cellular/metabolism , Spheroids, Cellular/pathology
10.
Int J Mol Sci ; 20(5)2019 Mar 02.
Article in English | MEDLINE | ID: mdl-30832361

ABSTRACT

Photodynamic Therapy (PDT) is a treatment that requires light, a photosensitizing agent, and molecular oxygen. The photosensitizer is activated by light and it interacts with the oxygen that is present in the cellular microenvironment. The molecular oxygen is transformed into singlet oxygen, which is highly reactive and responsible for the cell death. Therefore, PS is an important element for the therapy happens, including its concentration. Curcumin is a natural photosensitizer and it has demonstrated its anti-inflammatory and anti-oxidant effects that inhibit several signal transduction pathways. PDT vascular effects of curcumin at concentrations varying from 0.1 to 10 mM/cm² and topical administration were investigated in a chick Chorioallantoic Membrane (CAM) model. The irradiation was performed at 450 nm, irradiance of 50 mW/cm² during 10 min, delivering a total fluence of 30 J/cm². The vascular effect was followed after the application of curcumin, with images being obtained each 30 min in the first 3 h, 12 h, and 24 h. Those images were qualitatively and quantitatively analyzed with a MatLAB®. Curcumin was expected to exhibit a vascular effect due to its angio-inhibitory effect. Using curcumin as photosensitizer, PDT induced a higher and faster vascular effect when compared to the use of this compound alone.


Subject(s)
Blood Vessels/drug effects , Chorioallantoic Membrane/blood supply , Curcumin/pharmacology , Photochemotherapy/methods , Photosensitizing Agents/pharmacology , Animals , Blood Vessels/radiation effects , Chick Embryo
11.
Doc Ophthalmol ; 138(3): 181-194, 2019 06.
Article in English | MEDLINE | ID: mdl-30809742

ABSTRACT

PURPOSE: Investigate the potential application of corosolic acid (CA) in the treatment of diseases causing retinal neovascularization. METHODS: CA cytotoxicity effect was evaluated in ARPE-19 cells by sulforhodamine B colorimetric method, and antiangiogenic activity was studied using chorioallantoic membrane (CAM) assay. An amount of 0.01 mL of CA formulations at 5, 10 and 25 µM was injected in the right eyes of Wistar rats, and the contralateral eyes received the vehicle to verify the safety of ophthalmic use. Electroretinography (ERG) was performed before, 7 and 15 days after CA administration. Animals were killed on the 15th day, and the histological analysis of retina was carried out under light microscopy. RESULTS: CA did not present cytotoxicity at concentrations below 35.5 µM after 48 h of treatment. The antiangiogenic activity was confirmed by CAM assay, since CA (range from 5 to 25 µM) induced a significant reduction in vascularity without any signs of toxicity. ERG recordings and histological evaluation did not show any signs of retinal toxicity. CONCLUSIONS: CA was effective in reducing vascularity in a CAM model and was found to be safe for potential ophthalmic use.


Subject(s)
Angiogenesis Inhibitors/administration & dosage , Retina/drug effects , Triterpenes/administration & dosage , Angiogenesis Inhibitors/toxicity , Animals , Cell Line , Chorioallantoic Membrane/blood supply , Electroretinography/drug effects , Intravitreal Injections , Male , Neovascularization, Pathologic/drug therapy , Rats , Rats, Wistar , Retinal Pigment Epithelium/drug effects , Triterpenes/toxicity , Vitreous Body/drug effects
13.
Chem Biol Interact ; 278: 101-113, 2017 Dec 25.
Article in English | MEDLINE | ID: mdl-28935426

ABSTRACT

Antimetastatic activities, low toxicity to normal cells and high selectivity for tumor cells make of the ruthenium complexes promising candidates in the search for develop new chemotherapeutic agents for the treatment of cancer. This study aimed to determine the cytotoxic, genotoxic and to elucidate the signaling pathway involved in the death cell process induced by cis-[RuCl(BzCN)(bipy)(dppb)]PF6(1) and cis-[RuCl(BzCN)(bipy)(dppe)]PF6(2) in Ehrlich ascites carcinoma (EAC) in vitro. Moreover, we report for the first time the anti-angiogenic potential on chick embryo chorioallantoic membrane (CAM) model. Peripheral blood mononuclear cells (PBMC) were isolated from healthy controls with an age range of 20-30 years and used to calculate the selectivity index (SI). The complex 2 (IC50 = 8.5 ± 0.4/SI = 6.3) showed high cytotoxic and selectivity index against EAC cells than complex 1 (IC50 = 14.9 ± 0.2/SI = 0.2) using the MTT assay. Complex 2 induced DNA damage on Ehrlich tumor cells at concentrations and time periods evalueted. In consequence, it was observed an increase of Tp53 gene expression, G0/G1-arrest cells, and increased levels of cleaved PARP protein. Beside that, the treatment of EAC with complex 2 led to an increase in Annexin V-positive cells and apoptosis induction by Caspase-7. Additionally, the complex 2 inhibited the angiogenesis caused by Ehrlich tumor cells in CAM model. This complex is active and selective for Ehrlich tumor cells, inducing DNA damage, cell cycle arrest and cell death by caspase-dependent apoptosis involving PARP activation (PARP1), and Tp53 induction.


Subject(s)
Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Coordination Complexes/pharmacology , DNA Damage/drug effects , Neovascularization, Physiologic/drug effects , Poly(ADP-ribose) Polymerases/metabolism , Tumor Suppressor Protein p53/metabolism , Adult , Animals , Antineoplastic Agents/chemistry , Carcinoma, Ehrlich Tumor/blood supply , Carcinoma, Ehrlich Tumor/metabolism , Carcinoma, Ehrlich Tumor/pathology , Cells, Cultured , Chick Embryo , Chickens , Chorioallantoic Membrane/blood supply , Chorioallantoic Membrane/pathology , Coordination Complexes/chemistry , Coordination Complexes/toxicity , G1 Phase Cell Cycle Checkpoints/drug effects , Humans , Leukocytes, Mononuclear/cytology , Leukocytes, Mononuclear/metabolism , Mice , Ruthenium/chemistry , Tumor Suppressor Protein p53/genetics , Young Adult
14.
Stem Cell Res Ther ; 8(1): 43, 2017 02 28.
Article in English | MEDLINE | ID: mdl-28241866

ABSTRACT

BACKGROUND: Angiogenesis, the process in which new blood vessels are formed from preexisting ones, is highly dependent on the presence of classical angiogenic factors. Recent evidence suggests that axonal guidance proteins and their receptors can also act as angiogenic regulators. Netrin, a family of laminin-like proteins, specifically Netrin-1 and 4, act via DCC/Neogenin-1 and UNC5 class of receptors to promote or inhibit angiogenesis, depending on the physiological context. METHODS: Mesenchymal stem cells secrete a broad set of classical angiogenic factors. However, little is known about the expression of non-canonical angiogenic factors such as Netrin-1. The aim was to characterize the possible secretion of Netrin ligands by Wharton's jelly-derived mesenchymal stem cells (WJ-MSC). We evaluated if Netrin-1 presence in the conditioned media from these cells was capable of inducing angiogenesis both in vitro and in vivo, using human umbilical vein endothelial cells (HUVEC) and chicken chorioallantoic membrane (CAM), respectively. In addition, we investigated if the RhoA/ROCK pathway is responsible for the integration of Netrin signaling to control vessel formation. RESULTS: The paracrine angiogenic effect of the WJ-MSC-conditioned media is mediated at least in part by Netrin-1 given that pharmacological blockage of Netrin-1 in WJ-MSC resulted in diminished angiogenesis on HUVEC. When HUVEC were stimulated with exogenous Netrin-1 assayed at physiological concentrations (10-200 ng/mL), endothelial vascular migration occurred in a concentration-dependent manner. In line with our determination of Netrin-1 present in WJ-MSC-conditioned media we were able to obtain endothelial tubule formation even in the pg/mL range. Through CAM assays we validated that WJ-MSC-secreted Netrin-1 promotes an increased angiogenesis in vivo. Netrin-1, secreted by WJ-MSC, might mediate its angiogenic effect through specific cell surface receptors on the endothelium, such as UNC5b and/or integrin α6ß1, expressed in HUVEC. However, the angiogenic response of Netrin-1 seems not to be mediated through the RhoA/ROCK pathway. CONCLUSIONS: Thus, here we show that stromal production of Netrin-1 is a critical component of the vascular regulatory machinery. This signaling event may have deep implications in the modulation of several processes related to a number of diseases where angiogenesis plays a key role in vascular homeostasis.


Subject(s)
Chorioallantoic Membrane/drug effects , Human Umbilical Vein Endothelial Cells/drug effects , Mesenchymal Stem Cells/metabolism , Neovascularization, Physiologic/drug effects , Nerve Growth Factors/pharmacology , Tumor Suppressor Proteins/pharmacology , Wharton Jelly/metabolism , Animals , Biological Assay , Cell Movement , Chick Embryo , Chorioallantoic Membrane/blood supply , Chorioallantoic Membrane/cytology , Culture Media, Conditioned/chemistry , Culture Media, Conditioned/pharmacology , Dose-Response Relationship, Drug , Gene Expression Regulation , Human Umbilical Vein Endothelial Cells/cytology , Human Umbilical Vein Endothelial Cells/metabolism , Humans , Integrin alpha6beta1/genetics , Integrin alpha6beta1/metabolism , Mesenchymal Stem Cells/cytology , Nerve Growth Factors/genetics , Nerve Growth Factors/metabolism , Netrin Receptors , Netrin-1 , Primary Cell Culture , Receptors, Cell Surface/genetics , Receptors, Cell Surface/metabolism , Signal Transduction , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/metabolism , Wharton Jelly/cytology
15.
Oncotarget ; 8(6): 9767-9782, 2017 Feb 07.
Article in English | MEDLINE | ID: mdl-28038459

ABSTRACT

Neogenin-1 (NEO1) is a transmembrane receptor involved in axonal guidance, angiogenesis, neuronal cell migration and cell death, during both embryonic development and adult homeostasis. It has been described as a dependence receptor, because it promotes cell death in the absence of its ligands (Netrin and Repulsive Guidance Molecule (RGM) families) and cell survival when they are present. Although NEO1 and its ligands are involved in tumor progression, their precise role in tumor cell survival and migration remain unclear. Public databases contain extensive information regarding the expression of NEO1 and its ligands Netrin-1 (NTN1) and Netrin-4 (NTN4) in primary neuroblastoma (NB) tumors. Analysis of this data revealed that patients with high expression levels of both NEO1 and NTN4 have a poor survival rate. Accordingly, our analyses in NB cell lines with different genetic backgrounds revealed that knocking-down NEO1 reduces cell migration, whereas silencing of endogenous NTN4 induced cell death. Conversely, overexpression of NEO1 resulted in higher cell migration in the presence of NTN4, and increased apoptosis in the absence of ligand. Increased apoptosis was prevented when utilizing physiological concentrations of exogenous Netrin-4. Likewise, cell death induced after NTN4 knock-down was rescued when NEO1 was transiently silenced, thus revealing an important role for NEO1 in NB cell survival. In vivo analysis, using the chicken embryo chorioallantoic membrane (CAM) model, showed that NEO1 and endogenous NTN4 are involved in tumor extravasation and metastasis. Our data collectively demonstrate that endogenous NTN4/NEO1 maintain NB growth via both pro-survival and pro-migratory molecular signaling.


Subject(s)
Cell Movement , Chorioallantoic Membrane/blood supply , Nerve Tissue Proteins/metabolism , Netrins/metabolism , Neuroblastoma/metabolism , Receptors, Cell Surface/metabolism , Animals , Apoptosis , Cell Line, Tumor , Cell Survival , Chick Embryo , Gene Expression Regulation, Neoplastic , Humans , Kaplan-Meier Estimate , Neoplasm Invasiveness , Nerve Tissue Proteins/genetics , Netrins/genetics , Neuroblastoma/genetics , Neuroblastoma/mortality , Neuroblastoma/secondary , RNA Interference , Receptors, Cell Surface/genetics , Signal Transduction , Time Factors , Transfection
16.
An Acad Bras Cienc ; 88(3 Suppl): 1889-1897, 2016.
Article in English | MEDLINE | ID: mdl-27901193

ABSTRACT

This study analyzed the physicochemical and photophysical properties of essential oil of Curcuma longa and its angiogenic potential. The results showed that curcumin is the main fluorescent component present in the oil, although the amount is relatively small. The experimental chorioallantoic membrane model was used to evaluate angiogenic activity, showing a significant increase in the vascular network of Curcuma longa and positive control groups when compared to the neutral and inhibitor controls (P <0.05), but no significant difference was found between Curcuma longa essential oil and the positive control (P >0.05). Histological analysis showed extensive neovascularization, hyperemia and inflammation in the positive control group and Curcuma longa when compared to other controls (P <0.05), characteristic factors of the angiogenesis process. In conclusion, Curcuma longa oil showed considerable proangiogenic activity and could be a potential compound in medical applications.


Subject(s)
Angiogenesis Inducing Agents/pharmacology , Curcuma/chemistry , Neovascularization, Physiologic , Oils, Volatile/chemistry , Oils, Volatile/pharmacology , Plant Oils/chemistry , Plant Oils/pharmacology , Angiogenesis Inducing Agents/chemistry , Animals , Chickens , Chorioallantoic Membrane/blood supply , Chorioallantoic Membrane/drug effects , Curcumin/analysis , Hyperemia/chemically induced , Inflammation/chemically induced , Neovascularization, Physiologic/drug effects
17.
Reprod Fertil Dev ; 28(6): 690-9, 2016 Apr.
Article in English | MEDLINE | ID: mdl-25485810

ABSTRACT

Ovarian hyperstimulation syndrome (OHSS) is a complication of ovarian stimulation with gonadotrophins following human chorionic gonadotrophin (hCG) administration. The relationship between hCG and OHSS is partly mediated via the production of angiogenic factors, such as vascular endothelial growth factor A (VEGFA) and angiopoietins (ANGPTs). Here, we investigated the effect of ANGPT1 inhibition on ovarian angiogenesis in follicular fluid (FF) from women at risk of OHSS, using the chorioallantoic membrane (CAM) of quail embryos as an experimental model. We also analysed cytoskeletal changes and endothelial junction protein expression induced by this FF in the presence or absence of an ANGPT1-neutralising antibody in endothelial cell cultures. The presence of this antibody restored the number of vascular branch points and integrin αvß3 levels in the CAMs to control values. ANGPT1 inhibition in FF from OHSS patients also restored the levels of claudin-5, vascular endothelial cadherin and phosphorylated ß-catenin and partially reversed actin redistribution in endothelial cells. Our findings suggest that ANGPT1 increases pathophysiological angiogenesis in patients at risk of OHSS by acting on tight and adherens junction proteins. Elucidating the mechanisms by which ANGPT1 regulates vascular development and cell-cell junctions in OHSS will contribute to identifying new therapeutic targets for the treatment of human diseases with aberrant vascular leakage.


Subject(s)
Adherens Junctions/metabolism , Angiopoietin-1/metabolism , Endothelium, Vascular/metabolism , Neovascularization, Pathologic/etiology , Ovarian Follicle/metabolism , Ovarian Hyperstimulation Syndrome/physiopathology , Tight Junctions/metabolism , Adherens Junctions/drug effects , Adherens Junctions/pathology , Adult , Angiopoietin-1/antagonists & inhibitors , Animals , Antibodies, Monoclonal/pharmacology , Antibodies, Neutralizing/pharmacology , Argentina/epidemiology , Biological Assay , Biomarkers/metabolism , Cell Line , Cells, Cultured , Chorioallantoic Membrane/blood supply , Chorioallantoic Membrane/drug effects , Chorioallantoic Membrane/metabolism , Coturnix , Endothelium, Vascular/drug effects , Endothelium, Vascular/pathology , Endothelium, Vascular/physiopathology , Female , Follicular Fluid/cytology , Follicular Fluid/metabolism , Humans , Ovarian Follicle/blood supply , Ovarian Follicle/drug effects , Ovarian Follicle/pathology , Ovarian Hyperstimulation Syndrome/epidemiology , Ovarian Hyperstimulation Syndrome/metabolism , Ovarian Hyperstimulation Syndrome/pathology , Risk , Tight Junctions/drug effects , Tight Junctions/pathology
18.
Chem Biol Interact ; 239: 174-83, 2015 Sep 05.
Article in English | MEDLINE | ID: mdl-26134001

ABSTRACT

The strategy of antiangiogenic drugs is based on inhibiting formation of new blood vessels as alternative to limit cancer progression. In this work, we investigated the antitumor and antiangiogenic potential of eight thalidomide derivatives. Most of the molecules was not cytotoxic but 2a, 2d and 3d revealed weak antiproliferative activity on HL-60, Sarcoma 180 (S180) and normal peripheral blood mononuclear cells. Thalidomide, 2a and 2b were able to inhibit tumor growth (53.5%, 67.9% and 67.4%, respectively) in S180-bearing mice and presented moderate and reversible toxicity on liver, kidneys and spleens. Both analogs (2a and 2b) inhibited cell migration of endothelial (HUVEC) and melanoma cells (MDA/MB-435) at 50µg/mL. Immunohistochemistry labeling assays with CD-31 (PECAM-1) antibody showed microvascular density (MVD) was significantly reduced in thalidomide, 2a and 2b groups (30±4.9, 64.6±1.8 and 46.5±19.5%, respectively) (p<0.05). Neovascularization evaluated by Chorioallantoic Membrane Assay (CAM) with compounds 2a and 2b showed reduction of vessels' number (12. 9±2.3 and 14.8±3.3%), neovascularization area (13.1±1.7 and 14.3±1.7%) and total length of vessels (9.2±1.5 and 9.9±1.9%). On the other hand, thalidomide did not alter vascularization parameters. Consequently, addition of thiosemicarbazone pharmacophore group into the phthalimidic ring improved the in vivo antitumor and antiangiogenic potential of the analogs 2a and 2b.


Subject(s)
Angiogenesis Inhibitors/chemistry , Angiogenesis Inhibitors/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Thalidomide/chemistry , Animals , Cell Line, Tumor/drug effects , Cell Movement/drug effects , Cell Proliferation/drug effects , Chick Embryo , Chorioallantoic Membrane/blood supply , Chorioallantoic Membrane/drug effects , Female , Humans , Mice , Neovascularization, Pathologic/drug therapy , Structure-Activity Relationship , Thalidomide/analogs & derivatives , Xenograft Model Antitumor Assays
19.
Biol Res ; 48: 29, 2015 Jun 10.
Article in English | MEDLINE | ID: mdl-26060038

ABSTRACT

BACKGROUND: Leptin, the cytokine produced by white adipose tissue is known to regulate food energy homeostasis through its hypothalamic receptor. In vitro studies have demonstrated that leptin plays a major role in angiogenesis through binding to the receptor Ob-R present on ECs by stimulating and initiating new capillary like structures from ECs. Various in vivo studies indicate that leptin has diverse effect on angiogenesis. A few reports have showed that leptin exerts pro angiogenic effects while some suggested that it has antiangiogenic potential. It is theoretically highly important to understand the effect of leptin on angiogenesis to use as a therapeutic molecule in various angiogenesis related pathological conditions. Chicken chorio allantoic membrane (CAM) on 9th day of incubation was incubated with 1, 3 and 5 µg concentration of HRL for 72 h using gelatin sponge. Images where taken after every 24 h of incubation and analysed with Angioguant software. The treated area was observed under microscope and histological evaluation was performed for the same. Tissue thickness was calculated morphometrically from haematoxylin and eosin stained cross sections. Reverse transcriptase PCR and immunohistochemistry were also performed to study the gene and protein level expression of angiogenic molecules. RESULTS: HRL has the ability to induce new vessel formation at the treated area and growth of the newly formed vessels and cellular morphological changes occur in a dose dependent manner. Increase in the tissue thickness at the treated area is suggestive of initiation of new capillary like structures. Elevated mRNA and protein level expression of VEGF165 and MMP2 along with the activation of ECs as demonstrated by the presence of CD34 expression supports the neovascularization potential of HRL. CONCLUSION: Angiogenic potential of HRL depends on the concentration and time of incubation and is involved in the activation of ECs along with the major interaction of VEGF 165 and MMP2. It is also observed that 3 µg of HRL exhibits maximum angiogenic potential at 72 h of incubation. Thus our data suggest that dose dependent angiogenic potential HRL could provide a novel role in angiogenic dependent therapeutics such as ischemia and wound healing conditions.


Subject(s)
Angiogenesis Inducing Agents/administration & dosage , Chorioallantoic Membrane/drug effects , Endothelial Cells/drug effects , Leptin/administration & dosage , Neovascularization, Physiologic/drug effects , Zygote , Animals , Antigens, CD34/metabolism , Chick Embryo , Chorioallantoic Membrane/blood supply , Chorioallantoic Membrane/enzymology , Dose-Response Relationship, Drug , Gelatinases/metabolism , Humans , Immunohistochemistry , Matrix Metalloproteinase 2/metabolism , Microscopy , RNA, Messenger/metabolism , Recombinant Proteins/pharmacology , Reverse Transcriptase Polymerase Chain Reaction , Vascular Endothelial Growth Factor A/metabolism
20.
Biol. Res ; 48: 1-13, 2015. ilus, graf
Article in English | LILACS | ID: biblio-950793

ABSTRACT

BACKGROUND: Leptin, the cytokine produced by white adipose tissue is known to regulate food energy homeostasis through its hypothalamic receptor. In vitro studies have demonstrated that leptin plays a major role in angiogenesis through binding to the receptor Ob-R present on ECs by stimulating and initiating new capillary like structures from ECs. Various in vivo studies indicate that leptin has diverse effect on angiogenesis. A few reports have showed that leptin exerts pro angiogenic effects while some suggested that it has antiangiogenic potential. It is theoretically highly important to understand the effect of leptin on angiogenesis to use as a therapeutic molecule in various angiogenesis related pathological conditions. Chicken chorio allantoic membrane (CAM) on 9th day of incubation was incubated with 1, 3 and 5 µg concentration of HRL for 72 h using gelatin sponge. Images where taken after every 24 h of incubation and analysed with Angioguant software. The treated area was observed under microscope and histological evaluation was performed for the same. Tissue thickness was calculated morphometrically from haematoxylin and eosin stained cross sections. Reverse transcriptase PCR and immunohistochemistry were also performed to study the gene and protein level expression of angiogenic molecules. RESULTS: HRL has the ability to induce new vessel formation at the treated area and growth of the newly formed vessels and cellular morphological changes occur in a dose dependent manner. Increase in the tissue thickness at the treated area is suggestive of initiation of new capillary like structures. Elevated mRNA and protein level expression of VEGF165 and MMP2 along with the activation of ECs as demonstrated by the presence of CD34 expression supports the neovascularization potential of HRL. CONCLUSION: Angiogenic potential of HRL depends on the concentration and time of incubation and is involved in the activation of ECs along with the major interaction of VEGF 165 and MMP2. It is also observed that 3 µg of HRL exhibits maximum angiogenic potential at 72 h of incubation. Thus our data suggest that dose dependent angiogenic potential HRL could provide a novel role in angiogenic dependent therapeutics such as ischemia and wound healing conditions.


Subject(s)
Humans , Animals , Chick Embryo , Zygote , Neovascularization, Physiologic/drug effects , Leptin/administration & dosage , Endothelial Cells/drug effects , Angiogenesis Inducing Agents/administration & dosage , Chorioallantoic Membrane/drug effects , Recombinant Proteins/pharmacology , RNA, Messenger/metabolism , Immunohistochemistry , Gelatinases/metabolism , Antigens, CD34/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Matrix Metalloproteinase 2/metabolism , Vascular Endothelial Growth Factor A/metabolism , Chorioallantoic Membrane/enzymology , Chorioallantoic Membrane/blood supply , Dose-Response Relationship, Drug , Microscopy
SELECTION OF CITATIONS
SEARCH DETAIL