Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 453
Filter
1.
Molecules ; 29(13)2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38998955

ABSTRACT

The chromenopyridine scaffold represents an important class of heterocyclic compounds exhibiting a broad spectrum of biological properties. This review describes novel and efficient procedures for the synthesis of this scaffold. Herein, several methods were detailed and grouped according to their starting material (e.g., salicylaldehydes, chromones, chromanones and coumarins) and respective biological activity, when reported. This review highlights the potential of the reported synthetic strategies for preparing chromenopyridine derivatives with promising biological activity, paving the way for further developments in drug discovery.


Subject(s)
Drug Design , Pyridines , Pyridines/chemistry , Pyridines/chemical synthesis , Pyridines/pharmacology , Humans , Molecular Structure , Chromones/chemistry , Chromones/chemical synthesis , Chromones/pharmacology , Coumarins/chemistry , Coumarins/pharmacology , Coumarins/chemical synthesis , Structure-Activity Relationship
2.
Drug Dev Res ; 85(5): e22228, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38952003

ABSTRACT

Chromone-based compounds have established cytotoxic, antiproliferative, antimetastatic, and antiangiogenic effects on various cancer cell types via modulating different molecular targets. Herein, 17 novel chromone-2-carboxamide derivatives were synthesized and evaluated for their in vitro anticancer activity against 15 human cancer cell lines. Among the tested cell lines, MDA-MB-231, the triple-negative breast cancer cell line, was found to be the most sensitive, where the N-(2-furylmethylene) (15) and the α-methylated N-benzyl (17) derivatives demonstrated the highest growth inhibition with GI50 values of 14.8 and 17.1 µM, respectively. In vitro mechanistic studies confirmed the significant roles of compounds 15 and 17 in the induction of apoptosis and suppression of EGFR, FGFR3, and VEGF protein levels in MDA-MB-231 cancer cells. Moreover, compound 15 exerted cell cycle arrest at both the G0-G1 and G2-M phases. The in vivo efficacy of compound 15 as an antitumor agent was further investigated in female mice bearing Solid Ehrlich Carcinoma. Notably, administration of compound 15 resulted in a marked decrease in both tumor weight and volume, accompanied by improvements in biochemical, hematological, histological, and immunohistochemical parameters that verified the repression of both angiogenesis and inflammation as additional Anticancer mechanisms. Moreover, the binding interactions of compounds 15 and 17 within the binding sites of all three target receptors (EGFR, FGFR3, and VEGF) were clearly illustrated using molecular docking.


Subject(s)
Antineoplastic Agents , Chromones , ErbB Receptors , Molecular Docking Simulation , Receptor, Fibroblast Growth Factor, Type 3 , Triple Negative Breast Neoplasms , Vascular Endothelial Growth Factor A , Humans , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/metabolism , Female , Animals , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/metabolism , Triple Negative Breast Neoplasms/pathology , Vascular Endothelial Growth Factor A/metabolism , Cell Line, Tumor , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Receptor, Fibroblast Growth Factor, Type 3/antagonists & inhibitors , Receptor, Fibroblast Growth Factor, Type 3/metabolism , Mice , Chromones/pharmacology , Chromones/chemical synthesis , Chromones/chemistry , Chromones/therapeutic use , Drug Design , Apoptosis/drug effects , Cell Proliferation/drug effects
3.
Org Biomol Chem ; 22(30): 6189-6197, 2024 07 31.
Article in English | MEDLINE | ID: mdl-39027944

ABSTRACT

A series of chromone-deferiprone hybrids were designed, synthesized, and evaluated as inhibitors of human monoamine oxidase B (hMAO-B) with iron-chelating activity for the treatment of Alzheimer's disease (AD). The majority exhibited moderate inhibitory activity towards hMAO-B and potent iron-chelating properties. Particularly, compound 25c demonstrated remarkable selectivity against hMAO-B with an IC50 value of 1.58 µM and potent iron-chelating ability (pFe3+ = 18.79) comparable to that of deferiprone (pFe3+ = 17.90). Molecular modeling and kinetic studies showed that 25c functions as a non-competitive hMAO-B inhibitor. According to the predicted results, compound 25c can penetrate the blood-brain barrier (BBB). Additionally, it has been proved to display significant antioxidant activity and the ability to inhibit neuronal ferroptosis. More importantly, compound 25c reduced the cognitive impairment induced by scopolamine and showed significant non-toxicity in short-term toxicity assays. In summary, compound 25c was identified as a potential anti-AD agent with hMAO-B inhibitory, iron-chelating and anti-ferroptosis activities.


Subject(s)
Alzheimer Disease , Chromones , Deferiprone , Iron Chelating Agents , Monoamine Oxidase Inhibitors , Monoamine Oxidase , Monoamine Oxidase Inhibitors/pharmacology , Monoamine Oxidase Inhibitors/chemistry , Monoamine Oxidase Inhibitors/chemical synthesis , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Iron Chelating Agents/pharmacology , Iron Chelating Agents/chemistry , Iron Chelating Agents/chemical synthesis , Deferiprone/pharmacology , Deferiprone/chemistry , Monoamine Oxidase/metabolism , Humans , Chromones/chemistry , Chromones/pharmacology , Chromones/chemical synthesis , Structure-Activity Relationship , Animals , Antioxidants/pharmacology , Antioxidants/chemistry , Antioxidants/chemical synthesis , Ferroptosis/drug effects , Molecular Structure , Molecular Docking Simulation , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/drug effects , Dose-Response Relationship, Drug
4.
Bioorg Med Chem Lett ; 109: 129853, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38909705

ABSTRACT

Overexpression of Bcl-2 protein is a predominant hallmark of disturbed apoptotic pathway in most of the cancers. Herein, chromone-linked thiazolidinediones were designed and synthesized to target Bcl-2 for regulating anti-apoptotic proteins. The study on in vitro cancer cell lines revealed the presence of compounds 8a, 8k, 8l, and 8n, which were found to have good to moderate anti-proliferative activity (with an IC50 concentration less than 10 µM). Among them, 8l depicted the highest cytotoxicity on the A549 cell line with an IC50 of 6.1 ± 0.02 µM. Aberrantly, the compounds displayed less toxicity towards human embryonic kidney HEK cells underlining its selectivity. The DCFDA study revealed a gradual increase in the ROS generation of 8l, followed by its quantification by flow analysis. Similarly, the studies including DAPI, AO/EtBr and Annexin-V binding clearly elucidated the DNA damage, membrane integrity prospects, and insights for early and late apoptotic phases. Markedly, the Bcl-2-FITC anti-body study revealed that compound 8l reduced the expression of anti-apoptotic proteins by 79.1 % compared to the control at 9 µM concentration. In addition, the molecular docking study provided the impending scope of these hybrids, showing promising interaction with the Mcl-1 target (member of the Bcl-2 family) with comparable binding affinities.


Subject(s)
Antineoplastic Agents , Apoptosis , Cell Proliferation , Chromones , Drug Screening Assays, Antitumor , Thiazolidinediones , Humans , Apoptosis/drug effects , Chromones/pharmacology , Chromones/chemistry , Chromones/chemical synthesis , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Thiazolidinediones/pharmacology , Thiazolidinediones/chemistry , Thiazolidinediones/chemical synthesis , Structure-Activity Relationship , Cell Proliferation/drug effects , Molecular Structure , Dose-Response Relationship, Drug , Molecular Docking Simulation , HEK293 Cells , Proto-Oncogene Proteins c-bcl-2/metabolism , Cell Line, Tumor
5.
Sci Rep ; 14(1): 9866, 2024 04 29.
Article in English | MEDLINE | ID: mdl-38684797

ABSTRACT

A series of novel chromone derivatives of (N-(4-oxo-2-(trifluoromethyl)-4H-chromen-6-yl) benzamides) were synthesized by treating 7-amino-2-(trifluoromethyl)-4H-chromen-4-one with K2CO3 and/or NaH, suitable alkyl halides and acetonitrile and/or 1,4-dioxane. The obtained products are in high yields (87 to 96%) with various substituents in short reaction times with no more by-products and confirmed by FT-IR, 1H, and 13C-NMR Spectral data. The in vitro cytotoxic activity was examined against two human cancer cell lines, namely the human lung adenocarcinoma (A-549) and the human breast (MCF-7) cancer cell line. Compound 4h showed promising cytotoxicity against both cell lines with IC50 values of 22.09 and 6.40 ± 0.26 µg/mL respectively, compared to that of the standard drug. We also performed the in vitro antioxidant activity by DPPH radical, hydrogen peroxide, NO scavenging, and total antioxidant capacity (TAC) assay methods, and they showed significant activities. The possible binding interactions of all the synthesized chromone derivatives are also investigated against selective pharmacological targets of human beings, such as HERA protein for cytotoxic activity and Peroxiredoxins (3MNG) for antioxidant activity which showed closer binding free energies than the standard drugs and evidencing the above two types of activities.


Subject(s)
Antineoplastic Agents , Antioxidants , Benzamides , Molecular Docking Simulation , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Antioxidants/pharmacology , Antioxidants/chemical synthesis , Antioxidants/chemistry , Benzamides/pharmacology , Benzamides/chemistry , Benzamides/chemical synthesis , MCF-7 Cells , A549 Cells , Chromones/chemistry , Chromones/pharmacology , Chromones/chemical synthesis , Cell Line, Tumor , Structure-Activity Relationship
6.
Sci Rep ; 14(1): 9636, 2024 04 26.
Article in English | MEDLINE | ID: mdl-38671055

ABSTRACT

In consideration of the chromones' therapeutic potential and anticancer activity, a new series of chromanone derivatives have been synthesized through a straightforward reaction between 6-formyl-7-hydroxy-5-methoxy-2-methylchromone (2) and various organic active compounds. The cytotoxic activity of the newly synthesized congeners was investigated against MCF-7 (human breast cancer), HCT-116 (colon cancer), HepG2 (liver cancer), and normal skin fibroblast cells (BJ1). The obtained data indicated that compounds 14b, 17, and 19 induce cytotoxic activity in the breast MCF7, while compounds 6a, 6b, 11 and 14c showed highly potent activity in the colon cancer cell lines. Overall, the results demonstrate that the potential cytotoxic effects of the studied compounds may be based on their ability to induce DNA fragmentation in cancer cell lines, down-regulate the expression level of CDK4 as well as the anti-apoptotic gene Bcl-2 and up-regulate the expression of the pro-apoptotic genes P53 and Bax. Furthermore, compounds 14b and 14c showed a dual mechanism of action by inducing apoptosis and cell cycle arrest. The docking studies showed that the binding affinity of the most active cytotoxic compounds within the active pocket of the CDK4 enzyme is stronger due to hydrophobic and H-bonding interactions. These results were found to be consistent with the experimental results.


Subject(s)
Antineoplastic Agents , Apoptosis , Chromones , Molecular Docking Simulation , Humans , Chromones/chemistry , Chromones/pharmacology , Chromones/chemical synthesis , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Apoptosis/drug effects , MCF-7 Cells , Cell Line, Tumor , HCT116 Cells , Hep G2 Cells , Cyclin-Dependent Kinase 4/metabolism , Cell Cycle Checkpoints/drug effects , Cell Proliferation/drug effects , Structure-Activity Relationship , Tumor Suppressor Protein p53/metabolism , Proto-Oncogene Proteins c-bcl-2/metabolism , Proto-Oncogene Proteins c-bcl-2/genetics , Drug Screening Assays, Antitumor
7.
Chem Commun (Camb) ; 60(36): 4838-4841, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38619439

ABSTRACT

Herein, we present an efficient Pd-catalysed method for stereoselective synthesis of chromone C-glycosides from various glycals. We successfully applied this method to various glycals with different protecting groups, yielding the corresponding glycosides in 41-78% yields. Additionally, we investigated the potential of this approach for the late-stage modification of natural products and pharmaceutical compounds linked to glycals, leading to the synthesis of their respective glycosides. Furthermore, we extended our research to gram-scale synthesis and demonstrated its applicability in producing various valuable products, including 2-deoxy-chromone C-glycosides. In summary, our work introduces a novel library of chromone glycosides, which holds promise for advancing drug discovery efforts.


Subject(s)
Chromones , Glycosides , Palladium , Palladium/chemistry , Catalysis , Glycosides/chemistry , Glycosides/chemical synthesis , Stereoisomerism , Chromones/chemistry , Chromones/chemical synthesis , Molecular Structure , Biological Products/chemical synthesis , Biological Products/chemistry
8.
ACS Chem Neurosci ; 13(23): 3488-3501, 2022 12 07.
Article in English | MEDLINE | ID: mdl-36383455

ABSTRACT

Based on a multitarget strategy, a series of novel chromanone-1-benzyl-1,2,3,6-tetrahydropyridin hybrids were identified for the potential treatment of Alzheimer's disease (AD). Biological evaluation demonstrated that these hybrids exhibited significant inhibitory activities toward acetylcholinesterase (AChE) and monoamine oxidase B (MAO-B). The optimal compound C10 possessed excellent dual AChE/MAO-B inhibition both in terms of potency and equilibrium (AChE: IC50 = 0.58 ± 0.05 µM; MAO-B: IC50 = 0.41 ± 0.04 µM). Further molecular modeling and kinetic investigations revealed that compound C10 was a dual-binding inhibitor bound to both the catalytic anionic site and peripheral anionic site of AChE. In addition, compound C10 exhibited low neurotoxicity and potently inhibited AChE enzymatic activity. Furthermore, compound C10 more effectively protected against mitochondrial dysfunction and oxidation than donepezil, strongly inhibited AChE-induced amyloid aggregation, and moderately reduced glutaraldehyde-induced phosphorylation of tau protein in SH-SY5Y cells. Moreover, compound C10 displayed largely enhanced improvements in cognitive behaviors and spatial memory in a scopolamine-induced AD mice model with better efficacy than donepezil. Overall, the multifunctional profiles of compound C10 suggest that it deserves further investigation as a promising lead for the prospective treatment of AD.


Subject(s)
Alzheimer Disease , Cholinesterase Inhibitors , Chromones , Monoamine Oxidase Inhibitors , Animals , Humans , Mice , Acetylcholinesterase/metabolism , Alzheimer Disease/drug therapy , Cell Line, Tumor , Chromones/chemical synthesis , Chromones/pharmacology , Chromones/therapeutic use , Cholinesterase Inhibitors/chemical synthesis , Cholinesterase Inhibitors/pharmacology , Cholinesterase Inhibitors/therapeutic use , Monoamine Oxidase Inhibitors/chemical synthesis , Monoamine Oxidase Inhibitors/pharmacology , Monoamine Oxidase Inhibitors/therapeutic use , Drug Design
9.
Molecules ; 26(24)2021 Dec 16.
Article in English | MEDLINE | ID: mdl-34946707

ABSTRACT

This article describes a part of the results obtained from the cooperation between the University of Lyon1 (France) and the University of Antananarivo (Madagascar). It shows (among others) that useful research can be carried out in developing countries of the tropics if their social, technical, and economic conditions are taken into account. The concepts and methods associated with so-called "green chemistry" are particularly appropriated for this purpose. To illustrate this approach, two examples are shown. The first deals with industrial ecology and concerns waste transformation from the production of cashew nut into an amphiphilic product, oxyacetic derivatives. This product was obtained with a high yield and in a single step reaction. It exhibited an important surfactant property similar to those of the main fossil-based ones but with a much lower ecological impact. The second talks about chemical ecology as an alternative to insecticides and used to control dangerous mosquito populations. New substituted chromones were synthesized and showed biological activities toward Aedes albopictus mosquito species. Strong repellent properties were recorded for some alkoxylated products if others had a significant attractant effect (Kairomone) depending on their stereochemistry and the length of the alkyl chain.


Subject(s)
Aedes/physiology , Chromones , Insect Repellents , Animals , Chromones/chemical synthesis , Chromones/chemistry , Chromones/pharmacology , Insect Repellents/chemical synthesis , Insect Repellents/chemistry , Insect Repellents/pharmacology , Madagascar
10.
Molecules ; 26(23)2021 Nov 23.
Article in English | MEDLINE | ID: mdl-34885649

ABSTRACT

American trypanosomiasis (Chagas disease) caused by the Trypanosoma cruzi parasite, is a severe health problem in different regions of Latin America and is currently reported to be spreading to Europe, North America, Japan, and Australia, due to the migration of populations from South and Central America. At present, there is no vaccine available and chemotherapeutic options are reduced to nifurtimox and benznidazole. Therefore, the discovery of new molecules is urgently needed to initiate the drug development process. Some acetophenones and chalcones, as well as chromane-type substances, such as chromones and flavones, are natural products that have been studied as trypanocides, but the relationships between structure and activity are not yet fully understood. In this work, 26 compounds were synthesized to determine the effect of hydroxyl and isoprenyl substituents on trypanocide activity. One of the compounds showed interesting activity against a resistant strain of T. cruzi, with a half effective concentration of 18.3 µM ± 1.1 and an index of selectivity > 10.9.


Subject(s)
Acetophenones/pharmacology , Biological Products/pharmacology , Chagas Disease/metabolism , Chalcones/pharmacology , Chromones/pharmacology , Drug Discovery/methods , Flavones/pharmacology , Trypanocidal Agents/pharmacology , Trypanosoma cruzi/drug effects , Acetophenones/chemical synthesis , Biological Products/chemical synthesis , Cell Survival/drug effects , Chagas Disease/parasitology , Chalcones/chemical synthesis , Chromones/chemical synthesis , Flavones/chemical synthesis , Humans , Trypanocidal Agents/chemical synthesis , U937 Cells
11.
J Nat Prod ; 84(11): 2786-2794, 2021 11 26.
Article in English | MEDLINE | ID: mdl-34786945

ABSTRACT

Dirchromone is a bioactive vinyl sulfoxide-bearing chromone first isolated from the shrub Dirca palustris. Altogether, 32 of its derivatives were prepared to assess the effect of substitution of its chromone core upon activities against cancer cell lines, Gram-positive bacteria, and fungi (such as Candida albicans). All compounds were synthesized following a synthetic strategy involving Pummerer and soft-enolization Baker-Venkataraman rearrangements. Substituent position changes induced little variability on the activities tested. There was no correlation between cytotoxic and antibacterial effects, suggesting different underlying mechanisms of action. In particular, hydroxy group and cyanide substituents diminished cytotoxicity, with the latter featuring enhanced antibacterial activity. Higher homologues of 6-alkoxydirchromones also exhibited progressively emerging antifungal activity. Other modifications had moderate effects on cytotoxicity with some derivatives leading to increased potency. This behavior highlights the robustness of the natural dirchromone pharmacophore toward decoration, thus paving the way for more elaborate future drug design.


Subject(s)
Anti-Bacterial Agents/pharmacology , Antifungal Agents/pharmacology , Antineoplastic Agents/pharmacology , Chromones/pharmacology , Cell Line, Tumor , Chromones/chemical synthesis , Chromones/chemistry , Humans , Structure-Activity Relationship
12.
Bioorg Med Chem Lett ; 53: 128431, 2021 12 01.
Article in English | MEDLINE | ID: mdl-34737160

ABSTRACT

A number of chromone derivatives containing sulfonamide structure were designed and synthesized. Firstly, the target compounds were evaluated for anti-TSWV activities in vivo by the half-leaf method. We found that most of the compounds had good anti-TSWV activities. Among them, compound 12B had excellent anti-TSWV inactivating activity with an EC50 of 80.5 µg/mL, which was significantly better than xiangcaoliusuobingmi (765.7 µg/mL). Secondly, TSWV nucleocapsid protein (N) was expressed and purified, and the affinity between the compounds and TSWV N was tested by microscale thermophoresis (MST). Compound 12B had a good affinity for TSWV N with a Kd value of 5.02 µM, which was superior to xiangcaoliusuobingmi (29.83 µM). Finally, in order to study the mode of interaction between the compound 12B and TSWV N, we carried out molecular docking. The results indicated that compound 12B might inactivate the virus by destroying the TSWV N oligomer structure. These results lay a solid foundation for the further discovery of chromone derivatives containing sulfonamide structure with high anti-TSWV activities.


Subject(s)
Antiviral Agents/pharmacology , Chromones/pharmacology , Drug Discovery , Sulfonamides/pharmacology , Tospovirus/drug effects , Antiviral Agents/chemical synthesis , Antiviral Agents/chemistry , Chromones/chemical synthesis , Chromones/chemistry , Dose-Response Relationship, Drug , Microbial Sensitivity Tests , Molecular Structure , Structure-Activity Relationship , Sulfonamides/chemistry
13.
Molecules ; 26(20)2021 Oct 18.
Article in English | MEDLINE | ID: mdl-34684877

ABSTRACT

Microwave irradiation has become a popular heating technique in organic synthesis, mainly due to its short reaction times, solventless reactions, and, sometimes, higher yields. Additionally, microwave irradiation lowers energy consumption and, consequently, is ideal for optimization processes. Moreover, there is evidence that microwave irradiation can improve the regioselectivity and stereoselectivity aspects of vital importance in synthesizing bioactive compounds. These crucial features of microwave irradiation contribute to its inclusion in green chemistry procedures. Since 2003, the use of microwave-assisted organic synthesis has become common in our laboratory, making our group one of the first Portuguese research groups to implement this heating source in organic synthesis. Our achievements in the transformation of heterocyclic compounds, such as (E/Z)-3-styryl-4H-chromen-4-ones, (E)-3-(2-hydroxyphenyl)-4-styryl-1H-pyrazole, (E)-2-(4-arylbut-1-en-3-yn-1-yl)-4H-chromen-4-ones, or (E)-2-[2-(5-aryl-2-methyl-2H-1,2,3-triazol-4-yl)vinyl]-4H-chromen-4-ones, will be discussed in this review, highlighting the benefits of microwave irradiation use in organic synthesis.


Subject(s)
Chromones/chemical synthesis , Heating/methods , Microwaves , Pyrazoles/chemical synthesis , Quinolones/chemical synthesis , Chemistry, Pharmaceutical/methods , Chromones/radiation effects , Combinatorial Chemistry Techniques/methods , Enzyme Inhibitors/chemical synthesis , Humans , Molecular Structure , Pyrazoles/radiation effects , Quinolones/radiation effects
14.
Nat Commun ; 12(1): 4736, 2021 08 05.
Article in English | MEDLINE | ID: mdl-34354056

ABSTRACT

Chromones represent a privileged scaffold in medicinal chemistry and are an omnipresent structural motif in natural products. Chemically encoded non-natural peptidomimetics feature improved stability towards enzymatic degradation, cell permeability and binding affinity, translating into a considerable impact on pharmaceutical industry. Herein, a strategy for the sustainable assembly of chromones via electro-formyl C-H activation is presented. The rational design of the rhodaelectro-catalysis is guided by detailed mechanistic insights and provides versatile access to tyrosine-based fluorogenic peptidomimetics.


Subject(s)
Chromones/chemistry , Peptidomimetics/chemistry , Benzaldehydes/chemical synthesis , Benzaldehydes/chemistry , Biomimetics/methods , Catalysis , Chromones/chemical synthesis , Electrochemical Techniques , Molecular Structure , Oxidation-Reduction , Peptidomimetics/chemical synthesis
15.
J Med Chem ; 64(15): 11169-11182, 2021 08 12.
Article in English | MEDLINE | ID: mdl-34269579

ABSTRACT

Chromone-3-phenylcarboxamides (Crom-1 and Crom-2) were identified as potent, selective, and reversible inhibitors of human monoamine oxidase B (hMAO-B). Since they exhibit some absorption, distribution, metabolism, and excretion (ADME)-toxicity liabilities, new derivatives were synthesized to map the chemical structural features that compose the pharmacophore, a process vital for lead optimization. Structure-activity relationship data, supported by molecular docking studies, provided a rationale for the contribution of the heterocycle's rigidity, the carbonyl group, and the benzopyran heteroatom for hMAO-B inhibitory activity. From the study, N-(3-chlorophenyl)-4H-thiochromone-3-carboxamide (31) (hMAO-B IC50 = 1.52 ± 0.15 nM) emerged as a reversible tight binding inhibitor with an improved pharmacological profile. In in vitro ADME-toxicity studies, compound 31 showed a safe cytotoxicity profile in Caco-2, SH-SY5Y, HUVEC, HEK-293, and MCF-7 cells, did not present cardiotoxic effects, and did not affect P-gp transport activity. Compound 31 also protected SH-SY5Y cells from iron(III)-induced damage. Collectively, these studies highlighted compound 31 as the first-in-class and a suitable candidate for in vivo preclinical investigation.


Subject(s)
Chromones/pharmacology , Monoamine Oxidase Inhibitors/pharmacology , Monoamine Oxidase/metabolism , Cell Line , Chromones/chemical synthesis , Chromones/chemistry , Dose-Response Relationship, Drug , Humans , Molecular Structure , Monoamine Oxidase Inhibitors/chemical synthesis , Monoamine Oxidase Inhibitors/chemistry , Structure-Activity Relationship
16.
Molecules ; 26(14)2021 Jul 16.
Article in English | MEDLINE | ID: mdl-34299579

ABSTRACT

Herein we report the synthesis of some new 1H-1,2,4-triazole functionalized chromenols (3a-3n) via tandem reactions of 1-(alkyl/aryl)-2-(1H-1,2,4-triazole-1-yl) with salicylic aldehydes and the evaluation of their antifungal activity. In silico prediction of biological activity with computer program PASS indicate that the compounds have a high novelty compared to the known antifungal agents. We did not find any close analog among the over 580,000 pharmaceutical agents in the Cortellis Drug Discovery Intelligence database at the similarity cutoff of 70%. The evaluation of antifungal activity in vitro revealed that the highest activity was exhibited by compound 3k, followed by 3n. Their MIC values for different fungi were 22.1-184.2 and 71.3-199.8 µM, respectively. Twelve from fourteen tested compounds were more active than the reference drugs ketoconazole and bifonazole. The most sensitive fungus appeared to be Trichoderma viride, while Aspergillus fumigatus was the most resistant one. It was found that the presence of the 2-(tert-butyl)-2H-chromen-2-ol substituent on the 4th position of the triazole ring is very beneficial for antifungal activity. Molecular docking studies on C. albicans sterol 14α-demethylase (CYP51) and DNA topoisomerase IV were used to predict the mechanism of antifungal activities. According to the docking results, the inhibition of CYP51 is a putative mechanism of antifungal activity of the novel chromenol derivatives. We also showed that most active compounds have a low cytotoxicity, which allows us to consider them promising antifungal agents for the subsequent testing activity in in vivo assays.


Subject(s)
Antifungal Agents , Chromones , Hypocreales/growth & development , Mitosporic Fungi/growth & development , Molecular Docking Simulation , Antifungal Agents/chemical synthesis , Antifungal Agents/chemistry , Antifungal Agents/pharmacology , Chromones/chemical synthesis , Chromones/chemistry , Chromones/pharmacology , Drug Evaluation, Preclinical
17.
Bioorg Chem ; 114: 105070, 2021 09.
Article in English | MEDLINE | ID: mdl-34126574

ABSTRACT

AD is one of the most typical neurodegenerative disorders that suffer many seniors worldwide. Recently, MAO inhibitors have received increasing attention not only for their roles involved in monoamine neurotransmitters metabolism and oxidative stress but also for their additional neuroprotective and neurorescue effects against AD. The curiosity in MAO inhibitors is reviving, and novel MAO-B inhibitors recently developed with ancillary activities (e.g., Aß aggregation and AChE inhibition, anti-ROS and chelating activities) have been proposed as multitarget drugs foreshadowing a positive outlook for the treatment of AD. The current review describes the recent development of the design, synthesis, and screening of multifunctional ligands based on MAO-B inhibition for AD therapy. Structure-activity relationships and rational design strategies of the synthetic or natural product derivatives (chalcones, coumarins, chromones, and homoisoflavonoids) are discussed.


Subject(s)
Alzheimer Disease/drug therapy , Monoamine Oxidase Inhibitors/pharmacology , Monoamine Oxidase/metabolism , Neuroprotective Agents/pharmacology , Alzheimer Disease/metabolism , Animals , Chalcones/chemical synthesis , Chalcones/chemistry , Chalcones/pharmacology , Chromones/chemical synthesis , Chromones/chemistry , Chromones/pharmacology , Coumarins/chemical synthesis , Coumarins/chemistry , Coumarins/pharmacology , Flavonoids/chemical synthesis , Flavonoids/chemistry , Flavonoids/pharmacology , Humans , Molecular Structure , Monoamine Oxidase Inhibitors/chemical synthesis , Monoamine Oxidase Inhibitors/chemistry , Neuroprotective Agents/chemical synthesis , Neuroprotective Agents/chemistry , Oxidative Stress/drug effects
18.
Eur J Med Chem ; 222: 113578, 2021 Oct 15.
Article in English | MEDLINE | ID: mdl-34171512

ABSTRACT

A new biological scaffold was produced by replacing the 6π-electron phenyl ring-B of a natural flavone skeleton with a 10π-electron benzothiophene (BT). Since aromatic rings are important for ligand protein interactions, this expansion of the π-electron system of ring-B might change the bioactivity profile. One of the resulting novel natural product-inspired compounds, 2-(benzo[b]thiophen-3-yl)-5-hydroxy-7-isopropoxy-6-methoxyflavone (6), effectively arrested the cell cycle at the G2/M phase and displayed significant antiproliferative effects with IC50 values of 0.05-0.08 µM against multiple human tumor cell lines, including a multidrug resistant line. A structure-activity relationship study revealed that a 10π-electron system with high aromaticity, juxtaposed 4-oxo and 5-hydroxy groups, and 7-alkoxy groups were important for potent antimitotic activity. Interestingly, two BT-flavonols (3-hydroxyflavone), 16 and 20, with 3-hydroxy and 5-alkoxy groups, induced distinct biological profiles affecting the cell cycle at the G1/S phase by inhibition of DNA replication through an interaction with topoisomerase I.


Subject(s)
Antineoplastic Agents/pharmacology , Chromones/pharmacology , Thiophenes/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Proliferation/drug effects , Chromones/chemical synthesis , Chromones/chemistry , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Models, Molecular , Molecular Structure , Structure-Activity Relationship , Thiophenes/chemical synthesis , Thiophenes/chemistry , Tumor Cells, Cultured
19.
Bioorg Med Chem ; 42: 116255, 2021 07 15.
Article in English | MEDLINE | ID: mdl-34119696

ABSTRACT

A series of 3-styrylchromone derivatives was synthesized and evaluated for monoamine oxidase (MAO) A and B inhibitory activities. Most of all derivatives inhibited MAO-B selectively, except compound 21. Compound 19, which had a methoxy group at R2 on the chromone ring and chlorine at R4 on phenyl ring, potently inhibited MAO-B, with an IC50 value of 2.2 nM. Compound 1 showed the highest MAO-B selectivity, with a selectivity index of >3700. Further analysis of these compounds indicated that compounds 1 and 19 were reversible and mixed-type MAO-B inhibitors, suggesting that their mode of action may be through tight-binding inhibition to MAO-B. Quantitative structure-activity relationship (QSAR) analyses of the 3-styrylchromone derivatives were conducted using their pIC50 values, through Molecular Operating Environment (MOE) and Dragon. There were 1796 descriptors of MAO-B inhibitory activity, which showed significant correlations (P < 0.05). Further investigation of the 3-styrylchromone structures as useful scaffolds was performed through three-dimensional-QSAR studies using AutoGPA, which is based on the molecular field analysis algorithm using MOE. The MAO-B inhibitory activity model constructed using pIC50 value index exhibited a determination coefficients (R2) of 0.972 and a Leave-One-Out cross-validated determination coefficients (Q2) of 0.914. These data suggest that the 3-styrylchromone derivatives assessed herein may be suitable for the design and development of novel MAO inhibitors.


Subject(s)
Chromones/pharmacology , Monoamine Oxidase Inhibitors/pharmacology , Monoamine Oxidase/metabolism , Chromones/chemical synthesis , Chromones/chemistry , Dose-Response Relationship, Drug , Humans , Molecular Structure , Monoamine Oxidase Inhibitors/chemical synthesis , Monoamine Oxidase Inhibitors/chemistry , Quantitative Structure-Activity Relationship , Recombinant Proteins/metabolism
20.
Sci Rep ; 11(1): 10822, 2021 05 24.
Article in English | MEDLINE | ID: mdl-34031528

ABSTRACT

The success of cancer chemotherapy is limited by multidrug resistance (MDR), which is mainly caused by P-glycoprotein (P-gp) overexpression. In the present study, we describe a novel microtubule inhibitor, 5-(N-methylmaleimid-3-yl)-chromone (SPC-160002), that can be used to overcome MDR. A synthetic chromone derivative, SPC-160002, showed a broad spectrum of anti-proliferative effects on various human cancer cells without affecting P-gp expression and its drug efflux function. Treatment with SPC-160002 arrested the cell cycle at the M phase, as evidenced using fluorescence-activated cell sorting analysis, and increased the levels of mitotic marker proteins, including cyclin B, pS10-H3, and chromosomal passenger complex. This mitotic arrest by SPC-160002 was mediated by promoting and stabilizing microtubule polymerization, similar to the mechanism observed in case of taxane-based drugs. Furthermore, SPC-160002 suppressed the growth and sphere-forming activity of cancer stem cells. Our data herein strongly suggest that SPC-160002, a novel microtubule inhibitor, can be used to overcome MDR and can serve as an attractive candidate for anticancer drugs.


Subject(s)
Chromones/pharmacology , Drug Resistance, Multiple/drug effects , Drug Resistance, Neoplasm/drug effects , Maleimides/chemistry , Neoplastic Stem Cells/metabolism , Tubulin Modulators/pharmacology , A549 Cells , ATP Binding Cassette Transporter, Subfamily B/metabolism , Cell Cycle/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Chromones/chemical synthesis , Chromones/chemistry , Gene Expression Regulation, Neoplastic/drug effects , HCT116 Cells , Hep G2 Cells , Humans , MCF-7 Cells , Neoplastic Stem Cells/drug effects , Tubulin Modulators/chemical synthesis , Tubulin Modulators/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL