Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 53
Filter
1.
Mol Psychiatry ; 28(3): 1101-1111, 2023 03.
Article in English | MEDLINE | ID: mdl-36481930

ABSTRACT

We developed an IGFBP2-mimetic peptide fragment, JB2, and showed that it promotes basal synaptic structural and functional plasticity in cultured neurons and mice. We demonstrate that JB2 directly binds to dendrites and synapses, and its biological activity involves NMDA receptor activation, gene transcription and translation, and IGF2 receptors. It is not IGF1 receptor-dependent. In neurons, JB2 induced extensive remodeling of the membrane phosphoproteome. Synapse and cytoskeletal regulation, autism spectrum disorder (ASD) risk factors, and a Shank3-associated protein network were significantly enriched among phosphorylated and dephosphorylated proteins. Haploinsufficiency of the SHANK3 gene on chromosome 22q13.3 often causes Phelan-McDermid Syndrome (PMS), a genetically defined form of autism with profound deficits in motor behavior, sensory processing, language, and cognitive function. We identified multiple disease-relevant phenotypes in a Shank3 heterozygous mouse and showed that JB2 rescued deficits in synaptic function and plasticity, learning and memory, ultrasonic vocalizations, and motor function; it also normalized neuronal excitability and seizure susceptibility. Notably, JB2 rescued deficits in the auditory evoked response latency, alpha peak frequency, and steady-state electroencephalography response, measures with direct translational value to human subjects. These data demonstrate that JB2 is a potent modulator of neuroplasticity with therapeutic potential for the treatment of PMS and ASD.


Subject(s)
Autism Spectrum Disorder , Chromosome Disorders , Humans , Mice , Animals , Autism Spectrum Disorder/genetics , Nerve Tissue Proteins/genetics , Chromosome Deletion , Chromosome Disorders/genetics , Peptides/genetics , Disease Models, Animal , Neuronal Plasticity , Chromosomes, Human, Pair 22/metabolism , Microfilament Proteins/genetics
2.
Clin Genet ; 101(1): 87-100, 2022 01.
Article in English | MEDLINE | ID: mdl-34664257

ABSTRACT

Phelan-McDermid syndrome (PMS) (OMIM*606232) is a rare genetic disorder characterized by intellectual disability, autistic features, speech delay, minor dysmorphia, and seizures. This study was conducted to investigate the prevalence of seizures and the association with genetic and metabolic features since there has been little research related to seizures in PMS. For 57 individuals, seizure data was collected from caregiver interviews, genetic data from existing cytogenetic records and Sanger sequencing for nine 22q13 genes, and metabolic profiling from the Phenotype Mammalian MicroArray (PM-M) developed by Biolog. Results showed that 46% of individuals had seizures with the most common type being absence and grand-mal seizures. Seizures were most prevalent in individuals with pathogenic SHANK3 mutations (70%), those with deletion sizes >4 Mb (16%), and those with deletion sizes <4 Mb (71%) suggesting involvement of genes in addition to SHANK3. Additionally, a 3 Mb genomic region on 22q13.31 containing the gene TBC1D22A, was found to be significantly associated with seizure prevalence. A distinct metabolic profile was identified for individuals with PMS with seizures and suggested among other features a disrupted utilization of main energy sources using Biolog plates. The results of this study will be helpful for clinicians and families in anticipating seizures in these children and for researchers to identify candidate genes for the seizure phenotype.


Subject(s)
Chromosome Disorders/genetics , Chromosome Disorders/metabolism , Genetic Association Studies , Genetic Predisposition to Disease , Genomics , Metabolomics , Seizures/etiology , Adolescent , Adult , Child , Child, Preschool , Chromosome Deletion , Chromosome Disorders/diagnosis , Chromosomes, Human, Pair 22/genetics , Chromosomes, Human, Pair 22/metabolism , Female , Genomics/methods , Humans , Male , Metabolomics/methods , Middle Aged , Seizures/diagnosis , Young Adult
4.
Commun Biol ; 4(1): 1411, 2021 12 17.
Article in English | MEDLINE | ID: mdl-34921227

ABSTRACT

People with Phelan-McDermid Syndrome, caused by mutations in the SHANK3 gene, commonly exhibit reduced responses to sensory stimuli; yet the changes in brain-wide activity that link these symptoms to mutations in the shank3 gene remain unknown. Here we quantify movement in response to sudden darkness in larvae of two shank3 zebrafish mutant models and show that both models exhibit dampened responses to this stimulus. Using brain-wide activity mapping, we find that shank3-/- light-sensing brain regions show normal levels of activity while sensorimotor integration and motor regions are less active. Specifically restoring Shank3 function in a sensorimotor nucleus of the rostral brainstem enables the shank3-/- model to respond like wild-type. In sum, we find that reduced sensory responsiveness in shank3-/- models is associated with reduced activity in sensory processing brain regions and can be rescued by restoring Shank3 function in the rostral brainstem. These studies highlight the importance of Shank3 function in the rostral brainstem for integrating sensory inputs to generate behavioral adaptations to changing sensory stimuli.


Subject(s)
Autistic Disorder/genetics , Brain Stem/physiology , Chromosome Disorders/genetics , Nerve Tissue Proteins/genetics , Zebrafish Proteins/genetics , Animals , Autistic Disorder/physiopathology , Chromosome Deletion , Chromosome Disorders/metabolism , Chromosomes, Human, Pair 22/genetics , Chromosomes, Human, Pair 22/metabolism , Disease Models, Animal , Mutation , Nerve Tissue Proteins/metabolism , Zebrafish , Zebrafish Proteins/metabolism
5.
Cell Rep ; 37(7): 110014, 2021 11 16.
Article in English | MEDLINE | ID: mdl-34788607

ABSTRACT

Mutations of SHANK3 cause Phelan-McDermid syndrome (PMS), and these individuals can exhibit sensitivity to stress, resulting in behavioral deterioration. Here, we examine the interaction of stress with genotype using a mouse model with face validity to PMS. In Shank3ΔC/+ mice, swim stress produces an altered transcriptomic response in pyramidal neurons that impacts genes and pathways involved in synaptic function, signaling, and protein turnover. Homer1a, which is part of the Shank3-mGluR-N-methyl-D-aspartate (NMDA) receptor complex, is super-induced and is implicated in the stress response because stress-induced social deficits in Shank3ΔC/+ mice are mitigated in Shank3ΔC/+;Homer1a-/- mice. Several lines of evidence demonstrate that Shank3 expression is regulated by Homer1a in competition with crosslinking forms of Homer, and consistent with this model, Shank3 expression and function that are reduced in Shank3ΔC/+ mice are rescued in Shank3ΔC/+;Homer1a-/- mice. Studies highlight the interaction between stress and genetics and focus attention on activity-dependent changes that may contribute to pathogenesis.


Subject(s)
Homer Scaffolding Proteins/metabolism , Nerve Tissue Proteins/metabolism , Stress, Psychological/metabolism , Animals , Chromosome Deletion , Chromosome Disorders/metabolism , Chromosome Disorders/physiopathology , Chromosomes, Human, Pair 22/metabolism , Disease Models, Animal , Gene Expression/genetics , Gene Expression Regulation/genetics , Homer Scaffolding Proteins/physiology , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Microfilament Proteins/genetics , Nerve Tissue Proteins/genetics , Phenotype , Pyramidal Cells/metabolism , Stress, Psychological/physiopathology
6.
Sci Rep ; 11(1): 3111, 2021 02 04.
Article in English | MEDLINE | ID: mdl-33542446

ABSTRACT

Cat eye syndrome (CES), a human genetic disorder caused by the inverted duplication of a region on chromosome 22, has been known since the late 1890s. Despite the significant impact this disorder has on affected individuals, models for CES have not been produced due to the difficulty of effectively duplicating the corresponding chromosome region in an animal model. However, the study of phenotypes associated with individual genes in this region such as CECR2 may shed light on the etiology of CES. In this study we have shown that deleterious loss of function mutations in mouse Cecr2 effectively demonstrate many of the abnormal features present in human patients with CES, including coloboma and specific skeletal, kidney and heart defects. Beyond phenotypic analyses we have demonstrated the importance of utilizing multiple genetic backgrounds to study disease models, as we see major differences in penetrance of Cecr2-related abnormal phenotype between mouse strains, reminiscent of the variability in the human syndrome. These findings suggest that Cecr2 is involved in the abnormal features of CES and that Cecr2 mice can be used as a model system to study the wide range of phenotypes present in CES.


Subject(s)
Chromosome Disorders/genetics , Coloboma/genetics , Disease Models, Animal , Eye Abnormalities/genetics , Heart Diseases/genetics , Loss of Function Mutation , Transcription Factors/genetics , Aneuploidy , Animals , Bone and Bones/metabolism , Bone and Bones/pathology , Chromosome Disorders/metabolism , Chromosome Disorders/pathology , Chromosome Duplication , Chromosomes, Human, Pair 22/chemistry , Chromosomes, Human, Pair 22/genetics , Chromosomes, Human, Pair 22/metabolism , Coloboma/metabolism , Coloboma/pathology , Embryo, Mammalian , Eye Abnormalities/metabolism , Eye Abnormalities/pathology , Female , Gene Expression , Heart Diseases/metabolism , Heart Diseases/pathology , Humans , Kidney/metabolism , Kidney/pathology , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Knockout , Penetrance , Species Specificity , Transcription Factors/deficiency
7.
Biomolecules ; 11(2)2021 01 22.
Article in English | MEDLINE | ID: mdl-33499062

ABSTRACT

The mitochondrial citrate/isocitrate carrier, CIC, has been shown to play an important role in a growing list of human diseases. CIC belongs to a large family of nuclear-encoded mitochondrial transporters that serve the fundamental function of allowing the transit of ions and metabolites through the impermeable mitochondrial membrane. Citrate is central to mitochondrial metabolism and respiration and plays fundamental activities in the cytosol, serving as a metabolic substrate, an allosteric enzymatic regulator and, as the source of Acetyl-Coenzyme A, also as an epigenetic modifier. In this review, we highlight the complexity of the mechanisms of action of this transporter, describing its involvement in human diseases and the therapeutic opportunities for targeting its activity in several pathological conditions.


Subject(s)
Citrates/metabolism , Inflammation/metabolism , Mitochondrial Proteins/physiology , Neoplasms/metabolism , Organic Anion Transporters/physiology , Allosteric Site , Animals , Chromosomes, Human, Pair 22/metabolism , Citric Acid , Cytosol/metabolism , Diabetes Mellitus/metabolism , Epigenesis, Genetic , Humans , Liver Diseases/metabolism , Metabolic Diseases/metabolism , Mice , Mitochondria/metabolism , Mitochondrial Proteins/metabolism , Phosphorylation
8.
EBioMedicine ; 63: 103138, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33341442

ABSTRACT

BACKGROUND: The chromosome 22q11.2 deletion is an extremely high risk genetic factor for various neuropsychiatric disorders; however, the 22q11.2 deletion-related brain pathology in humans at the cellular and molecular levels remains unclear. METHODS: We generated iPS cells from healthy controls (control group) and patients with 22q11.2 deletion (22DS group), and differentiated them into dopaminergic neurons. Semiquantitative proteomic analysis was performed to compare the two groups. Next, we conducted molecular, cell biological and pharmacological assays. FINDINGS: Semiquantitative proteomic analysis identified 'protein processing in the endoplasmic reticulum (ER)' as the most altered pathway in the 22DS group. In particular, we found a severe defect in protein kinase R-like endoplasmic reticulum kinase (PERK) expression and its activity in the 22DS group. The decreased PERK expression was also shown in the midbrain of a 22q11.2 deletion mouse model. The 22DS group showed characteristic phenotypes, including poor tolerance to ER stress, abnormal F-actin dynamics, and decrease in protein synthesis. Some of phenotypes were rescued by the pharmacological manipulation of PERK activity and phenocopied in PERK-deficient dopaminergic neurons. We lastly showed that DGCR14 was associated with reduction in PERK expression. INTERPRETATION: Our findings led us to conclude that the 22q11.2 deletion causes various vulnerabilities in dopaminergic neurons, dependent on PERK dysfunction. FUNDING: This study was supported by the AMED under grant nos JP20dm0107087, JP20dm0207075, JP20ak0101113, JP20dk0307081, and JP18dm0207004h0005; the MEXT KAKENHI under grant nos. 16K19760, 19K08015, 18H04040, and 18K19511; the Uehara Memorial Foundation under grant no. 201810122; and 2019 iPS Academia Japan Grant.


Subject(s)
Abnormalities, Multiple/genetics , Abnormalities, Multiple/metabolism , DiGeorge Syndrome/genetics , DiGeorge Syndrome/metabolism , Dopaminergic Neurons/metabolism , eIF-2 Kinase/metabolism , Actins/metabolism , Animals , Biomarkers , Cell Differentiation/genetics , Chromosome Deletion , Chromosomes, Human, Pair 22/genetics , Chromosomes, Human, Pair 22/metabolism , Disease Models, Animal , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum Stress/genetics , Fluorescent Antibody Technique , Humans , Immunohistochemistry , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/metabolism , Mice , Models, Biological
9.
J Cutan Pathol ; 48(2): 285-289, 2021 Feb.
Article in English | MEDLINE | ID: mdl-32519331

ABSTRACT

Dermatofibrosarcoma protuberans (DFSP) is a rare sarcoma of the skin arising from the dermis. Its location is most commonly presented on the trunk of middle-aged adults and rarely on the face. The characteristic genetic aberration in the form of a reciprocal translocation t(17;22)(q21;q13) or a ring fusing the COL1A1 and PDGFB genes is found in 90% of DFSP. We present a case of a 42-year-old man who presented with a DFSP on the left cheek with foci of myxoid-fibrosarcomatous transformation. A conventional chromosomal analysis revealed a complex karyotype without a supernumerary ring chromosome or a linear translocation t(17;22). Comparative genome hybridization and fluorescence in-situ hybridization revealed the fusion of COL1A1 and PDGFB probes inserted in chromosome 15. This is a unique case of DFSP characterized by a rare body location, unique histopathological features, and novel chromosome COL1A1-PDGFB insertion, and may help guide future diagnostic and patient care modalities.


Subject(s)
Chromosomes, Human, Pair 15 , Facial Neoplasms , Fibrosarcoma , Mutagenesis, Insertional , Oncogene Proteins, Fusion , Skin Neoplasms , Adult , Chromosomes, Human, Pair 15/genetics , Chromosomes, Human, Pair 15/metabolism , Chromosomes, Human, Pair 17/genetics , Chromosomes, Human, Pair 17/metabolism , Chromosomes, Human, Pair 22/genetics , Chromosomes, Human, Pair 22/metabolism , Facial Neoplasms/genetics , Facial Neoplasms/metabolism , Facial Neoplasms/pathology , Fibrosarcoma/genetics , Fibrosarcoma/metabolism , Fibrosarcoma/pathology , Humans , Male , Oncogene Proteins, Fusion/genetics , Oncogene Proteins, Fusion/metabolism , Skin Neoplasms/genetics , Skin Neoplasms/metabolism , Skin Neoplasms/pathology , Translocation, Genetic
10.
Neurobiol Dis ; 148: 105213, 2021 01.
Article in English | MEDLINE | ID: mdl-33276083

ABSTRACT

SHANK3 is a postsynaptic scaffolding protein that plays a critical role in synaptic development and brain function. Mutations in SHANK3 are implicated in Phelan-McDermid syndrome (PMS), a neurodevelopmental disorder characterized by autistic-like behavior, delayed speech, hypotonia, and intellectual disability (ID). Moreover, mutations in SHANK3 occur in 1-2% of cases of idiopathic autism spectrum disorder (ASD). In fragile X syndrome (FXS), a syndromic form of autism, SHANK3 is one of the 842 targets of fragile X mental retardation protein (FMRP), the protein product of the silenced FMR1 gene. FXS is likely a primary disorder of the regulation of translation, whereas other syndromic forms of ASD/ID, e.g. PMS, appear to be primary disorders of synaptic structure. In this study, we asked if a knockout of the synaptic protein, Shank3, is linked to an effect on translation. Specifically, we measured the effect of Shank3 loss on rates of cerebral protein synthesis (rCPS) in vivo by means of the L-[1-14C]leucine quantitative autoradiographic method. We found that Shank3 knockout mice had significantly increased rCPS in every brain region examined. Our results suggest a link in ASD/ID between synaptic structure and regulation of translation.


Subject(s)
Autism Spectrum Disorder/metabolism , Brain/metabolism , Intellectual Disability/metabolism , Protein Biosynthesis/genetics , Animals , Autism Spectrum Disorder/genetics , Autoradiography , Carbon Radioisotopes , Chromosome Deletion , Chromosome Disorders/genetics , Chromosome Disorders/metabolism , Chromosomes, Human, Pair 22/genetics , Chromosomes, Human, Pair 22/metabolism , Disease Models, Animal , Intellectual Disability/genetics , Leucine/metabolism , Mice , Mice, Knockout , Microfilament Proteins/genetics , Nerve Tissue Proteins/genetics , Synaptosomes/metabolism
11.
Hematol Oncol ; 38(4): 607-610, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32602167
13.
Article in English | MEDLINE | ID: mdl-31836587

ABSTRACT

Callous-unemotional (CU) traits are highly disabling behavioral characteristics, common predictors of delinquency and criminality, and pathognomonic for antisocial personality disorder. They are highly heritable, but their specific molecular genetic causes are unknown. Here, we briefly review the literature on neuropsychiatric correlates of 22q11.2 duplication and describe a newly identified case of a 737-kb microduplication within the low copy repeat (LCR) B-D region, involving a 13-yr-old early adoptee with mild developmental delay and severe, chronic antisocial behavior of early childhood onset. When psychiatric symptoms have been reported in relation to duplications in this specific region, 19% of the reports feature aggression-but never previously CU traits-as a component of the phenotype. We discuss the potential implications of gain of function in this chromosomal region for heritable origins of sociopathy and their possible relation to genetic influences on aggression.


Subject(s)
Abnormalities, Multiple/genetics , Abnormalities, Multiple/metabolism , Antisocial Personality Disorder/genetics , Chromosome Duplication/genetics , DiGeorge Syndrome/genetics , DiGeorge Syndrome/metabolism , Aggression , Attention Deficit and Disruptive Behavior Disorders/genetics , Child , Chromosomes, Human, Pair 22/genetics , Chromosomes, Human, Pair 22/metabolism , Female , Humans , Male , Mental Disorders/genetics
14.
Mol Genet Genomic Med ; 7(6): e666, 2019 06.
Article in English | MEDLINE | ID: mdl-31044557

ABSTRACT

BACKGROUND: The bladder exstrophy-epispadias complex (BEEC) is a congenital malformation of the bladder and urethra. The underlying causes of this malformation are still largely unknown; however, aside from environment, genetics is thought to play an essential role. The recurrent 22q11.2 microduplication is the most persistently detected genetic aberration found in BEEC cases. METHODS: We performed array comparative genomic hybridization (array-CGH) analysis of 76 Swedish BEEC patients. Statistical analysis was performed on current dataset pooled with previously published data on the 22q11.2 microduplication in BEEC patients. We performed massive parallel sequencing (MPS) of the 22q11.2 region in 20 BEEC patients without the 22q11.2 microduplication followed by functional studies. RESULTS: We identified three additional cases with the 22q11.2 microduplication. Pooling data from this study with previously published reports showed a statistically significant enrichment of the 22q11.2 microduplication in BEEC patients (2.61% in cases vs. 0.08% in controls; OR = 32.6; p = 8.7 × 10-4 ). MPS of the 22q11.2 region in 20 BEEC patients without the 22q11.2 microduplication identified a novel variant in LZTR1 (p.Ser698Phe) in one patient. Functional evaluation of the LZTR1 p.Ser698Phe variant in live NIH 3T3 cells showed that the concentration and cytoplasmic mobility differ between the Lztr1wt and Lztr1mut , indicating a potential functional effect of the LZTR1mut . CONCLUSION: Our study further emphasizes the involvement of the 22q11.2 region in BEEC development and highlights LZTR1 as a candidate gene underlying the urogenital malformation.


Subject(s)
Abnormalities, Multiple/genetics , Bladder Exstrophy/genetics , Chromosome Duplication/genetics , DiGeorge Syndrome/genetics , Abnormalities, Multiple/metabolism , Adult , Animals , Bladder Exstrophy/metabolism , Bladder Exstrophy/physiopathology , Chromosome Structures/genetics , Chromosomes, Human, Pair 22/genetics , Chromosomes, Human, Pair 22/metabolism , Comparative Genomic Hybridization/methods , DiGeorge Syndrome/metabolism , Epispadias/genetics , Epispadias/physiopathology , Female , Humans , Male , Mice , NIH 3T3 Cells , Risk Factors , Sweden , Transcription Factors/genetics , Transcription Factors/metabolism
15.
J Neurosci ; 39(18): 3561-3581, 2019 05 01.
Article in English | MEDLINE | ID: mdl-30833507

ABSTRACT

Neurodevelopmental disorders offer insight into synaptic mechanisms. To unbiasedly uncover these mechanisms, we studied the 22q11.2 syndrome, a recurrent copy number variant, which is the highest schizophrenia genetic risk factor. We quantified the proteomes of 22q11.2 mutant human fibroblasts from both sexes and mouse brains carrying a 22q11.2-like defect, Df(16)A+/- Molecular ontologies defined mitochondrial compartments and pathways as some of top ranked categories. In particular, we identified perturbations in the SLC25A1-SLC25A4 mitochondrial transporter interactome as associated with the 22q11.2 genetic defect. Expression of SLC25A1-SLC25A4 interactome components was affected in neuronal cells from schizophrenia patients. Furthermore, hemideficiency of the Drosophila SLC25A1 or SLC25A4 orthologues, dSLC25A1-sea and dSLC25A4-sesB, affected synapse morphology, neurotransmission, plasticity, and sleep patterns. Our findings indicate that synapses are sensitive to partial loss of function of mitochondrial solute transporters. We propose that mitoproteomes regulate synapse development and function in normal and pathological conditions in a cell-specific manner.SIGNIFICANCE STATEMENT We address the central question of how to comprehensively define molecular mechanisms of the most prevalent and penetrant microdeletion associated with neurodevelopmental disorders, the 22q11.2 microdeletion syndrome. This complex mutation reduces gene dosage of ∼63 genes in humans. We describe a disruption of the mitoproteome in 22q11.2 patients and brains of a 22q11.2 mouse model. In particular, we identify a network of inner mitochondrial membrane transporters as a hub required for synapse function. Our findings suggest that mitochondrial composition and function modulate the risk of neurodevelopmental disorders, such as schizophrenia.


Subject(s)
22q11 Deletion Syndrome/metabolism , Brain/metabolism , Mitochondria/metabolism , Neurons/metabolism , Synapses/metabolism , Adenine Nucleotide Translocator 1/metabolism , Animals , Behavior, Animal , Cell Line , Chromosome Deletion , Chromosomes, Human, Pair 22/metabolism , Drosophila , Female , Fibroblasts/metabolism , Humans , Male , Mitochondrial Proteins/metabolism , Organic Anion Transporters/metabolism , Proteome , Schizophrenia/metabolism
16.
ChemMedChem ; 13(18): 1997-2007, 2018 09 19.
Article in English | MEDLINE | ID: mdl-29985556

ABSTRACT

CLK2 inhibition has been proposed as a potential mechanism to improve autism and neuronal functions in Phelan-McDermid syndrome (PMDS). Herein, the discovery of a very potent indazole CLK inhibitor series and the CLK2 X-ray structure of the most potent analogue are reported. This new indazole series was identified through a biochemical CLK2 Caliper assay screen with 30k compounds selected by an in silico approach. Novel high-resolution X-ray structures of all CLKs, including the first CLK4 X-ray structure, bound to known CLK2 inhibitor tool compounds (e.g., TG003, CX-4945), are also shown and yield insight into inhibitor selectivity in the CLK family. The efficacy of the new CLK2 inhibitors from the indazole series was demonstrated in the mouse brain slice assay, and potential safety concerns were investigated. Genotoxicity findings in the human lymphocyte micronucleus test (MNT) assay are shown by using two structurally different CLK inhibitors to reveal a major concern for pan-CLK inhibition in PMDS.


Subject(s)
Chromosome Disorders/drug therapy , Indazoles/pharmacology , Protein Kinase Inhibitors/pharmacology , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein-Tyrosine Kinases/antagonists & inhibitors , Chromosome Deletion , Chromosome Disorders/metabolism , Chromosomes, Human, Pair 22/metabolism , Crystallography, X-Ray , Dose-Response Relationship, Drug , Drug Discovery , Humans , Indazoles/chemical synthesis , Indazoles/chemistry , Models, Molecular , Molecular Structure , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Protein Serine-Threonine Kinases/metabolism , Protein-Tyrosine Kinases/metabolism , Structure-Activity Relationship
18.
Proc Natl Acad Sci U S A ; 114(19): 4981-4986, 2017 05 09.
Article in English | MEDLINE | ID: mdl-28439006

ABSTRACT

The spectrum of congenital anomalies affecting either the upper tract (kidneys and ureters) or lower tract (reproductive organs) of the genitourinary (GU) system are fundamentally linked by the developmental origin of multiple GU tissues, including the kidneys, gonads, and reproductive ductal systems: the intermediate mesoderm. Although ∼31% of DiGeorge/del22q11.2 syndrome patients exhibit GU defects, little focus has been placed on the molecular etiology of GU defects in this syndrome. Among del22q11.2 patients exhibiting GU anomalies, we have mapped the smallest relevant region to only five genes, including CRKLCRKL encodes a src-homology adaptor protein implicated in mediating tyrosine kinase signaling, and is expressed in the developing GU-tract in mice and humans. Here we show that Crkl mutant embryos exhibit gene dosage-dependent growth restriction, and homozygous mutants exhibit upper GU defects at a microdissection-detectable rate of 23%. RNA-sequencing revealed that 52 genes are differentially regulated in response to uncoupling Crkl from its signaling pathways in the developing kidney, including a fivefold up-regulation of Foxd1, a known regulator of nephron progenitor differentiation. Additionally, Crkl heterozygous adult males exhibit cryptorchidism, lower testis weight, lower sperm count, and subfertility. Together, these data indicate that CRKL is intimately involved in normal development of both the upper and lower GU tracts, and disruption of CRKL contributes to the high incidence of GU defects associated with deletion at 22q11.2.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Chromosomes, Human, Pair 22/metabolism , Gene Expression Regulation, Developmental , Genitalia , Nuclear Proteins/metabolism , Urinary Tract , Adaptor Proteins, Signal Transducing/genetics , Animals , Chromosomes, Human, Pair 22/genetics , Female , Genitalia/abnormalities , Genitalia/embryology , Humans , Male , Mice , Mice, Knockout , Nuclear Proteins/genetics , Urinary Tract/abnormalities , Urinary Tract/embryology
19.
Sci Rep ; 7: 45190, 2017 03 27.
Article in English | MEDLINE | ID: mdl-28345660

ABSTRACT

Phelan McDermid Syndrome (PMDS) is a genetic disorder characterized by features of Autism spectrum disorders. Similar to reports of Zn deficiency in autistic children, we have previously reported high incidence of Zn deficiency in PMDS. However, the underlying mechanisms are currently not well understood. Here, using inductively coupled plasma mass-spectrometry to measure the concentration of Zinc (Zn) and Copper (Cu) in hair samples from individuals with PMDS with 22q13.3 deletion including SHANK3 (SH3 and multiple ankyrin repeat domains 3), we report a high rate of abnormally low Zn/Cu ratios. To investigate possible underlying mechanisms, we generated enterocytes from PMDS patient-derived induced pluripotent stem cells and used Caco-2 cells with knockdown of SHANK3. We detected decreased expression of Zn uptake transporters ZIP2 and ZIP4 on mRNA and protein level correlating with SHANK3 expression levels, and found reduced levels of ZIP4 protein co-localizing with SHANK3 at the plasma membrane. We demonstrated that especially ZIP4 exists in a complex with SHANK3. Furthermore, we performed immunohistochemistry on gut sections from Shank3αß knockout mice and confirmed a link between enterocytic SHANK3, ZIP2 and ZIP4. We conclude that apart from its well-known role in the CNS, SHANK3 might play a specific role in the GI tract.


Subject(s)
Cation Transport Proteins/metabolism , Chromosome Disorders/metabolism , Mutation , Nerve Tissue Proteins/genetics , Zinc/deficiency , Adolescent , Caco-2 Cells , Cation Transport Proteins/genetics , Cell Membrane/genetics , Cell Membrane/metabolism , Cells, Cultured , Child , Child, Preschool , Chromosome Deletion , Chromosome Disorders/genetics , Chromosomes, Human, Pair 22/genetics , Chromosomes, Human, Pair 22/metabolism , Copper , Enterocytes/cytology , Enterocytes/metabolism , Female , Gene Expression Regulation , Gene Knockdown Techniques , Hair/chemistry , Humans , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/metabolism , Infant , Male , Mass Spectrometry , Middle Aged , Nerve Tissue Proteins/metabolism , Young Adult
20.
Mol Psychiatry ; 22(5): 689-702, 2017 05.
Article in English | MEDLINE | ID: mdl-27021819

ABSTRACT

SHANK3 (also called PROSAP2) genetic haploinsufficiency is thought to be the major cause of neuropsychiatric symptoms in Phelan-McDermid syndrome (PMS). PMS is a rare genetic disorder that causes a severe form of intellectual disability (ID), expressive language delays and other autistic features. Furthermore, a significant number of SHANK3 mutations have been identified in patients with autism spectrum disorders (ASD), and SHANK3 truncating mutations are associated with moderate to profound ID. The Shank3 protein is a scaffold protein that is located in the postsynaptic density (PSD) of excitatory synapses and is crucial for synapse development and plasticity. In this study, we investigated the molecular mechanisms associated with the ASD-like behaviors observed in Shank3Δ11-/- mice, in which exon 11 has been deleted. Our results indicate that Shank3 is essential to mediating metabotropic glutamate receptor 5 (mGlu5)-receptor signaling by recruiting Homer1b/c to the PSD, specifically in the striatum and cortex. Moreover, augmenting mGlu5-receptor activity by administering 3-Cyano-N-(1,3-diphenyl-1H-pyrazol-5-yl)benzamide ameliorated the functional and behavioral defects that were observed in Shank3Δ11-/- mice, suggesting that pharmaceutical treatments that increase mGlu5 activity may represent a new approach for treating patients that are affected by PMS and SHANK3 mutations.


Subject(s)
Autism Spectrum Disorder/drug therapy , Autism Spectrum Disorder/genetics , Autism Spectrum Disorder/metabolism , Benzamides/pharmacology , Nerve Tissue Proteins/metabolism , Pyrazoles/pharmacology , Receptor, Metabotropic Glutamate 5/metabolism , Animals , Behavior, Animal/drug effects , Chromosome Deletion , Chromosome Disorders/genetics , Chromosome Disorders/metabolism , Chromosomes, Human, Pair 22/genetics , Chromosomes, Human, Pair 22/metabolism , Corpus Striatum/drug effects , Corpus Striatum/metabolism , Exons , Hippocampus/drug effects , Hippocampus/metabolism , Homer Scaffolding Proteins/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Inbred DBA , Mice, Knockout , Microfilament Proteins , Nerve Tissue Proteins/deficiency , Nerve Tissue Proteins/genetics , Neurons/drug effects , Neurons/metabolism , Post-Synaptic Density/metabolism , Signal Transduction , Synaptic Transmission
SELECTION OF CITATIONS
SEARCH DETAIL
...