ABSTRACT
This study presents a comprehensive analysis of a two-patch, two-life stage SI model without recovery from infection, focusing on the dynamics of disease spread and host population viability in natural populations. The model, inspired by real-world ecological crises like the decline of amphibian populations due to chytridiomycosis and sea star populations due to Sea Star Wasting Disease, aims to understand the conditions under which a sink host population can present ecological rescue from a healthier, source population. Mathematical and numerical analyses reveal the critical roles of the basic reproductive numbers of the source and sink populations, the maturation rate, and the dispersal rate of juveniles in determining population outcomes. The study identifies basic reproduction numbers R 0 for each of the patches, and conditions for the basic reproduction numbers to produce a receiving patch under which its population. These findings provide insights into managing natural populations affected by disease, with implications for conservation strategies, such as the importance of maintaining reproductively viable refuge populations and considering the effects of dispersal and maturation rates on population recovery. The research underscores the complexity of host-pathogen dynamics in spatially structured environments and highlights the need for multi-faceted approaches to biodiversity conservation in the face of emerging diseases.
Subject(s)
Amphibians , Basic Reproduction Number , Epidemics , Host-Pathogen Interactions , Mathematical Concepts , Models, Biological , Population Dynamics , Animals , Basic Reproduction Number/statistics & numerical data , Epidemics/statistics & numerical data , Amphibians/microbiology , Amphibians/growth & development , Population Dynamics/statistics & numerical data , Starfish/growth & development , Starfish/microbiology , Life Cycle Stages , Chytridiomycota/physiology , Chytridiomycota/pathogenicity , Epidemiological Models , Computer SimulationABSTRACT
The amphibian chytrid fungus Batrachochytrium dendrobatidis (Bd) causes chytridiomycosis, a disease among the main causes of amphibian declines worldwide. However, Bd studies on Neotropical amphibians from temperate areas are scarce. We present a comprehensive survey of Bd in Uruguay, in temperate central eastern South America, carried out between 2006 and 2014. Skin swabs of 535 specimens of 21 native and exotic frogs were tested by PCR. We used individual-level data to examine the relationship between infection, climatic variables, and their effects on body condition and the number of prey items found in stomach contents. Infection was widespread in free-ranging anurans with an overall prevalence of 41.9%, detected in 15 native species, wild American bullfrogs Aquarana catesbeiana, and captive specimens of Ceratophrys ornata and Xenopus laevis. Three haplotypes of the Bd ITS region were identified in native amphibians, all belonging to the global panzootic lineage (BdGPL), of which only one was present in exotic hosts. Despite high infection frequencies in different anurans, we found no evidence of morbidity or mortality attributable to chytridiomycosis, and we observed no discernible impact on body condition or consumed prey. Climatic conditions at the time of our surveys suggested that the chance of infection is associated with monthly mean temperature, mean humidity, and total precipitation. Temperatures below 21°C combined with moderate humidity and pronounced rainfall may increase the likelihood of infection. Multiple haplotypes of BdGPL combined with high frequencies of infection suggest an enzootic pattern in native species, underscoring the need for continued monitoring.
Subject(s)
Climate , Mycoses , Animals , Mycoses/veterinary , Mycoses/epidemiology , Mycoses/microbiology , Uruguay/epidemiology , Batrachochytrium/genetics , Anura/microbiology , Chytridiomycota/isolation & purificationABSTRACT
Batrachochytrium dendrobatidis (Bd) is a lethal fungal species that parasitizes vertebrates and is associated with the worldwide decline of amphibian populations. The development of sensitive, rapid detection methods, particularly DNA-based techniques, is critical for effective management strategies. This study evaluates the efficacy of DNA extraction and a portable PCR device in a mountable field laboratory setup for detecting Bd near the habitats of three critically endangered Atelopus toad species in Ecuador. We collected skin swabs from Atelopus balios, A. nanay, and A. bomolochos, and environmental DNA (eDNA) samples from streams in Andean and coastal regions of Ecuador. For eDNA, a comparison was made with duplicates of the samples that were processed in the field and in a standard university laboratory. Our findings revealed Bd detection in eDNA and swabs from 6 of 12 water samples and 10 of 12 amphibian swab samples. The eDNA results obtained in the field laboratory were concordant with those obtained under campus laboratory conditions. These findings highlight the potential of field DNA-based monitoring techniques for detecting Bd in amphibian populations and their aquatic habitats, particularly in remote areas. Furthermore, this research aligns with the National Action Plan for the Conservation of Ecuadorian Amphibians and contributes to the global effort to control this invasive and deadly fungus.
Subject(s)
Chytridiomycota , DNA, Environmental , Humans , Animals , Batrachochytrium/genetics , Ecuador , Chytridiomycota/genetics , Bufonidae/genetics , Amphibians/microbiology , DNA , EcosystemABSTRACT
Chytridiomycosis is affecting amphibians worldwide, causing the decline and extinction of several amphibian populations. The disease is caused by the fungus Batrachochytrium dendrobatidis (Bd), a multihost pathogen living in freshwater habitats. While several environmental factors have been associated with the prevalence of Bd and its virulence, the effects of water quality on the pathogen are not clear yet. Some evidence suggests that water pollution may reduce amphibians' immune response and increase prevalence of Bd. To explore this hypothesis, we analyzed the relationship between water quality and the presence of Bd by using spatial data mining of 150 geolocations of Bd in amphibians from 9 families where Bd positive specimens have been previously reported, and water quality in 4,202 lentic and lotic water bodies in Mexico from 2010 to 2021. Our model showed that in the 3 main families where Bd was recorded, its presence is high in locations with low water quality, i.e., water polluted likely contaminated with urban and industrial waste. Using this model, we inferred areas suitable for Bd in Mexico; mainly in poorly studied areas along the gulf and on the pacific slope. We further argue that actions to reduce water pollution should become an integral part of public policies to prevent the spread of Bd and protect amphibians from this deadly pathogen.
Subject(s)
Chytridiomycota , Mycoses , Humans , Animals , Mexico/epidemiology , Ecosystem , Batrachochytrium , Mycoses/epidemiology , Mycoses/veterinary , Mycoses/microbiology , Amphibians/microbiology , Water Pollution/adverse effectsABSTRACT
Melanophryniscus admirabilis is a small toad, critically endangered with a microendemic distribution in the Atlantic Forest in southern Brazil. The amphibian skin microbiome is considered one of the first lines of defense against pathogenic infections, such as Batrachochytrium dendrobatidis (Bd). The knowledge of skin amphibian microbiomes is important to numerous fields, including species conservation, detection, and quantification of environmental changes and stressors. In the present study, we investigated, for the first time, cultivable bacteria in the skin of wild M. admirabilis, and detected Bd fungus by nested polymerase chain reaction (PCR) technique. Skin swab samples were collected from 15 wild M. admirabilis, and the isolation of bacteria was performed by means of different culture strategies. A total of 62 bacterial isolates being Bacillus (n = 22; 34.48%), Citrobacter (n = 10; 16.13%), and Serratia (n = 12; 19.35%) were more frequently isolated genera. Interestingly, all skin samples tested were Bd negative. Some bacterial genera identified in our study might be acting in a synergic relationship and protecting them against the Bd fungus. In addition, these bacteria may play an essential role in maintaining this species in an environment modulated by anthropic actions. This first report of skin cultivable bacteria from M. admirabilis natural population improves our knowledge of skin amphibian microbiomes, contributing to a better understanding of their ecology and how this species has survived in an environment modulated by anthropic action.
Subject(s)
Chytridiomycota , Animals , Bufonidae , Forests , Bacteria , Skin/microbiologyABSTRACT
Infectious diseases are one of the main threats to biodiversity. The fungus Batrachochytrium dendrobatidis (Bd) is associated with several amphibian losses around the globe, and environmental conditions may dictate the success of pathogen spread. The Brazilian Amazon has been considered climatically unsuitable for chytrid fungus, but additional information on Bd dynamics in this ecoregion is still lacking. We sampled 462 amphibians (449 anurans, 4 caudatans and 9 caecilians), representing 57 species from the Brazilian Amazon, and quantified Bd infections using qPCR. We tested whether abiotic variables predicted the risk of Bd infections, and tested for relationships between biotic variables and Bd. Finally, we experimentally tested the effects of Bd strains CLFT 156 and CLFT 102 (from the southern and northern Atlantic Forest, respectively) on Atelopus manauensis. We detected higher Bd prevalence than those previously reported for the Brazilian Amazon, and positive individuals in all 3 orders of amphibians sampled. Both biotic and abiotic predictors were related to prevalence, and no variable explained infection load. Moreover, we detected higher Bd prevalence in forested than open areas, while the host's reproductive biology was not a factor. We detected higher mortality in the experimental group infected with CLFT 156, probably because this strain was isolated from a region characterized by discrepant climatic conditions (latitudinally more distant) when compared with the host's sampling site in Amazon. The lowland Brazilian Amazon is still underexplored and future studies targeting all amphibian orders are essential to better understand Bd infection dynamics in this region.
Subject(s)
Chytridiomycota , Mycoses , Animals , Amphibians/microbiology , Anura/microbiology , Biodiversity , Mycoses/epidemiology , Mycoses/veterinary , Mycoses/microbiologyABSTRACT
The recent emergence of the pathogen Batrachochytrium salamandrivorans (Bsal) is associated with rapid population declines of salamanders in Europe and its arrival to new areas could cause dramatic negative effects on other amphibian populations and species. Amphibian species, present in areas with high amphibian diversity such as Mexico, could be highly threatened due to the arrival of Bsal, particularly salamander species which are more vulnerable to chytridiomycosis caused by this pathogen. Thus, immediate surveillance is needed as a strategy to efficiently contend with this emerging infectious disease. In this study, we analyzed 490 wild and captive amphibians from 48 species across 76 sites in the North, Central, and South of Mexico to evaluate the presence of Bsal. Amphibians were sampled in sites with variable degrees of amphibian richness and suitability for Bsal according to previous studies. From the 76 sampling sites, 10 of them were located in areas with high amphibian richness and potential moderate to high Bsal habitat suitability. We did not detect Bsal in any of the samples, and no signs of the disease were observed in any individual at the time of sampling. Our results suggest that Bsal has not yet arrived at the sampled sites or could be at low prevalence within populations with low occurrence probability. This is the first study that evaluates the presence of Bsal in different regions and amphibian species in Mexico, which is the second most diverse country in salamander species in the world. We highlight the risk and the importance of continuing surveillance of Bsal in Mexico and discuss control strategies to avoid the introduction and spread of Bsal in the country.
Subject(s)
Chytridiomycota , Animals , Mexico/epidemiology , Amphibians/microbiology , Batrachochytrium , Urodela/microbiologyABSTRACT
We detected the fungal assemblages present in lake sediments on James Ross Island, Antarctica, using DNA metabarcoding. A total of 132 amplicon sequence variants (ASVs) were assigned, dominated by taxa of the phyla Ascomycota, Basidiomycota, Mortierellomycota and Mucoromycota. The less common phyla Chytridiomycota, Rozellomycota, Monoblepharomycota, Basidiobolomycota, Aphelidiomycota and the fungus-like Straminopila were also detected. Fungal sp. 1, Fungal sp. 2, Spizellomycetales sp. 1, Rozellomycotina sp. 1, Talaromyces rubicundus and Betamyces sp. dominated the assemblages. In general, the assemblages displayed high diversity and richness, and moderate dominance. Saprophytic, pathogenic and symbiotic fungi were detected. The metabarcoding data indicated that Antarctic lakes may represent a hotspot of fungal diversity in Antarctica. The sediments of these lakes may accumulate different fungal fragments and active fungal mycelia and their propagules, deposited over long periods of time. Lakes in the Antarctic Peninsula region are sensitive environments threatened by the effects of regional climatic changes. The abundance of sequences of little-known Rozellomycota and Chytridiomycota (Spizellomycetales) taxa in these ecosystems highlights the need for further studies to identify if they are metabolically active in the sediments and whether they have potentially pathogenic capabilities.
Subject(s)
Chytridiomycota , DNA, Environmental , Antarctic Regions , Chytridiomycota/genetics , Ecosystem , Lakes/microbiologyABSTRACT
The fungal pathogen Batrachochytrium dendrobatidis (Bd) which causes that amphibian disease chytridiomycosis is expanding its worldwide range from an Asian origin, infecting amphibians in a growing number of countries. Modelling the potential range of this amphibian pathogen using environmental variables and presence data could advance our understanding of at-risk areas and species in locations with limited surveillance to date. We used a species distribution model to assess Bd habitat suitability in the three Guiana's (Guyana, Suriname, and French Guiana) in South America. The model output showed that all three countries have substantial areas where Bd could grow and proliferate, and maximum temperature of the warmest month was the top predictor of suitable Bd habitat, inversely correlated with modeled Bd occurrence. Predicted Bd infection areas in Guyana and French Guiana were large and localized whereas possible sites in Suriname were more scattered throughout the country. The areas projected as potential suitable in Suriname were mostly high elevation regions. These results could help inform efficiencies for development of a proactive monitoring program that could alert managers of novel Bd outbreaks for focused mitigation actions to forestall the spread of this amphibian disease.
Subject(s)
Chytridiomycota , Communicable Diseases , Amphibians/microbiology , Animals , Batrachochytrium , French Guiana/epidemiology , Guyana/epidemiology , SurinameABSTRACT
Habitat fragmentation and infectious diseases threaten wildlife globally, but the interactions of these threats are poorly understood. For instance, while habitat fragmentation can impact genetic diversity at neutral loci, the impacts on disease-relevant loci are less well-studied. We examined the effects of habitat fragmentation in Brazil's Atlantic Forest on amphibian genetic diversity at an immune locus related to antigen presentation and detection (MHC IIB Exon 2). We used a custom high-throughput assay to sequence a fragment of MHC IIB and quantified Batrachochytrium dendrobatidis (Bd) infections in six frog species in two Atlantic Forest regions. Habitat fragmentation was associated with genetic erosion at MHC IIB Exon 2. This erosion was most severe in forest specialists. Significant Bd infections were detected only in one Atlantic Forest region, potentially due to relatively higher elevation. In this region, forest specialists showed an increase in both Bd prevalence and infection loads in fragmented habitats. Reduced population-level MHC IIB diversity was associated with increased Bd infection risk. On the individual level, MHC IIB heterozygotes exhibited a trend toward reduced Bd infection risk, although this was marginally non-significant. Our results suggest that habitat fragmentation increases Bd infection susceptibility in amphibians, mediated at least in part through erosion of immunogenetic diversity. Our findings have implications for management of fragmented populations in the face of emerging infectious diseases.
Subject(s)
Chytridiomycota , Mycoses , Amphibians , Animals , Anura/genetics , Brazil/epidemiology , Ecosystem , Forests , Immunogenetics , Mycoses/epidemiology , Mycoses/genetics , Mycoses/veterinaryABSTRACT
Symbiotic bacterial communities are crucial to combating infections and contribute to host health. The amphibian skin microbiome plays an important role in protecting their hosts against pathogens such as Batrachochytrium dendrobatidis (Bd), one of the causative agents of chytridiomycosis, which is responsible for dramatic amphibian population declines worldwide. Although symbiotic skin bacteria are known to inhibit Bd growth, an understanding of the relationship between Bd genetic variability, environmental conditions, and skin bacterial communities is limited. Therefore, we examined the associations between Bd infection load, Bd genetic diversity and skin bacterial communities in five populations of Hyliola regilla (hypochondriaca) from environmentally contrasting sites in Baja California, Mexico. We observed differences in Bd genetics and infection load among sites and environments. Genetic analysis of Bd isolates revealed patterns of spatial structure corresponding to the five sites sampled. Amphibian skin bacterial diversity and community structure differed among environments and sites. Bacterial community composition was correlated with Bd genetic differences and infection load, with specific bacterial taxa enriched on infected and un-infected frogs. Our results indicate that skin-associated bacteria and Bd strains likely interact on the host skin, with consequences for microbial community structure and Bd infection intensity.
Subject(s)
Chytridiomycota , Animals , Anura/microbiology , Bacteria , Batrachochytrium , Chytridiomycota/genetics , Genetic Variation , Mexico , Skin/microbiologyABSTRACT
Compensatory recruitment is a key demographic mechanism that has allowed the coexistence of populations of susceptible amphibians with Batrachochytrium dendrobatidis (Bd), a fungus causing one of the most devastating emerging infectious disease ever recorded among vertebrates. However, the underlying processes (e.g. density-dependent increase in survival at early life stages, change in reproductive traits) as well as the level of interpopulation variation in this response are poorly known. We explore potential mechanisms of compensatory recruitment in response to Bd infection by taking advantage of an amphibian system where male reproductive traits are easy to quantify in free-living populations. The Southern Darwin's frog Rhinoderma darwinii is a vocal sac-brooding species that exhibits a high susceptibility to lethal Bd infection. Using a 7-year capture-recapture study at four populations with contrasting Bd infection status (one high prevalence, one low prevalence and two Bd-free populations), we evaluated whether Bd-positive populations exhibited a higher adult recruitment and a higher male reproductive effort than Bd-negative populations. We also estimated population growth rates to explore whether recruitment compensated for the negative impacts of Bd on the survival of adults. In addition, we evaluated a potential demographic signal of compensatory recruitment (i.e. positive relationship between the proportion of juveniles and Bd prevalence) in response to Bd infection using raw count data from 13 R. darwinii populations. The high Bd prevalence population exhibited the highest male reproductive effort and the highest recruitment among the four monitored populations. This led to a growing population during the study period despite high mortality of adult hosts. In contrast, males from the population with low Bd prevalence had a low reproductive effort and this population, which had the lowest adult recruitment, was declining during the study period despite adults having a higher survival in comparison to the high Bd prevalence population. We also found a demographic signal of compensatory recruitment in response to Bd infection in our broader analysis of 13 R. darwinii populations. Our study underlines the importance of interpopulation variation in life-history strategies on the fate of host populations after infectious disease emergence. Our results also suggest that an increase in reproductive effort can be one of the processes underlying compensatory recruitment in populations of Bd-susceptible amphibians.
Subject(s)
Chytridiomycota , Mycoses , Amphibians/microbiology , Animals , Anura/microbiology , Chytridiomycota/physiology , Male , Mycoses/epidemiology , Mycoses/microbiology , Mycoses/veterinary , Population Dynamics , ReproductionABSTRACT
The skin microbiome in amphibians has gained a lot of attention as some of its members play a protective role against pathogens such as the fungus Batrachochytrium dendrobatidis (Bd). The composition of skin bacterial communities has been suggested as one of the factors explaining differences in susceptibility to Bd among amphibian species and populations. The boreal toad Anaxyrus boreas is known to be susceptible to Bd, and severe population declines in its southeastern range have been documented. However, throughout A. boreas distribution, populations present differences in susceptibility to Bd infections which may be associated with differences in skin microbial diversity. This study compared the skin bacterial diversity and Bd infection levels of A. boreas in one desert population and one pine forest population from Baja California, Mexico. We found that desert and pine forest toad populations exhibit differences in skin bacterial community structure but show similar Bd infection levels. Using a predictive method, we found that the abundance of bacteria with potential Bd-inhibitory properties differed between uninfected and infected individuals but not between populations. Our data suggest that several bacteria in the skin community may be offering protection from Bd infections in these A. boreas populations. This study provides foundational evidence for future studies seeking to understand the skin-microbial variation among boreal toads' populations and its relation with Bd susceptibility.
Subject(s)
Chytridiomycota , Pinus , Animals , Antifungal Agents , Bacteria , Bufonidae/microbiology , Forests , Humans , Mexico , Skin/microbiologyABSTRACT
Batrachochytrium dendrobatidis, a chytrid fungus infecting amphibians' cutaneous layer, is responsible for the greatest contemporary loss of amphibian biodiversity. In South America, Suriname is one of the only three countries where B. dendrobatidis infections of anurans (frogs and toads) have not been documented. To further examine this apparent gap in pathogen occurrence, frogs were sampled for B. dendrobatidis spores at eight disparate geographic locations in Suriname, including locations with high and low levels of anthropogenic activities, and near Suriname's border with Brazil and French Guiana, countries where B. dendrobatidis infections have been documented. None of the 347 frogs sampled, representing 37 species from eight families, tested positive for B. dendrobatidis. Our results provide the baseline data for future comparative testing and one of the last opportunities for a country in South America to proactively plan mitigation measures to protect amphibians from B. dendrobatidis' presumed eventual incursion into Suriname.
Subject(s)
Chytridiomycota , Mycoses , Amphibians/microbiology , Animals , Anura , Biodiversity , Brazil , Humans , Mycoses/epidemiology , Mycoses/microbiology , Mycoses/veterinaryABSTRACT
Batrachochytrium dendrobatidis (Bd) infection is one of the principal causes of amphibian declines worldwide. The presence of Bd has been determined in Gastrotheca riobambae tadpoles that inhabit ponds in Quito's Metropolitan Guangüiltagua Park, Ecuador. This study sought to determine whether these tadpoles are infected and to determine the presence of chytridiomycosis in another frog species, Pristimantis unistrigatus, which also inhabits the park and has different reproductive biology and distinct behavioral habits. We used end-point and real-time PCR techniques to detect and quantify Bd infection. At 1 yr, samples were taken from the skin of P. unistrigatus using swabs and were also taken from the mouthparts of G. riobambae tadpoles. It was found that the two species were infected with a Bd prevalence of 39% (53/135) in G. riobambae tadpoles and 15% (57/382) in P. unistrigatus frogs. The two types of samples (tissue and swabs) from mouthparts showed differences in the zoospores per microliter loads (xÌ=1,376.7±3,450.2 vs. xÌ=285.0±652.3). Moreover, a correlation (r2=0.621) was discovered between the monthly mean maximum temperature of the pond with disease prevalence in G. riobambae tadpoles. Infection levels in the P. unistrigatus population varied significantly over time, and distance to the pond was a determinant factor for infection intensity.
Subject(s)
Chytridiomycota , Mycoses , Animals , Anura , Batrachochytrium , Ecuador/epidemiology , Mycoses/epidemiology , Mycoses/veterinaryABSTRACT
Chytridiomycosis, a disease caused by the fungus Batrachochytrium dendrobatidis (Bd), has been linked with the disappearance of amphibian populations worldwide. Harlequin toads (Atelopus) are among the most severely impacted genera. Two species are already considered extinct and most of the others are at high risk of extinction. The recent rediscovery of harlequin toad populations coexisting with Bd suggest that the pathogen can maintain enzootic cycles at some locations. The mechanisms promoting coexistence, however, are not well understood. We explore the dynamics of Bd infection in harlequin toads by modeling a two-stage host population with transmission through environmental reservoirs. Simulations showed that variations in the recruitment of adults and the persistence of zoospores in the environment were more likely to drive shifts between extinction and coexistence than changes in the vulnerability of toads to infection with Bd. These findings highlight the need to identify mechanisms for assuring adult recruitment or minimizing transmission from potential reservoirs, biotic or abiotic, in recovering populations.
Subject(s)
Bufonidae , Animals , Batrachochytrium , Chytridiomycota , MycosesABSTRACT
Chytridiomycosis, an emergent infectious disease caused by the fungus Batrachochytrium dendrobatidis (Bd), is considered one of the drivers of the current amphibian biodiversity loss. To inform endangered species conservation efforts, it is essential to improve our knowledge about the abiotic and biotic factors that influence Bd infection dynamics in the wild. Here, we analyzed variation of Bd infection in the redbelly toad Melanophryniscus montevidensis, a threatened bufonid from Uruguay. We tested the influence of temperature, precipitation, season, and host population size on Bd prevalence and intensity. Additionally, considering the sub-lethal effects of Bd, we tested if these variables, potentially through their effect on Bd, also explain the variation in host body condition. We determined a high Bd prevalence of 41% (100/241), and that population size influenced both Bd prevalence and infection intensity. We identified an effect of precipitation and season on Bd infection intensity and an effect of season on toad body condition. In addition, we found a negative effect of infection intensity on body condition; moreover, while some toads cleared the infection, their body condition did not improve, suggesting a long-term cost. This is the first report on host population size as an important factor in Bd infection dynamics in a threatened anuran species, and seasonal demographic changes appear to play an important role in the dynamics. Finally, we highlight the need for monitoring Bd in this and other endangered amphibian populations, especially those within the genus Melanophryniscus, which includes several Endangered and Data Deficient species in South America.
Subject(s)
Chytridiomycota , Animals , Batrachochytrium , Bufonidae , Endangered Species , Seasons , South America , Uruguay/epidemiologyABSTRACT
Emerging infectious diseases are a pressing threat to global biological diversity. Increased incidence and severity of novel pathogens underscores the need for methodological advances to understand pathogen emergence and spread. Here, we use genetic epidemiology to test, and challenge, key hypotheses about a devastating zoonotic disease impacting amphibians globally. Using an amplicon-based sequencing method and non-invasive samples we retrospectively explore the history of the fungal pathogen Batrachochytrium dendrobatidis (Bd) in two emblematic amphibian systems: the Sierra Nevada of California and Central Panama. The hypothesis in both regions is the hypervirulent Global Panzootic Lineage of Bd (BdGPL) was recently introduced and spread rapidly in a wave-like pattern. Our data challenge this hypothesis by demonstrating similar epizootic signatures can have radically different underlying evolutionary histories. In Central Panama, our genetic data confirm a recent and rapid pathogen spread. However, BdGPL in the Sierra Nevada has remarkable spatial structuring, high genetic diversity and a relatively older history inferred from time-dated phylogenies. Thus, this deadly pathogen lineage may have a longer history in some regions than assumed, providing insights into its origin and spread. Overall, our results highlight the importance of integrating observed wildlife die-offs with genetic data to more accurately reconstruct pathogen outbreaks.
Subject(s)
Chytridiomycota , Communicable Diseases, Emerging , Amphibians , Animals , Chytridiomycota/genetics , Panama , Retrospective StudiesABSTRACT
Complex interactions among hosts, pathogens, and the environment affect the vulnerability of amphibians to the emergence of infectious diseases such as chytridiomycosis, caused by Batrachochytrium dendrobatidis (Bd). Boana curupi is a forest-dwelling amphibian endemic to the southern Atlantic Forest of South America, a severely fragmented region. Here, we evaluated whether abiotic factors (including air and water temperature, relative air humidity, and landscape) are correlated with chytrid infection intensity and prevalence in B. curupi. We found individuals infected with Bd in all populations sampled. Prevalence ranged from 25-86%, and the infection burden ranged from 1 to over 130000 zoospore genomic equivalents (g.e.) (mean ± SD: 4913 ± 18081 g.e.). The infection load differed among populations and was influenced by forest cover at scales of 100, 500, and 1000 m, with the highest infection rates recorded in areas with a higher proportion of forest cover. Our results suggest that the fungus is widely distributed in the populations of B. curupi in southern Brazil. Population and disease monitoring are necessary to better understand the relationships between host, pathogen, and environment, especially when, as in the case of B. curupi, threatened species are involved.
Subject(s)
Chytridiomycota , Mycoses , Amphibians , Animals , Anura , Brazil/epidemiology , Forests , Mycoses/epidemiology , Mycoses/veterinaryABSTRACT
Environmental variation along elevational gradients shapes conditions for pathogen development, which influences disease outcomes. Chytridiomycosis is a non-vectored disease caused by the aquatic fungus Batrachochytrium dendrobatidis (Bd) and is responsible for massive declines of amphibian populations all over the world. Several biotic and abiotic factors are known to influence Bd infection dynamics in amphibians, including temperature and host species richness. Here, we quantified Bd prevalence and load along an elevational gradient in the Caparaó National Park (CNP), Brazil, and tested for associations of Bd infections with elevation, temperature, and species richness. We hypothesized that Bd infections would increase as local species richness decreased with elevation. We detected Bd along the entire elevational gradient and found a negative association between infection load and elevation. We did not detect significant associations between infection prevalence and elevation. Our findings are consistent with other wide elevational gradient studies, but are contrary to 2 other studies performed in the Atlantic Forest. We did not find the minimum elevational range that should be sampled to detect the influence of elevation on Bd variation. Our study represents the widest elevational gradient that has been sampled in Brazil and contributes to a better understanding of Bd distribution and dynamics in natural systems.