Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 24.787
1.
Diabetes Metab Res Rev ; 40(5): e3827, 2024 Jul.
Article En | MEDLINE | ID: mdl-38837323

AIMS: Circadian syndrome (CircS) is considered a better predictor for cardiovascular disease than the metabolic syndrome (MetS). We aim to examine the associations between CircS and MetS with cognition in Chinese adults. METHOD: We used the data of 8546 Chinese adults aged ≥40 years from the 2011 China Health and Retirement Longitudinal Study. MetS was defined using harmonised criteria. CircS included the components of MetS plus short sleep and depression. The cut-off for CircS was set as ≥4. Global cognitive function was assessed during the face-to-face interview. RESULTS: CircS and MetS had opposite associations with the global cognition score and self-reported poor memory. Compared with individuals without the CircS and MetS, the regression coefficients (95%CI) for global cognition score were -1.02 (-1.71 to -0.34) for CircS alone and 0.52 (0.09 to 0.96) for MetS alone in men; -1.36 (-2.00 to -0.72) for CircS alone and 0.60 (0.15 to 1.06) for MetS alone in women. Having CircS alone was 2.53 times more likely to report poor memory in men (95%CI 1.80-3.55) and 2.08 times more likely in women (95%CI 1.54-2.81). In contrast, having MetS alone was less likely to report poor memory (OR 0.64 (0.49-0.84) in men and 0.65 (0.52-0.81) in women). People with CircS and MetS combined were more likely to have self-reported poor memory. CONCLUSIONS: CircS is a strong and better predictor for cognition impairment than MetS in Chinese middle-aged adults. MetS without short sleep and depression is associated with better cognition.


Cognitive Dysfunction , Metabolic Syndrome , Humans , Metabolic Syndrome/epidemiology , Metabolic Syndrome/psychology , Male , Female , Middle Aged , Cognitive Dysfunction/etiology , Cognitive Dysfunction/epidemiology , China/epidemiology , Longitudinal Studies , Aged , Adult , Prognosis , Chronobiology Disorders/complications , Chronobiology Disorders/epidemiology , Risk Factors , Follow-Up Studies , Circadian Rhythm/physiology
2.
FASEB J ; 38(11): e23719, 2024 Jun 15.
Article En | MEDLINE | ID: mdl-38837828

Chronic disruption of circadian rhythms by night shift work is associated with an increased breast cancer risk. However, little is known about the impact of night shift on peripheral circadian genes (CGs) and circadian-controlled genes (CCGs) associated with breast cancer. Hence, we assessed central clock markers (melatonin and cortisol) in plasma, and peripheral CGs (PER1, PER2, PER3, and BMAL1) and CCGs (ESR1 and ESR2) in peripheral blood mononuclear cells (PBMCs). In day shift nurses (n = 12), 24-h rhythms of cortisol and melatonin were aligned with day shift-oriented light/dark schedules. The mRNA expression of PER2, PER3, BMAL1, and ESR2 showed 24-h rhythms with peak values in the morning. In contrast, night shift nurses (n = 10) lost 24-h rhythmicity of cortisol with a suppressed morning surge but retained normal rhythmic patterns of melatonin, leading to misalignment between cortisol and melatonin. Moreover, night shift nurses showed disruption of rhythmic expressions of PER2, PER3, BMAL1, and ESR2 genes, resulting in an impaired inverse correlation between PER2 and BMAL1 compared to day shift nurses. The observed trends of disrupted circadian markers were recapitulated in additional day (n = 20) and night (n = 19) shift nurses by measurement at early night and midnight time points. Taken together, this study demonstrated the misalignment of cortisol and melatonin, associated disruption of PER2 and ESR2 circadian expressions, and internal misalignment in peripheral circadian network in night shift nurses. Morning plasma cortisol and PER2, BMAL1, and ESR2 expressions in PBMCs may therefore be useful biomarkers of circadian disruption in shift workers.


Circadian Clocks , Circadian Rhythm , Hydrocortisone , Melatonin , Shift Work Schedule , Humans , Female , Melatonin/metabolism , Melatonin/blood , Adult , Shift Work Schedule/adverse effects , Circadian Clocks/genetics , Hydrocortisone/blood , Hydrocortisone/metabolism , Circadian Rhythm/physiology , Period Circadian Proteins/genetics , Period Circadian Proteins/metabolism , Nurses , Leukocytes, Mononuclear/metabolism , Estrogen Receptor alpha/metabolism , Estrogen Receptor alpha/genetics , Estrogen Receptor beta/metabolism , Estrogen Receptor beta/genetics , ARNTL Transcription Factors/genetics , ARNTL Transcription Factors/metabolism , Work Schedule Tolerance/physiology , Working Conditions
3.
J Med Internet Res ; 26: e50149, 2024 Jun 05.
Article En | MEDLINE | ID: mdl-38838328

BACKGROUND: This study aimed to investigate the relationships between adiposity and circadian rhythm and compare the measurement of circadian rhythm using both actigraphy and a smartphone app that tracks human-smartphone interactions. OBJECTIVE: We hypothesized that the app-based measurement may provide more comprehensive information, including light-sensitive melatonin secretion and social rhythm, and have stronger correlations with adiposity indicators. METHODS: We enrolled a total of 78 participants (mean age 41.5, SD 9.9 years; 46/78, 59% women) from both an obesity outpatient clinic and a workplace health promotion program. All participants (n=29 with obesity, n=16 overweight, and n=33 controls) were required to wear a wrist actigraphy device and install the Rhythm app for a minimum of 4 weeks, contributing to a total of 2182 person-days of data collection. The Rhythm app estimates sleep and circadian rhythm indicators by tracking human-smartphone interactions, which correspond to actigraphy. We examined the correlations between adiposity indices and sleep and circadian rhythm indicators, including sleep time, chronotype, and regularity of circadian rhythm, while controlling for physical activity level, age, and gender. RESULTS: Sleep onset and wake time measurements did not differ significantly between the app and actigraphy; however, wake after sleep onset was longer (13.5, SD 19.5 minutes) with the app, resulting in a longer actigraphy-measured total sleep time (TST) of 20.2 (SD 66.7) minutes. The obesity group had a significantly longer TST with both methods. App-measured circadian rhythm indicators were significantly lower than their actigraphy-measured counterparts. The obesity group had significantly lower interdaily stability (IS) than the control group with both methods. The multivariable-adjusted model revealed a negative correlation between BMI and app-measured IS (P=.007). Body fat percentage (BF%) and visceral adipose tissue area (VAT) showed significant correlations with both app-measured IS and actigraphy-measured IS. The app-measured midpoint of sleep showed a positive correlation with both BF% and VAT. Actigraphy-measured TST exhibited a positive correlation with BMI, VAT, and BF%, while no significant correlation was found between app-measured TST and either BMI, VAT, or BF%. CONCLUSIONS: Our findings suggest that IS is strongly correlated with various adiposity indicators. Further exploration of the role of circadian rhythm, particularly measured through human-smartphone interactions, in obesity prevention could be warranted.


Actigraphy , Adiposity , Algorithms , Circadian Rhythm , Smartphone , Humans , Female , Actigraphy/instrumentation , Actigraphy/methods , Male , Adult , Circadian Rhythm/physiology , Middle Aged , Obesity/physiopathology , Mobile Applications , Sleep/physiology
6.
Front Endocrinol (Lausanne) ; 15: 1397062, 2024.
Article En | MEDLINE | ID: mdl-38836224

Background and aims: A prothrombotic state was demonstrated in patients with Cushing's syndrome and is involved in the development and progression of cardiovascular and renal damage in hypertensive patients. This study was designed to examine the relationships between cortisol secretion and the hemostatic and fibrinolytic systems in hypertension. Methods: In 149 middle-aged, nondiabetic, essential hypertensive patients free of cardiovascular and renal complications, we measured hemostatic markers that express the spontaneous activation of the coagulation and fibrinolytic systems and assessed daily cortisol levels (8 AM, 3 PM, 12 AM; area under the curve, AUC-cortisol) together with the cortisol response to dexamethasone overnight suppression (DST-cortisol). Results: Plasma levels of D-dimer (D-dim), prothrombin fragment 1 + 2 (F1 + 2), and von Willebrand factor (vWF) were progressively and significantly higher across tertiles of AUC-cortisol and DST-cortisol, whereas no differences were observed in fibrinogen, tissue plasminogen activator, plasminogen activator inhibitor-1, antithrombin III, protein C, and protein S. D-dim, F1 + 2, and vWF were significantly and directly correlated with age and both AUC-cortisol and DST-cortisol. Multivariate regression analysis showed that both AUC-cortisol and DST-cortisol were related to plasma D-dim, F1 + 2, and vWF independently of age, body mass index, blood pressure, and renal function. Conclusion: Greater daily cortisol profile and cortisol response to overnight suppression are independently associated with a prothrombotic state in hypertensive patients and might contribute to the development of organ damage and higher risk of cardiovascular complications.


Dexamethasone , Hydrocortisone , Hypertension , Humans , Male , Middle Aged , Female , Hydrocortisone/blood , Hypertension/blood , Hypertension/complications , Adult , Thrombosis/blood , Thrombosis/etiology , von Willebrand Factor/metabolism , von Willebrand Factor/analysis , Circadian Rhythm/physiology , Aged , Biomarkers/blood
7.
BMJ Open ; 14(6): e086801, 2024 Jun 03.
Article En | MEDLINE | ID: mdl-38830738

INTRODUCTION: One in five Canadians lives with chronic pain. Evidence shows that some individuals experience pain that fluctuates in intensity following a circadian (24-hour) rhythm. Endogenous molecular rhythms regulate the function of physiological processes that govern pain mechanisms. Addressing chronic pain rhythmicity on a molecular and biopsychosocial level can advance understanding of the disease and identify new treatment/management strategies. Our CircaHealth CircaPain study uses an online survey combined with ecological momentary assessments and biosample collection to investigate the circadian control of chronic pain and identify potential biomarkers. Our primary objective is to understand interindividual variability in pain rhythmicity, by collecting biopsychosocial measures. The secondary objective accounts for seasonal variability and the effect of latitude on rhythmicity. METHODS AND ANALYSIS: Following completion of a baseline questionnaire, participants complete a series of electronic symptom-tracking diaries to rate their pain intensity, negative affect, fatigue and stress on a 0-10 scale at 8:00, 14:00 and 20:00 daily over 10 days. These measures are repeated at 6 and 12 months postenrolment to account for potential seasonal changes. We aim to recruit ≥2500 adults with chronic pain within Canada. Infrastructure is being developed to facilitate the collection of blood samples from subgroups of participants (~800) two times per day over 24-48 hours to identify rhythmic expression of circulating genes and/or proteins. ETHICS AND DISSEMINATION: Ethical approval for this study was obtained by the Queen's University Health Sciences and Affiliated Teaching Hospitals Research Ethics Board (File No. 6038114). Participants provide informed consent to participate, and their data will not be identifiable in any publication or report. Findings will be published in a relevant scientific journal and disseminated at scientific meetings and online webinars. We maintain a website to post updated resources and engage with the community. We employ knowledge mobilisation in the form of direct data sharing with participants.


Chronic Pain , Humans , Canada , Longitudinal Studies , Circadian Rhythm/physiology , Adult , Surveys and Questionnaires , Ecological Momentary Assessment , Female , Male , Biomarkers/blood , Seasons , Pain Measurement , Fatigue
8.
Transl Psychiatry ; 14(1): 237, 2024 Jun 04.
Article En | MEDLINE | ID: mdl-38834543

To advance the emergence of circadian-based therapies, this study characterized how psychiatric symptoms fluctuate across the day and vary between individuals. Using a dimensional approach, we determined how chronotype relates to 13 psychiatric traits, and modeled the temporal development of symptoms throughout the day using generalized additive mixed effects models. In this preregistered study, a subclinical sample completed 13 psychiatric trait scales and a chronotype scale at baseline (N = 515, n = 404 women, 109 men, n = 2 non-binary, M age = 32.4 years, range 18-77), followed by 22 psychiatric symptoms and behaviors rated repeatedly between ~08:00-00:00 (n = 410). Key findings are that 11 out of 13 psychiatric traits were associated with being an evening-type, ranging from depression to obsessive comulsive disorder, social anxiety, and delusional ideation, while only mania was associated with being a morning-type. Four distinct psychiatric trait factors were identified, each predicting worse symptom levels throughout the day. Fatigue-related symptoms exhibited strong time-of-day changes with evening-types experiencing worse fatigue in the morning and morning-types in the evening. Evening-types had considerably lower drive and motivation than morning-types from morning to early evening. Evening-types also had more pronounced negative emotional symptoms and ADHD-type symptoms in the evening, particularly among those high in psychiatric trait factors. These findings identified important research targets that hold promise for improving mental health outcomes, such as strategies to boost morning motivation. Furthermore, the results emphasize the relevance of incorporating circadian factors, including chronotype, into translational psychiatric research and interventions.


Circadian Rhythm , Humans , Male , Female , Adult , Circadian Rhythm/physiology , Middle Aged , Adolescent , Young Adult , Aged , Mental Disorders/psychology , Mental Disorders/physiopathology , Mental Health , Psychiatric Status Rating Scales , Chronotype
9.
PLoS Pathog ; 20(5): e1012157, 2024 May.
Article En | MEDLINE | ID: mdl-38723104

Circadian rhythms are intrinsic 24-hour oscillations found in nearly all life forms. They orchestrate key physiological and behavioral processes, allowing anticipation and response to daily environmental changes. These rhythms manifest across entire organisms, in various organs, and through intricate molecular feedback loops that govern cellular oscillations. Recent studies describe circadian regulation of pathogens, including parasites, bacteria, viruses, and fungi, some of which have their own circadian rhythms while others are influenced by the rhythmic environment of hosts. Pathogens target specific tissues and organs within the host to optimize their replication. Diverse cellular compositions and the interplay among various cell types create unique microenvironments in different tissues, and distinctive organs have unique circadian biology. Hence, residing pathogens are exposed to cyclic conditions, which can profoundly impact host-pathogen interactions. This review explores the influence of circadian rhythms and mammalian tissue-specific interactions on the dynamics of pathogen-host relationships. Overall, this demonstrates the intricate interplay between the body's internal timekeeping system and its susceptibility to pathogens, which has implications for the future of infectious disease research and treatment.


Circadian Clocks , Circadian Rhythm , Host-Pathogen Interactions , Circadian Clocks/physiology , Animals , Host-Pathogen Interactions/physiology , Humans , Circadian Rhythm/physiology
10.
Synapse ; 78(3): e22291, 2024 May.
Article En | MEDLINE | ID: mdl-38733105

Spinal serotonin enables neuro-motor recovery (i.e., plasticity) in patients with debilitating paralysis. While there exists time of day fluctuations in serotonin-dependent spinal plasticity, it is unknown, in humans, whether this is due to dynamic changes in spinal serotonin levels or downstream signaling processes. The primary objective of this study was to determine if time of day variations in spinal serotonin levels exists in humans. To assess this, intrathecal drains were placed in seven adults with cerebrospinal fluid (CSF) collected at diurnal (05:00 to 07:00) and nocturnal (17:00 to 19:00) intervals. High performance liquid chromatography with mass spectrometry was used to quantify CSF serotonin levels with comparisons being made using univariate analysis. From the 7 adult patients, 21 distinct CSF samples were collected: 9 during the diurnal interval and 12 during nocturnal. Diurnal CSF samples demonstrated an average serotonin level of 216.6 ± $ \pm $ 67.7 nM. Nocturnal CSF samples demonstrated an average serotonin level of 206.7 ± $ \pm $ 75.8 nM. There was no significant difference between diurnal and nocturnal CSF serotonin levels (p = .762). Within this small cohort of spine healthy adults, there were no differences in diurnal versus nocturnal spinal serotonin levels. These observations exclude spinal serotonin levels as the etiology for time of day fluctuations in serotonin-dependent spinal plasticity expression.


Circadian Rhythm , Serotonin , Humans , Serotonin/cerebrospinal fluid , Male , Adult , Female , Circadian Rhythm/physiology , Middle Aged , Spinal Cord/metabolism , Chromatography, High Pressure Liquid , Aged
11.
Aging Clin Exp Res ; 36(1): 105, 2024 May 07.
Article En | MEDLINE | ID: mdl-38713270

PURPOSE: Frailty and Circadian Syndrome (CircS) are prevalent among the elderly, yet the link between them remains underexplored. This study aims to examine the association between CircS and frailty, particularly focusing on the impact of various CircS components on frailty. MATERIALS AND METHODS: We conducted a cross-sectional analysis using data from the National Health and Nutrition Examination Survey (NHANES) spanning 2007 to 2018. The 49-item Frailty Index (FI) was employed to assess frailty. To understand the prevalence of CircS in relation to frailty, we applied three multivariate logistic regression models. Additionally, subgroup and interaction analyses were performed to investigate potential modifying factors. RESULTS: The study included 8,569 participants. In fully adjusted models, individuals with CircS showed a significantly higher risk of frailty compared to those without CircS (Odds Ratio [OR] = 2.18, 95% Confidence Interval [CI]: 1.91-2.49, p < 0.001). A trend of increasing frailty risk with greater CircS component was observed (trend test p < 0.001). Age (p = 0.01) and race (p = 0.02) interactions notably influenced this association, although the direction of effect was consistent across subgroups. Sensitivity analysis further confirmed the strength of this relationship. CONCLUSION: This study identifies a strong positive correlation between CircS and frailty in the elderly. The risk of frailty escalates with an increasing number of CircS components. These findings highlight the intricate interplay between circadian syndrome and frailty in older adults, offering valuable insights for developing targeted prevention and intervention strategies.


Frailty , Nutrition Surveys , Humans , Cross-Sectional Studies , Male , Female , Frailty/epidemiology , Aged , United States/epidemiology , Middle Aged , Aged, 80 and over , Chronobiology Disorders/epidemiology , Chronobiology Disorders/physiopathology , Prevalence , Circadian Rhythm/physiology , Frail Elderly/statistics & numerical data , Risk Factors
12.
Elife ; 132024 May 08.
Article En | MEDLINE | ID: mdl-38716806

Studies of the starlet sea anemone provide important insights into the early evolution of the circadian clock in animals.


Circadian Clocks , Sea Anemones , Animals , Biological Evolution , Circadian Clocks/physiology , Circadian Rhythm/physiology , Cnidaria/physiology , Sea Anemones/physiology
13.
Int J Behav Nutr Phys Act ; 21(1): 51, 2024 May 02.
Article En | MEDLINE | ID: mdl-38698447

BACKGROUND: There is a growing population of survivors of colorectal cancer (CRC). Fatigue and insomnia are common symptoms after CRC, negatively influencing health-related quality of life (HRQoL). Besides increasing physical activity and decreasing sedentary behavior, the timing and patterns of physical activity and rest over the 24-h day (i.e. diurnal rest-activity rhythms) could also play a role in alleviating these symptoms and improving HRQoL. We investigated longitudinal associations of the diurnal rest-activity rhythm (RAR) with fatigue, insomnia, and HRQoL in survivors of CRC. METHODS: In a prospective cohort study among survivors of stage I-III CRC, 5 repeated measurements were performed from 6 weeks up to 5 years post-treatment. Parameters of RAR, including mesor, amplitude, acrophase, circadian quotient, dichotomy index, and 24-h autocorrelation coefficient, were assessed by a custom MATLAB program using data from tri-axial accelerometers worn on the upper thigh for 7 consecutive days. Fatigue, insomnia, and HRQoL were measured by validated questionnaires. Confounder-adjusted linear mixed models were applied to analyze longitudinal associations of RAR with fatigue, insomnia, and HRQoL from 6 weeks until 5 years post-treatment. Additionally, intra-individual and inter-individual associations over time were separated. RESULTS: Data were available from 289 survivors of CRC. All RAR parameters except for 24-h autocorrelation increased from 6 weeks to 6 months post-treatment, after which they remained relatively stable. A higher mesor, amplitude, circadian quotient, dichotomy index, and 24-h autocorrelation were statistically significantly associated with less fatigue and better HRQoL over time. A higher amplitude and circadian quotient were associated with lower insomnia. Most of these associations appeared driven by both within-person changes over time and between-person differences in RAR parameters. No significant associations were observed for acrophase. CONCLUSIONS: In the first five years after CRC treatment, adhering to a generally more active (mesor) and consistent (24-h autocorrelation) RAR, with a pronounced peak activity (amplitude) and a marked difference between daytime and nighttime activity (dichotomy index) was found to be associated with lower fatigue, lower insomnia, and a better HRQoL. Future intervention studies are needed to investigate if restoring RAR among survivors of CRC could help to alleviate symptoms of fatigue and insomnia while enhancing their HRQoL. TRIAL REGISTRATION: EnCoRe study NL6904 ( https://www.onderzoekmetmensen.nl/ ).


Cancer Survivors , Circadian Rhythm , Colorectal Neoplasms , Exercise , Fatigue , Quality of Life , Rest , Sleep Initiation and Maintenance Disorders , Humans , Sleep Initiation and Maintenance Disorders/therapy , Male , Female , Middle Aged , Prospective Studies , Circadian Rhythm/physiology , Cancer Survivors/psychology , Aged , Longitudinal Studies , Surveys and Questionnaires
15.
J Pineal Res ; 76(4): e12956, 2024 May.
Article En | MEDLINE | ID: mdl-38695262

The circadian timing system controls glucose metabolism in a time-of-day dependent manner. In mammals, the circadian timing system consists of the main central clock in the bilateral suprachiasmatic nucleus (SCN) of the anterior hypothalamus and subordinate clocks in peripheral tissues. The oscillations produced by these different clocks with a period of approximately 24-h are generated by the transcriptional-translational feedback loops of a set of core clock genes. Glucose homeostasis is one of the daily rhythms controlled by this circadian timing system. The central pacemaker in the SCN controls glucose homeostasis through its neural projections to hypothalamic hubs that are in control of feeding behavior and energy metabolism. Using hormones such as adrenal glucocorticoids and melatonin and the autonomic nervous system, the SCN modulates critical processes such as glucose production and insulin sensitivity. Peripheral clocks in tissues, such as the liver, muscle, and adipose tissue serve to enhance and sustain these SCN signals. In the optimal situation all these clocks are synchronized and aligned with behavior and the environmental light/dark cycle. A negative impact on glucose metabolism becomes apparent when the internal timing system becomes disturbed, also known as circadian desynchrony or circadian misalignment. Circadian desynchrony may occur at several levels, as the mistiming of light exposure or sleep will especially affect the central clock, whereas mistiming of food intake or physical activity will especially involve the peripheral clocks. In this review, we will summarize the literature investigating the impact of circadian desynchrony on glucose metabolism and how it may result in the development of insulin resistance. In addition, we will discuss potential strategies aimed at reinstating circadian synchrony to improve insulin sensitivity and contribute to the prevention of type 2 diabetes.


Circadian Rhythm , Glucose , Humans , Animals , Circadian Rhythm/physiology , Glucose/metabolism , Circadian Clocks/physiology , Suprachiasmatic Nucleus/metabolism , Suprachiasmatic Nucleus/physiology
16.
Proc Natl Acad Sci U S A ; 121(23): e2316858121, 2024 Jun 04.
Article En | MEDLINE | ID: mdl-38805270

In mammals, CLOCK and BMAL1 proteins form a heterodimer that binds to E-box sequences and activates transcription of target genes, including Period (Per). Translated PER proteins then bind to the CLOCK-BMAL1 complex to inhibit its transcriptional activity. However, the molecular mechanism and the impact of this PER-dependent inhibition on the circadian clock oscillation remain elusive. We previously identified Ser38 and Ser42 in a DNA-binding domain of CLOCK as phosphorylation sites at the PER-dependent inhibition phase. In this study, knockout rescue experiments showed that nonphosphorylatable (Ala) mutations at these sites shortened circadian period, whereas their constitutive-phospho-mimetic (Asp) mutations completely abolished the circadian rhythms. Similarly, we found that nonphosphorylatable (Ala) and constitutive-phospho-mimetic (Glu) mutations at Ser78 in a DNA-binding domain of BMAL1 also shortened the circadian period and abolished the rhythms, respectively. The mathematical modeling predicted that these constitutive-phospho-mimetic mutations weaken the DNA binding of the CLOCK-BMAL1 complex and that the nonphosphorylatable mutations inhibit the PER-dependent displacement (reduction of DNA-binding ability) of the CLOCK-BMAL1 complex from DNA. Biochemical experiments supported the importance of these phosphorylation sites for displacement of the complex in the PER2-dependent inhibition. Our results provide direct evidence that phosphorylation of CLOCK-Ser38/Ser42 and BMAL1-Ser78 plays a crucial role in the PER-dependent inhibition and the determination of the circadian period.


ARNTL Transcription Factors , CLOCK Proteins , Circadian Clocks , Period Circadian Proteins , ARNTL Transcription Factors/metabolism , ARNTL Transcription Factors/genetics , ARNTL Transcription Factors/chemistry , Phosphorylation , CLOCK Proteins/metabolism , CLOCK Proteins/genetics , Animals , Circadian Clocks/genetics , Period Circadian Proteins/metabolism , Period Circadian Proteins/genetics , Mice , Humans , DNA/metabolism , Circadian Rhythm/physiology , Circadian Rhythm/genetics , Mutation , Protein Domains , Protein Binding
17.
Sci Rep ; 14(1): 10777, 2024 05 11.
Article En | MEDLINE | ID: mdl-38734687

Emerging evidence has documented that circadian rhythm disorders could be related to cardiovascular diseases. However, there is limited knowledge on the direct adverse effects of circadian misalignment on the heart. This study aimed to investigate the effect of chronic circadian rhythm disorder on heart homeostasis in a mouse model of consistent jetlag. The jetlag model was induced in mice by a serial 8-h phase advance of the light cycle using a light-controlled isolation box every 4 days for up to 3 months. Herein, we demonstrated for the first time that chronic circadian rhythm disorder established in the mouse jetlag model could lead to HFpEF-like phenotype such as cardiac hypertrophy, cardiac fibrosis, and cardiac diastolic dysfunction, following the attenuation of the Clock-sGC-cGMP-PKG1 signaling. In addition, clock gene knock down in cardiomyocytes induced hypertrophy via decreased sGC-cGMP-PKG signaling pathway. Furthermore, treatment with an sGC-activator riociguat directly attenuated the adverse effects of jetlag model-induced cardiac hypertrophy, cardiac fibrosis, and cardiac diastolic dysfunction. Our data suggest that circadian rhythm disruption could induce HFpEF-like phenotype through downregulation of the clock-sGC-cGMP-PKG1 signaling pathway. sGC could be one of the molecular targets against circadian rhythm disorder-related heart disease.


CLOCK Proteins , Cyclic GMP , Heart Failure , Signal Transduction , Soluble Guanylyl Cyclase , Animals , Mice , Heart Failure/metabolism , Heart Failure/etiology , Heart Failure/physiopathology , Cyclic GMP/metabolism , Soluble Guanylyl Cyclase/metabolism , CLOCK Proteins/metabolism , CLOCK Proteins/genetics , Male , Disease Models, Animal , Phenotype , Cyclic GMP-Dependent Protein Kinase Type I/metabolism , Cyclic GMP-Dependent Protein Kinase Type I/genetics , Myocytes, Cardiac/metabolism , Circadian Rhythm/physiology , Mice, Inbred C57BL , Chronobiology Disorders/metabolism , Stroke Volume
18.
Front Endocrinol (Lausanne) ; 15: 1328139, 2024.
Article En | MEDLINE | ID: mdl-38742195

The topic of human circadian rhythms is not only attracting the attention of clinical researchers from various fields but also sparking a growing public interest. The circadian system comprises the central clock, located in the suprachiasmatic nucleus of the hypothalamus, and the peripheral clocks in various tissues that are interconnected; together they coordinate many daily activities, including sleep and wakefulness, physical activity, food intake, glucose sensitivity and cardiovascular functions. Disruption of circadian regulation seems to be associated with metabolic disorders (particularly impaired glucose tolerance) and cardiovascular disease. Previous clinical trials revealed that disturbance of the circadian system, specifically due to shift work, is associated with an increased risk of type 2 diabetes mellitus. This review is intended to provide clinicians who wish to implement knowledge of circadian disruption in diagnosis and strategies to avoid cardio-metabolic disease with a general overview of this topic.


Cardiovascular Diseases , Circadian Rhythm , Metabolic Diseases , Humans , Circadian Rhythm/physiology , Cardiovascular Diseases/etiology , Cardiovascular Diseases/physiopathology , Metabolic Diseases/physiopathology , Metabolic Diseases/metabolism , Metabolic Diseases/etiology , Diabetes Mellitus, Type 2/physiopathology , Diabetes Mellitus, Type 2/metabolism , Chronobiology Disorders/physiopathology , Chronobiology Disorders/complications
19.
Diabetes Metab Res Rev ; 40(4): e3813, 2024 May.
Article En | MEDLINE | ID: mdl-38767128

AIMS: The dawn phenomenon (DP) is an abnormal early morning blood glucose rise without nocturnal hypoglycaemia, which can be more easily and precisely assessed with continuous glucose monitoring (CGM). This prospective study aimed to explore the association between DP and the risk of all-cause mortality in patients with type 2 diabetes. MATERIALS AND METHODS: A total of 5542 adult inpatients with type 2 diabetes in a single centre were analysed. The magnitude of DP (ΔG) was defined as the increment in the CGM-determined glucose value from nocturnal nadir (after 24:00) to prebreakfast. Participants were stratified into four groups by ΔG: ≤1.11, 1.12-3.33, 3.34-5.55, and >5.55 mmol/L. Cox proportional hazard regression models were used to evaluate the impact of DP on all-cause mortality risk. RESULTS: During a median follow-up of 9.4 years, 1083 deaths were identified. The restricted cubic spline revealed a nonlinear (p for nonlinearity = 0.002) relationship between ΔG and the risk of all-cause mortality. A multivariate-adjusted Cox regression model including glycated haemoglobin A1c (HbA1c) showed that ΔG > 5.55 mmol/L was associated with 30% (95% CI, 1.01-1.66) higher risk of all-cause mortality, as compared with ΔG 1.12-3.33 mmol/L. CONCLUSIONS: Higher ΔG is significantly related to an increased risk of all-cause mortality in type 2 diabetes, suggesting that severe DP should be given more attention as a part of glucose management to reduce the risk of long-term adverse outcomes.


Blood Glucose , Diabetes Mellitus, Type 2 , Humans , Diabetes Mellitus, Type 2/mortality , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/blood , Female , Male , Middle Aged , Blood Glucose/analysis , Follow-Up Studies , Prospective Studies , Risk Factors , Prognosis , Aged , Glycated Hemoglobin/analysis , Blood Glucose Self-Monitoring , Cause of Death , Biomarkers/analysis , Biomarkers/blood , Circadian Rhythm/physiology , Hypoglycemia/mortality , Survival Rate , Adult
20.
Minerva Med ; 115(2): 125-142, 2024 Apr.
Article En | MEDLINE | ID: mdl-38713204

INTRODUCTION: Melatonin, a hormone produced by the pineal gland, regulates the sleep-wake cycle and is effective in restoring biological rhythms. Prolonged-release melatonin (PRM) is designed to mimic the natural physiological pattern of melatonin release. In circadian medicine, PRM can be used to treat sleep and circadian rhythm disorders, as well as numerous organic diseases associated with sleep disorders. EVIDENCE ACQUISITION: This systematic review analyzed 62 studies and adhered to the PRISMA guidelines, examining the effectiveness of PRM in organic pathologies and mental disorders. EVIDENCE SYNTHESIS: The main evidence concerns primary insomnia in subjects over the age of 55, showing significant improvements in sleep quality. In neurodevelopmental disorders, there is evidence of a positive impact on sleep quality and quality of life for patients and their caregivers. PRM shows efficacy in the treatment of sleep disorders in mood disorders, schizophrenia, and neurocognitive disorders, but requires further confirmation. The additional use of PRM is supported for the withdrawal of chronic benzodiazepine therapies. The tolerability and safety of PRM are excellent, with ample evidence supporting the absence of tolerance and dependence. CONCLUSIONS: Overall, PRM in circadian medicine is an effective chronopharmaceutical for restoring the sleep-wake rhythm in patients with insomnia disorder. This efficacy may also extend to sleep disorders associated with mood, neurodevelopmental and neurocognitive disorders, suggesting a further potential role in insomnia associated with various organic diseases.


Delayed-Action Preparations , Melatonin , Sleep Initiation and Maintenance Disorders , Melatonin/therapeutic use , Melatonin/administration & dosage , Humans , Sleep Initiation and Maintenance Disorders/drug therapy , Circadian Rhythm/physiology , Sleep Disorders, Circadian Rhythm/drug therapy , Neurodevelopmental Disorders/drug therapy , Mood Disorders/drug therapy , Sleep Wake Disorders/drug therapy , Sleep Wake Disorders/etiology , Sleep Quality , Neurocognitive Disorders/drug therapy , Neurocognitive Disorders/etiology
...