Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 15.917
Filter
1.
Int J Oncol ; 65(2)2024 Aug.
Article in English | MEDLINE | ID: mdl-38873997

ABSTRACT

Non­small cell lung cancer (NSCLC) is one of the major causes of cancer­related death worldwide. Cisplatin is a front­line chemotherapeutic agent in NSCLC. Nevertheless, subsequent harsh side effects and drug resistance limit its further clinical application. Polydatin (PD) induces apoptosis in various cancer cells by generating reactive oxygen species (ROS). However, underlying molecular mechanisms of PD and its effects on cisplatin­mediated antitumor activity in NSCLC remains unknown. MTT, colony formation, wound healing analyses and flow cytometry was employed to investigate the cell phenotypic changes and ROS generation. Relative gene and protein expressions were evaluated by reverse transcription­quantitative PCR and western blot analyses. The antitumor effects of PD, cisplatin and their combination were evaluated by mouse xenograft model. In the present study, it was found that PD in combination with cisplatin synergistically enhances the antitumor activity in NSCLC by stimulating ROS­mediated endoplasmic reticulum stress, and the C­Jun­amino­terminal kinase and p38 mitogen­activated protein kinase signaling pathways. PD treatment elevated ROS generation by promoting expression of NADPH oxidase 5 (NOX5), and NOX5 knockdown attenuated ROS­mediated cytotoxicity of PD in NSCLC cells. Mice xenograft model further confirmed the synergistic antitumor efficacy of combined therapy with PD and cisplatin. The present study exhibited a superior therapeutic strategy for some patients with NSCLC by combining PD and cisplatin.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Cisplatin , Drug Synergism , Glucosides , Lung Neoplasms , NADPH Oxidase 5 , Oxidative Stress , Reactive Oxygen Species , Stilbenes , Xenograft Model Antitumor Assays , Cisplatin/pharmacology , Cisplatin/therapeutic use , Glucosides/pharmacology , Glucosides/therapeutic use , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/metabolism , Animals , Humans , Stilbenes/pharmacology , Stilbenes/therapeutic use , Mice , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Lung Neoplasms/metabolism , Oxidative Stress/drug effects , Reactive Oxygen Species/metabolism , Cell Line, Tumor , Apoptosis/drug effects , A549 Cells , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Cell Proliferation/drug effects , Endoplasmic Reticulum Stress/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Male
2.
J Exp Med ; 221(7)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38861022

ABSTRACT

The IL-17 receptor adaptor molecule Act1, an RNA-binding protein, plays a critical role in IL-17-mediated cancer progression. Here, we report a novel mechanism of how IL-17/Act1 induces chemoresistance by modulating redox homeostasis through epitranscriptomic regulation of antioxidant RNA metabolism. Transcriptome-wide mapping of direct Act1-RNA interactions revealed that Act1 binds to the 5'UTR of antioxidant mRNAs and Wilms' tumor 1-associating protein (WTAP), a key regulator in m6A methyltransferase complex. Strikingly, Act1's binding sites are located in proximity to m6A modification sites, which allows Act1 to promote the recruitment of elF3G for cap-independent translation. Loss of Act1's RNA binding activity or Wtap knockdown abolished IL-17-induced m6A modification and translation of Wtap and antioxidant mRNAs, indicating a feedforward mechanism of the Act1-WTAP loop. We then developed antisense oligonucleotides (Wtap ASO) that specifically disrupt Act1's binding to Wtap mRNA, abolishing IL-17/Act1-WTAP-mediated antioxidant protein production during chemotherapy. Wtap ASO substantially increased the antitumor efficacy of cisplatin, demonstrating a potential therapeutic strategy for chemoresistance.


Subject(s)
Antioxidants , Drug Resistance, Neoplasm , Homeostasis , Oxidation-Reduction , Drug Resistance, Neoplasm/genetics , Humans , Antioxidants/metabolism , Antioxidants/pharmacology , Animals , Cell Line, Tumor , RNA, Messenger/metabolism , RNA, Messenger/genetics , Interleukin-17/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Mice , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics , Gene Expression Regulation, Neoplastic/drug effects , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , 5' Untranslated Regions , Cisplatin/pharmacology , RNA Splicing Factors
3.
Int Immunopharmacol ; 136: 112377, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-38838554

ABSTRACT

The tumor microenvironment (TME) concept has been proposed and is currently being actively studied. The development of extracellular matrix (ECM) in the TME is known as desmoplasia and is observed in many solid tumors. It has also been strongly associated with poor prognosis and resistance to drug therapy. Recently, cellular senescence has gained attention as an effect of drug therapy on cancer cells. Cellular senescence is a phenomenon wherein proliferating cells become resistant to growth-promoting stimuli, secrete the SASP (senescence-associated phenotypic) factors, and stably arrest the cell cycle. These proteins are rich in pro-inflammatory factors, such as interleukin (IL)-6, IL-8, C-X-C motif chemokine ligand 1, C-C motif chemokine ligand (CCL)2, CCL5, and matrix metalloproteinase 3. This study aimed to investigate the desmoplasia-like changes in the TME before and after cancer drug therapy in oral squamous cell carcinomas, evaluate the effect of anticancer drugs on the TME, and the potential involvement of cancer cell senescence. Using a syngeneic oral cancer transplant mouse model, we confirmed that cis-diamminedichloroplatinum (II) (CDDP) administration caused desmoplasia-like changes in cancer tissues. Furthermore, CDDP treatment-induced senescence in tumor-bearing mouse tumor tissues and cultured cancer cells. These results suggest CDDP administration-induced desmoplasia-like structural changes in the TME are related to cellular senescence. Our findings suggest that the administration of anticancer drugs alters the TME of oral cancer cells. Additionally, oral cancer cells undergo senescence, which may influence the TME through the production of SASP factors.


Subject(s)
Antineoplastic Agents , Cellular Senescence , Cisplatin , Mouth Neoplasms , Senescence-Associated Secretory Phenotype , Tumor Microenvironment , Animals , Mouth Neoplasms/drug therapy , Mouth Neoplasms/pathology , Cisplatin/pharmacology , Humans , Cellular Senescence/drug effects , Tumor Microenvironment/drug effects , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Mice , Cell Line, Tumor , Carcinoma, Squamous Cell/drug therapy , Carcinoma, Squamous Cell/pathology , Cytokines/metabolism , Male , Female
4.
Mol Cancer ; 23(1): 121, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38853277

ABSTRACT

BACKGROUND: Platinum resistance is the primary cause of poor survival in ovarian cancer (OC) patients. Targeted therapies and biomarkers of chemoresistance are critical for the treatment of OC patients. Our previous studies identified cell surface CD55, a member of the complement regulatory proteins, drives chemoresistance and maintenance of cancer stem cells (CSCs). CSCs are implicated in tumor recurrence and metastasis in multiple cancers. METHODS: Protein localization assays including immunofluorescence and subcellular fractionation were used to identify CD55 at the cell surface and nucleus of cancer cells. Protein half-life determinations were used to compare cell surface and nuclear CD55 stability. CD55 deletion mutants were generated and introduced into cancer cells to identify the nuclear trafficking code, cisplatin sensitivity, and stem cell frequency that were assayed using in vitro and in vivo models. Detection of CD55 binding proteins was analyzed by immunoprecipitation followed by mass spectrometry. Target pathways activated by CD55 were identified by RNA sequencing. RESULTS: CD55 localizes to the nucleus of a subset of OC specimens, ascites from chemoresistant patients, and enriched in chemoresistant OC cells. We determined that nuclear CD55 is glycosylated and derived from the cell surface pool of CD55. Nuclear localization is driven by a trafficking code containing the serine/threonine (S/T) domain of CD55. Nuclear CD55 is necessary for cisplatin resistance, stemness, and cell proliferation in OC cells. CD55 S/T domain is necessary for nuclear entry and inducing chemoresistance to cisplatin in both in vitro and in vivo models. Deletion of the CD55 S/T domain is sufficient to sensitize chemoresistant OC cells to cisplatin. In the nucleus, CD55 binds and attenuates the epigenetic regulator and tumor suppressor ZMYND8 with a parallel increase in H3K27 trimethylation and members of the Polycomb Repressive Complex 2. CONCLUSIONS: For the first time, we show CD55 localizes to the nucleus in OC and promotes CSC and chemoresistance. Our studies identify a therapeutic mechanism for treating platinum resistant ovarian cancer by blocking CD55 nuclear entry.


Subject(s)
CD55 Antigens , Cell Nucleus , Chromatin , Cisplatin , Drug Resistance, Neoplasm , Histones , Neoplastic Stem Cells , Ovarian Neoplasms , Humans , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/metabolism , Ovarian Neoplasms/pathology , Ovarian Neoplasms/genetics , Female , Cisplatin/pharmacology , Drug Resistance, Neoplasm/genetics , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Neoplastic Stem Cells/drug effects , Animals , Mice , CD55 Antigens/metabolism , CD55 Antigens/genetics , Cell Line, Tumor , Histones/metabolism , Cell Nucleus/metabolism , Chromatin/metabolism , Methylation , Xenograft Model Antitumor Assays , Antineoplastic Agents/pharmacology , Protein Transport
5.
J Inorg Biochem ; 258: 112631, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38843774

ABSTRACT

A diverse set of neutral half-sandwich iminoamido iridium and ruthenium organometallic complexes is synthesized through the utilization of Schiff base pro-ligands with N˄N donors. Notably, these metal complexes with varying leaving groups (Cl- or OAc-) are formed by employing different quantities of the deprotonating agent NaOAc, and exhibit promising cytotoxicity against various cancer cell lines such as A549 and cisplatin-resistant A549/DDP lung cancer cells, as well as HeLa cells, with IC50 values spanning from 9.26 to 15.98 µM. Cytotoxicity and anticancer selectivity (SI: 1.9-2.4) of these metal complexes remain unaffected by variations in the metal center, leaving group, and ligand substitution. Further investigations reveal that these metal complexes specifically target mitochondria, leading to the depolarization of the mitochondrial membrane and instigating the production of intracellular reactive oxygen species. Furthermore, the metal complexes are found to induce late apoptosis and disrupt the cell cycle, leading to G2/M cell cycle arrest specifically in A549 cancer cells. In light of these findings, it is evident that the primary mechanism contributing to the anticancer effectiveness of these metal complexes is the redox pathway.


Subject(s)
Antineoplastic Agents , Apoptosis , Cisplatin , Coordination Complexes , Drug Resistance, Neoplasm , Iridium , Mitochondria , Ruthenium , Humans , Iridium/chemistry , Iridium/pharmacology , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Ruthenium/chemistry , Ruthenium/pharmacology , Coordination Complexes/pharmacology , Coordination Complexes/chemistry , Coordination Complexes/chemical synthesis , Mitochondria/drug effects , Mitochondria/metabolism , Cisplatin/pharmacology , Drug Resistance, Neoplasm/drug effects , A549 Cells , HeLa Cells , Apoptosis/drug effects , Reactive Oxygen Species/metabolism , Membrane Potential, Mitochondrial/drug effects
6.
Anticancer Res ; 44(7): 2805-2813, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38925827

ABSTRACT

BACKGROUND/AIM: Randomized trials have shown the benefit of combining tyrosine kinase inhibitors (TKI) and chemotherapy in the treatment of epidermal growth factor receptor-mutant non-small-cell lung cancer (NSCLC). For anaplastic lymphoma kinase-rearranged (ALK+) NSCLC, prospective trial results of the combination are not available and have not even been thoroughly investigated in vitro. In this study, we investigated combinations of TKI and chemotherapy using in vitro models of ALK+ NSCLC. MATERIALS AND METHODS: ALK+ cell line models H3122, H2228, and DFCI032 with differing primary resistance to ALK receptor TKIs were used. We investigated short-(viability assay) and long-term (colony-formation assay) cytotoxicity, apoptosis, and cell signaling in response to the combinations of agents. We selected the most commonly used agents, alectinib, cisplatin, and pemetrexed, to investigate the combination effects. RESULTS: In the combination experiments with short-term exposure, synergism between TKI and pemetrexed was observed, while cisplatin had antagonistic effects. In the long-term experiments, the combination of cisplatin and TKI was synergistic in all lines, while no synergism was observed with pemetrexed. Among the chemotherapy and TKI sequences, cisplatin followed by TKI was more cytotoxic than the opposite in two out of the three models. In the TKI-sensitive H3122 cell line, the combination of chemotherapy and TKI combination increased apoptosis. Interestingly, pemetrexed treatment resulted in the activation of ALK, which was abolished with TKI. CONCLUSION: Combining TKI and chemotherapy in ALK+ models has some synergistic effects that overcome primary TKI resistance. However, the synergy varies depending on the chemotherapeutic agent, cytotoxic assay, and the cell line used. Prospective clinical trials are warranted to fully characterize the potential of combination chemotherapy with TKIs in ALK+ NSCLC.


Subject(s)
Anaplastic Lymphoma Kinase , Antineoplastic Combined Chemotherapy Protocols , Carcinoma, Non-Small-Cell Lung , Cisplatin , Lung Neoplasms , Pemetrexed , Protein Kinase Inhibitors , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Anaplastic Lymphoma Kinase/antagonists & inhibitors , Anaplastic Lymphoma Kinase/genetics , Anaplastic Lymphoma Kinase/metabolism , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Protein Kinase Inhibitors/pharmacology , Cell Line, Tumor , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Cisplatin/pharmacology , Cisplatin/administration & dosage , Pemetrexed/pharmacology , Pemetrexed/administration & dosage , Apoptosis/drug effects , Drug Synergism , Drug Resistance, Neoplasm/drug effects , Receptor Protein-Tyrosine Kinases/antagonists & inhibitors , Receptor Protein-Tyrosine Kinases/genetics , Receptor Protein-Tyrosine Kinases/metabolism , Piperidines/pharmacology , Piperidines/administration & dosage , Carbazoles/pharmacology , Carbazoles/administration & dosage
7.
Nutrients ; 16(12)2024 Jun 09.
Article in English | MEDLINE | ID: mdl-38931171

ABSTRACT

Taurine, a non-proteogenic amino acid and commonly used nutritional supplement, can protect various tissues from degeneration associated with the action of the DNA-damaging chemotherapeutic agent cisplatin. Whether and how taurine protects human ovarian cancer (OC) cells from DNA damage caused by cisplatin is not well understood. We found that OC ascites-derived cells contained significantly more intracellular taurine than cell culture-modeled OC. In culture, elevation of intracellular taurine concentration to OC ascites-cell-associated levels suppressed proliferation of various OC cell lines and patient-derived organoids, reduced glycolysis, and induced cell protection from cisplatin. Taurine cell protection was associated with decreased DNA damage in response to cisplatin. A combination of RNA sequencing, reverse-phase protein arrays, live-cell microscopy, flow cytometry, and biochemical validation experiments provided evidence for taurine-mediated induction of mutant or wild-type p53 binding to DNA, activation of p53 effectors involved in negative regulation of the cell cycle (p21), and glycolysis (TIGAR). Paradoxically, taurine's suppression of cell proliferation was associated with activation of pro-mitogenic signal transduction including ERK, mTOR, and increased mRNA expression of major DNA damage-sensing molecules such as DNAPK, ATM and ATR. While inhibition of ERK or p53 did not interfere with taurine's ability to protect cells from cisplatin, suppression of mTOR with Torin2, a clinically relevant inhibitor that also targets DNAPK and ATM/ATR, broke taurine's cell protection. Our studies implicate that elevation of intracellular taurine could suppress cell growth and metabolism, and activate cell protective mechanisms involving mTOR and DNA damage-sensing signal transducti.


Subject(s)
Cisplatin , DNA Damage , Ovarian Neoplasms , TOR Serine-Threonine Kinases , Taurine , Tumor Suppressor Protein p53 , Taurine/pharmacology , Humans , TOR Serine-Threonine Kinases/metabolism , Female , Ovarian Neoplasms/metabolism , DNA Damage/drug effects , Cisplatin/pharmacology , Tumor Suppressor Protein p53/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , Signal Transduction/drug effects , Glycolysis/drug effects , Extracellular Signal-Regulated MAP Kinases/metabolism , Antineoplastic Agents/pharmacology
8.
Chem Biol Drug Des ; 103(6): e14570, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38887156

ABSTRACT

Cisplatin-based chemotherapy is frequently employed as the primary therapeutic approach for advanced lung cancer. Nevertheless, a significant proportion of patients may develop resistance to cisplatin, leading to diminished efficacy of chemotherapy. Through analysis of Gene Expression Omnibus databases, TSPAN6 has been identified as a key factor in conferring resistance to cisplatin, attributed to its activation of the NF-κB signaling pathway. Knockdown of TSPAN6 using siRNA resulted in decreased expression levels of NF-κB in A549 cells. This indicates that TSPAN6 may have dual effects on lung cancer cisplatin resistance and could serve as a promising therapeutic target for individuals with cisplatin resistance.


Subject(s)
Antineoplastic Agents , Cisplatin , Computational Biology , Drug Resistance, Neoplasm , Lung Neoplasms , NF-kappa B , Tetraspanins , Humans , Cisplatin/pharmacology , Drug Resistance, Neoplasm/drug effects , Drug Resistance, Neoplasm/genetics , Tetraspanins/metabolism , Tetraspanins/genetics , Lung Neoplasms/drug therapy , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Lung Neoplasms/genetics , NF-kappa B/metabolism , Antineoplastic Agents/pharmacology , A549 Cells , Signal Transduction/drug effects , RNA, Small Interfering/metabolism , Cell Line, Tumor
9.
Int J Mol Sci ; 25(11)2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38892392

ABSTRACT

The current standard oncotherapy for glioblastoma is limited by several adverse side effects, leading to a short-term patient survival rate paralleled by a worsening quality of life (QoL). Recently, Complementary and Integrative Medicine's (CIM) innovative approaches have shown positive impacts in terms of better response to treatment, side effect reduction, and QoL improvement. In particular, promising potential in cancer therapy has been found in compounds coming from phyto- and mycotherapy. The objective of this study was to demonstrate the beneficial effects of a new phyto-mycotherapy supplement, named Ganostile, in the human glioblastoma cell line U251, in combination with chemotherapeutic agents, i.e., Cisplatin and a new platinum-based prodrug. Choosing a supplement dosage that mimicked oral supplementation in humans (about 1 g/day), through in vitro assays, microscopy, and cytometric analysis, it has emerged that the cells, after 48hr continuous exposure to Ganostile in combination with the chemical compounds, showed a higher mortality and a lower proliferation rate than the samples subjected to the different treatments administered individually. In conclusion, our data support the use of Ganostile in integrative oncology protocols as a promising adjuvant able to amplify conventional and new drug effects and also reducing resistance mechanisms often observed in brain tumors.


Subject(s)
Brain Neoplasms , Glioblastoma , Humans , Glioblastoma/drug therapy , Glioblastoma/pathology , Cell Line, Tumor , Brain Neoplasms/drug therapy , Brain Neoplasms/pathology , Cell Proliferation/drug effects , Cisplatin/pharmacology , Cisplatin/therapeutic use , Dietary Supplements , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Cell Survival/drug effects , Apoptosis/drug effects
10.
Mol Biol Rep ; 51(1): 721, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38829450

ABSTRACT

BACKGROUND: Cancer and multidrug resistance are regarded as concerns related to poor health outcomes. It was found that the monolayer of 2D cancer cell cultures lacks many important features compared to Multicellular Tumor Spheroids (MCTS) or 3D cell cultures which instead have the ability to mimic more closely the in vivo tumor microenvironment. This study aimed to produce 3D cell cultures from different cancer cell lines and to examine the cytotoxic activity of anticancer medications on both 2D and 3D systems, as well as to detect alterations in the expression of certain genes levels. METHOD: 3D cell culture was produced using 3D microtissue molds. The cytotoxic activities of colchicine, cisplatin, doxorubicin, and paclitaxel were tested on 2D and 3D cell culture systems obtained from different cell lines (A549, H1299, MCF-7, and DU-145). IC50 values were determined by MTT assay. In addition, gene expression levels of PIK3CA, AKT1, and PTEN were evaluated by qPCR. RESULTS: Similar cytotoxic activities were observed on both 3D and 2D cell cultures, however, higher concentrations of anticancer medications were needed for the 3D system. For instance, paclitaxel showed an IC50 of 6.234 µM and of 13.87 µM on 2D and 3D H1299 cell cultures, respectively. Gene expression of PIK3CA in H1299 cells also showed a higher fold change in 3D cell culture compared to 2D system upon treatment with doxorubicin. CONCLUSION: When compared to 2D cell cultures, the behavior of cells in the 3D system showed to be more resistant to anticancer treatments. Due to their shape, growth pattern, hypoxic core features, interaction between cells, biomarkers synthesis, and resistance to treatment penetration, the MCTS have the advantage of better simulating the in vivo tumor conditions. As a result, it is reasonable to conclude that 3D cell cultures may be a more promising model than the traditional 2D system, offering a better understanding of the in vivo molecular changes in response to different potential treatments and multidrug resistance development.


Subject(s)
Antineoplastic Agents , Cell Culture Techniques , Spheroids, Cellular , Humans , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Spheroids, Cellular/drug effects , Cell Culture Techniques/methods , Doxorubicin/pharmacology , Paclitaxel/pharmacology , Cisplatin/pharmacology , Tumor Microenvironment/drug effects , Neoplasms/drug therapy , Neoplasms/genetics , Neoplasms/pathology , Drug Resistance, Neoplasm/drug effects , Cell Culture Techniques, Three Dimensional/methods , MCF-7 Cells , Gene Expression Regulation, Neoplastic/drug effects , Cell Survival/drug effects
11.
J Cell Mol Med ; 28(11): e18473, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38847477

ABSTRACT

Bladder cancer is one of the most prevalent cancers worldwide, and its morbidity and mortality rates have been increasing over the years. However, how RAC family small GTPase 3 (RAC3) affects the proliferation, migration and invasion of cisplatin-resistant bladder cancer cells remains unclear. Bioinformatics techniques were used to investigate the expression of RAC3 in bladder cancer tissues. Influences of RAC3 in the grade, stage, distant metastasis, and survival rate of bladder cancer were also examined. Analysis of the relationship between RAC3 expression and the immune microenvironment (TIME), genomic mutations, and stemness index. In normal bladder cancer cells (T24, 5637, and BIU-87) and cisplatin-resistant bladder cancer cells (BIU-87-DDP), the expression of RAC3 was detected separately with Western blotting. Plasmid transfection was used to overexpress or silence the expression of RAC3 in bladder cancer cells resistant to cisplatin (BIU-87-DDP). By adding activators and inhibitors, the activities of the JNK/MAPK signalling pathway were altered. Cell viability, invasion, and its level of apoptosis were measured in vitro using CCK-8, transwell, and flow cytometry. The bioinformatics analyses found RAC3 levels were elevated in bladder cancer tissues and were associated with a poor prognosis in bladder cancer. RAC3 in BIU-87-DDP cells expressed a higher level than normal bladder cancer cells. RAC3 overexpression promoted BIU-87-DDP proliferation. The growth of BIU-87-DDP cells slowed after the knockdown of RAC3, and RAC3 may have had an impact on the activation of the JNK/MAPK pathway.


Subject(s)
Apoptosis , Cell Movement , Cell Proliferation , Cisplatin , Drug Resistance, Neoplasm , Gene Expression Regulation, Neoplastic , Neoplasm Invasiveness , Urinary Bladder Neoplasms , rac GTP-Binding Proteins , Humans , Urinary Bladder Neoplasms/pathology , Urinary Bladder Neoplasms/genetics , Urinary Bladder Neoplasms/metabolism , Urinary Bladder Neoplasms/drug therapy , Cisplatin/pharmacology , Drug Resistance, Neoplasm/genetics , Cell Line, Tumor , rac GTP-Binding Proteins/metabolism , rac GTP-Binding Proteins/genetics , Apoptosis/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Female , Male , Middle Aged , Tumor Microenvironment , MAP Kinase Signaling System/drug effects
12.
Anal Chem ; 96(23): 9737-9743, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38825763

ABSTRACT

Various signal molecules mediate complex physiological processes collectively in the Golgi. However, most currently accessible probes are questionable in illuminating the functions of these reactive species in Golgi because of the inability to irradiate these probes only at the desired Golgi location, which compromises specificity and accuracy. In this study, we rationally designed the first photocontrollable and Golgi-targeted fluorescent probe to in situ visualize the Golgi alkaline phosphatase (ALP). The designed probe with natural yellow fluorescence can provide access into Golgi and monitor the exact timing of accumulation in Golgi. On-demand photoactivation at only the desired Golgi location affords a significant emission response to ALP with illuminating red fluorescence at 710 nm. Through the photocontrollable fluorescence responsiveness to ALP, precise spatiotemporal recognition of Golgi ALP fluctuations is successfully performed. With this probe, for the first time, we revealed the Golgi ALP levels during cisplatin-induced acute kidney injury (AKI), which will further facilitate and complement the comprehensive exploration of ALP kinetics during physiological and pathological processes.


Subject(s)
Alkaline Phosphatase , Fluorescent Dyes , Golgi Apparatus , Golgi Apparatus/metabolism , Alkaline Phosphatase/metabolism , Humans , Animals , Fluorescent Dyes/chemistry , HeLa Cells , Mice , Cisplatin/pharmacology
13.
Mol Biol Rep ; 51(1): 703, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38822881

ABSTRACT

BACKGROUND: Non-small cell lung cancer (NSCLC) is the leading cause of cancer morbidity and mortality worldwide, and new diagnostic markers are urgently needed. We aimed to investigate the mechanism by which hsa_circ_0096157 regulates autophagy and cisplatin (DDP) resistance in NSCLC. METHODS: A549 cells were treated with DDP (0 µg/mL or 3 µg/mL). Then, the autophagy activator rapamycin (200 nm) was applied to the A549/DDP cells. Moreover, hsa_circ_0096157 and Nrf2 were knocked down, and Nrf2 was overexpressed in A549/DDP cells. The expression of Hsa_circ_0096157, the Nrf2/ARE pathway-related factors Nrf2, HO-1, and NQO1, and the autophagy-related factors LC3, Beclin-1, and p62 was evaluated by qRT‒PCR or western blotting. Autophagosomes were detected through TEM. An MTS assay was utilized to measure cell proliferation. The associated miRNA levels were also tested by qRT‒PCR. RESULTS: DDP (3 µg/mL) promoted hsa_circ_0096157, LC3 II/I, and Beclin-1 expression and decreased p62 expression. Knocking down hsa_circ_0096157 resulted in the downregulation of LC3 II/I and Beclin-1 expression, upregulation of p62 expression, and decreased proliferation. Rapamycin reversed the effect of interfering with hsa_circ_0096157. Keap1 expression was lower, and Nrf2, HO-1, and NQO1 expression was greater in the A549/DDP group than in the A549 group. HO-1 expression was repressed after Nrf2 interference. In addition, activation of the Nrf2/ARE pathway promoted autophagy in A549/DDP cells. Moreover, hsa_circ_0096157 activated the Nrf2/ARE pathway. The silencing of hsa_circ_0096157 reduced Nrf2 expression by releasing miR-142-5p or miR-548n. Finally, we found that hsa_circ_0096157 promoted A549/DDP cell autophagy by activating the Nrf2/ARE pathway. CONCLUSION: Knockdown of hsa_circ_0096157 inhibits autophagy and DDP resistance in NSCLC cells by downregulating the Nrf2/ARE signaling pathway.


Subject(s)
Autophagy , Carcinoma, Non-Small-Cell Lung , Cisplatin , Drug Resistance, Neoplasm , Gene Expression Regulation, Neoplastic , Lung Neoplasms , NF-E2-Related Factor 2 , Signal Transduction , Humans , Cisplatin/pharmacology , NF-E2-Related Factor 2/metabolism , NF-E2-Related Factor 2/genetics , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/metabolism , Drug Resistance, Neoplasm/genetics , Drug Resistance, Neoplasm/drug effects , Autophagy/drug effects , Autophagy/genetics , Signal Transduction/drug effects , Signal Transduction/genetics , Lung Neoplasms/genetics , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Lung Neoplasms/metabolism , A549 Cells , Gene Expression Regulation, Neoplastic/drug effects , MicroRNAs/genetics , MicroRNAs/metabolism , Cell Proliferation/drug effects , Cell Proliferation/genetics , Cell Line, Tumor , Antioxidant Response Elements/genetics , Antineoplastic Agents/pharmacology , Heme Oxygenase-1/genetics , Heme Oxygenase-1/metabolism
14.
Oncol Res ; 32(6): 1021-1030, 2024.
Article in English | MEDLINE | ID: mdl-38827321

ABSTRACT

Background: Apolipoprotein B mRNA editing catalytic polypeptide (APOBEC), an endogenous mutator, induces DNA damage and activates the ataxia telangiectasia and Rad3-related (ATR)-checkpoint kinase 1 (Chk1) pathway. Although cisplatin-based therapy is the mainstay for muscle-invasive bladder cancer (MIBC), it has a poor survival rate. Therefore, this study aimed to evaluate the efficacy of an ATR inhibitor combined with cisplatin in the treatment of APOBEC catalytic subunit 3B (APOBEC3B) expressing MIBC. Methods: Immunohistochemical staining was performed to analyze an association between APOBEC3B and ATR in patients with MIBC. The APOBEC3B expression in MIBC cell lines was assessed using real-time polymerase chain reaction and western blot analysis. Western blot analysis was performed to confirm differences in phosphorylated Chk1 (pChk1) expression according to the APOBEC3B expression. Cell viability and apoptosis analyses were performed to examine the anti-tumor activity of ATR inhibitors combined with cisplatin. Conclusion: There was a significant association between APOBEC3B and ATR expression in the tumor tissues obtained from patients with MIBC. Cells with higher APOBEC3B expression showed higher pChk1 expression than cells expressing low APOBEC3B levels. Combination treatment of ATR inhibitor and cisplatin inhibited cell growth in MIBC cells with a higher APOBEC3B expression. Compared to cisplatin single treatment, combination treatment induced more apoptotic cell death in the cells with higher APOBEC3B expression. Conclusion: Our study shows that APOBEC3B's higher expression status can enhance the sensitivity of MIBC to cisplatin upon ATR inhibition. This result provides new insight into appropriate patient selection for the effective application of ATR inhibitors in MIBC.


Subject(s)
Ataxia Telangiectasia Mutated Proteins , Cisplatin , Cytidine Deaminase , Minor Histocompatibility Antigens , Urinary Bladder Neoplasms , Humans , Urinary Bladder Neoplasms/drug therapy , Urinary Bladder Neoplasms/pathology , Urinary Bladder Neoplasms/genetics , Urinary Bladder Neoplasms/metabolism , Ataxia Telangiectasia Mutated Proteins/metabolism , Ataxia Telangiectasia Mutated Proteins/antagonists & inhibitors , Cisplatin/pharmacology , Cisplatin/therapeutic use , Cytidine Deaminase/genetics , Cytidine Deaminase/metabolism , Cell Line, Tumor , Male , Minor Histocompatibility Antigens/metabolism , Minor Histocompatibility Antigens/genetics , Middle Aged , Female , Checkpoint Kinase 1/metabolism , Checkpoint Kinase 1/antagonists & inhibitors , Checkpoint Kinase 1/genetics , Apoptosis , Aged , Neoplasm Invasiveness , Cell Proliferation , Cell Survival/drug effects
15.
J Ovarian Res ; 17(1): 124, 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38851728

ABSTRACT

Ovarian cancer (OV) is a highly fatal malignant disease that commonly manifests at an advanced stage. Drug resistance, particularly platinum resistance, is a leading cause of treatment failure because first-line systemic chemotherapy primarily relies on platinum-based regimens. By analyzing the gene expression levels in the Cancer Genome Atlas database, Genotype-Tissue Expression database, and Gene Expression Omnibus datasets, we discerned that HOXB2 was highly expressed in OV and was associated with poor prognosis and cisplatin resistance. Immunohistochemistry and loss-of-function experiments on HOXB2 were conducted to explore its role in OV. We observed that suppressing HOXB2 could impair the growth and cisplatin resistance of OV in vivo and in vitro. Mechanical investigation and experimental validation based on RNA-Seq revealed that HOXB2 regulated ATP-binding cassette transporter members and the ERK signaling pathway. We further demonstrated that HOXB2 modulated the expression of long non-coding RNA DANCR, a differentiation antagonizing non-protein coding RNA, and thus influenced its downstream effectors ABCA1, ABCG1, and ERK signaling to boost drug resistance and cancer proliferation. These results verified that high expression of HOXB2 correlated with platinum resistance and poor prognosis of OV. Therefore, targeting HOXB2 may be a promising strategy for OV therapy.


Subject(s)
Cisplatin , Drug Resistance, Neoplasm , Homeodomain Proteins , Ovarian Neoplasms , RNA, Long Noncoding , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Humans , Female , Ovarian Neoplasms/genetics , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/pathology , Ovarian Neoplasms/metabolism , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Drug Resistance, Neoplasm/genetics , Cisplatin/pharmacology , Cisplatin/therapeutic use , Cell Line, Tumor , Transcription Factors/genetics , Transcription Factors/metabolism , Gene Expression Regulation, Neoplastic , Animals , Up-Regulation , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Cell Proliferation , Prognosis , Mice
16.
Int J Nanomedicine ; 19: 5227-5243, 2024.
Article in English | MEDLINE | ID: mdl-38855734

ABSTRACT

Purpose: This study aimed to construct targeting drug-loading nanocomposites (FA-FePt/DDP nanoliposomes) to explore their potential in ovarian cancer therapy and molecular magnetic resonance imaging (MMRI). Methods: FA-FePt-NPs were prepared by coupling folate (FA) with polyethylene-glycol (PEG)-coated ferroplatinum nanoparticles and characterized. Then cisplatin (DDP) was encapsulated in FA-FePt-NPs to synthesize FA-PEG-FePt/DDP nanoliposomes by thin film-ultrasonic method and high-speed stirring, of which MMRI potential, magnetothermal effect, and the other involved performance were analyzed. The therapeutic effect of FA-FePt/DDP nanoliposomes combined with magnetic fluid hyperthermia (MFH) on ovarian cancer in vitro and in vivo was evaluated. The expression levels of Bax and epithelial-mesenchymal transition related proteins were detected. The biosafety was also preliminarily observed. Results: The average diameter of FA-FePt-NPs was about 30 nm, FA-FePt/DDP nanoliposomes were about 70 nm in hydrated particle size, with drug slow-release and good cell-specific targeted uptake. In an alternating magnetic field (AMF), FA-FePt/DDP nanoliposomes could rapidly reach the ideal tumor hyperthermia temperature (42~44 °C). MRI scan showed that FA-FePt-NPs and FA-FePt/DDP nanoliposomes both could suppress the T2 signal, indicating a good potential for MMRI. The in vitro and in vivo experiments showed that FA-FePt/DDP-NPs in AMF could effectively inhibit the growth of ovarian cancer by inhibiting cancer cell proliferation, invasion, and migration, and inducing cancer cell apoptosis, much better than that of the other individual therapies; molecularly, E-cadherin and Bax proteins in ovarian cancer cells and tissues were significantly increased, while N-cadherin, Vimentin, and Bcl-2 proteins were inhibited, effectively inhibiting the malignant progression of ovarian cancer. In addition, no significant pathological injury and dysfunction was observed in major visceras. Conclusion: We successfully synthesized FA-FePt/DDP nanoliposomes and confirmed their good thermochemotherapeutic effect in AMF and MMRI potential on ovarian cancer, with no obvious side effects, providing a favorable strategy of integrated targeting therapy and diagnosis for ovarian cancer.


Subject(s)
Antineoplastic Agents , Cisplatin , Folic Acid , Liposomes , Magnetic Resonance Imaging , Ovarian Neoplasms , Polyethylene Glycols , Female , Ovarian Neoplasms/diagnostic imaging , Ovarian Neoplasms/therapy , Liposomes/chemistry , Cisplatin/pharmacology , Cisplatin/chemistry , Cisplatin/administration & dosage , Cisplatin/pharmacokinetics , Animals , Folic Acid/chemistry , Folic Acid/pharmacology , Folic Acid/pharmacokinetics , Humans , Magnetic Resonance Imaging/methods , Polyethylene Glycols/chemistry , Cell Line, Tumor , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/pharmacokinetics , Mice , Platinum/chemistry , Platinum/pharmacology , Hyperthermia, Induced/methods , Nanocomposites/chemistry , Mice, Nude , Mice, Inbred BALB C , Metal Nanoparticles/chemistry , Magnetic Fields , Particle Size
17.
Molecules ; 29(11)2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38893499

ABSTRACT

Trichostatin A (TSA), a histone deacetylase (HDAC) inhibitor, promotes the cytotoxicity of the genotoxic anticancer drug cisplatin, yet the underlying mechanism remains poorly understood. Herein, we revealed that TSA at a low concentration (1 µM) promoted the cisplatin-induced activation of caspase-3/6, which, in turn, increased the level of cleaved PARP1 and degraded lamin A&C, leading to more cisplatin-induced apoptosis and G2/M phase arrest of A549 cancer cells. Both ICP-MS and ToF-SIMS measurements demonstrated a significant increase in DNA-bound platinum in A549 cells in the presence of TSA, which was attributable to TSA-induced increase in the accessibility of genomic DNA to cisplatin attacking. The global quantitative proteomics results further showed that in the presence of TSA, cisplatin activated INF signaling to upregulate STAT1 and SAMHD1 to increase cisplatin sensitivity and downregulated ICAM1 and CD44 to reduce cell migration, synergistically promoting cisplatin cytotoxicity. Furthermore, in the presence of TSA, cisplatin downregulated TFAM and SLC3A2 to enhance cisplatin-induced ferroptosis, also contributing to the promotion of cisplatin cytotoxicity. Importantly, our posttranslational modification data indicated that acetylation at H4K8 played a dominant role in promoting cisplatin cytotoxicity. These findings provide novel insights into better understanding the principle of combining chemotherapy of genotoxic drugs and HDAC inhibitors for the treatment of cancers.


Subject(s)
Antineoplastic Agents , Apoptosis , Cisplatin , Hydroxamic Acids , Cisplatin/pharmacology , Humans , Apoptosis/drug effects , Hydroxamic Acids/pharmacology , Antineoplastic Agents/pharmacology , A549 Cells , Histone Deacetylase Inhibitors/pharmacology , Cell Line, Tumor , Acetylation/drug effects , Drug Synergism
18.
Cancer Biol Ther ; 25(1): 2365449, 2024 Dec 31.
Article in English | MEDLINE | ID: mdl-38865161

ABSTRACT

We aimed to evaluate the influence of sirtuin1 (sirt1) on the ESCC chemotherapeutic sensitivity to cisplatin. We used ESCC cell ablation sirt1 for establishing a xenograft mouse tumor model. The tumor volume was then detected. sirt1 was over-expressed significantly in ESCC patients and cells. Moreover, sirt1 knockdown raised ESCC sensitivity to cisplatin. Besides, glycolysis was associated with ESCC cell chemotherapy resistance to cisplatin. Furthermore, sirt1 increased ESCC cells' cisplatin chemosensitivity through HK2. Sirt1 enhanced in vivo ESCC chemosensitivity to cisplatin. Overall, these findings suggested that sirt1 knockdown regulated the glycolysis pathway and raised the ESCC chemotherapeutic sensitivity.


Subject(s)
Cisplatin , Drug Resistance, Neoplasm , Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Glycolysis , Sirtuin 1 , Sirtuin 1/metabolism , Sirtuin 1/genetics , Cisplatin/pharmacology , Cisplatin/therapeutic use , Humans , Glycolysis/drug effects , Animals , Esophageal Squamous Cell Carcinoma/drug therapy , Esophageal Squamous Cell Carcinoma/pathology , Esophageal Squamous Cell Carcinoma/metabolism , Esophageal Squamous Cell Carcinoma/genetics , Mice , Esophageal Neoplasms/drug therapy , Esophageal Neoplasms/metabolism , Esophageal Neoplasms/pathology , Esophageal Neoplasms/genetics , Cell Line, Tumor , Drug Resistance, Neoplasm/genetics , Xenograft Model Antitumor Assays , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Female , Male , Mice, Nude
19.
Nat Commun ; 15(1): 5300, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38906860

ABSTRACT

Chemoresistance is a main reason for treatment failure in patients with nasopharyngeal carcinoma, but the exact regulatory mechanism underlying chemoresistance in nasopharyngeal carcinoma remains to be elucidated. Here, we identify PJA1 as a key E3 ubiquitin ligase involved in nasopharyngeal carcinoma chemoresistance that is highly expressed in nasopharyngeal carcinoma patients with nonresponse to docetaxel-cisplatin-5-fluorouracil induction chemotherapy. We find that PJA1 facilitates docetaxel resistance by inhibiting GSDME-mediated pyroptosis in nasopharyngeal carcinoma cells. Mechanistically, PJA1 promotes the degradation of the mitochondrial protein PGAM5 by increasing its K48-linked ubiquitination at K88, which further facilitates DRP1 phosphorylation at S637 and reduced mitochondrial reactive oxygen species production, resulting in suppression of GSDME-mediated pyroptosis and the antitumour immune response. PGAM5 knockdown fully restores the docetaxel sensitization effect of PJA1 knockdown. Moreover, pharmacological targeting of PJA1 with the small molecule inhibitor RTA402 enhances the docetaxel sensitivity of nasopharyngeal carcinoma in vitro and in vivo. Clinically, high PJA1 expression indicates inferior survival and poor clinical efficacy of TPF IC in nasopharyngeal carcinoma patients. Our study emphasizes the essential role of E3 ligases in regulating chemoresistance and provides therapeutic strategies for nasopharyngeal carcinoma based on targeting the ubiquitin-proteasome system.


Subject(s)
Docetaxel , Drug Resistance, Neoplasm , Nasopharyngeal Carcinoma , Nasopharyngeal Neoplasms , Pyroptosis , Ubiquitin-Protein Ligases , Ubiquitination , Humans , Docetaxel/pharmacology , Docetaxel/therapeutic use , Drug Resistance, Neoplasm/genetics , Drug Resistance, Neoplasm/drug effects , Nasopharyngeal Carcinoma/drug therapy , Nasopharyngeal Carcinoma/genetics , Nasopharyngeal Carcinoma/metabolism , Nasopharyngeal Carcinoma/pathology , Cell Line, Tumor , Nasopharyngeal Neoplasms/drug therapy , Nasopharyngeal Neoplasms/genetics , Nasopharyngeal Neoplasms/metabolism , Nasopharyngeal Neoplasms/pathology , Pyroptosis/drug effects , Pyroptosis/genetics , Ubiquitination/drug effects , Animals , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Mice , Mice, Nude , Female , Dynamins/metabolism , Dynamins/genetics , Reactive Oxygen Species/metabolism , Phosphoprotein Phosphatases/metabolism , Phosphoprotein Phosphatases/genetics , Male , Xenograft Model Antitumor Assays , Mice, Inbred BALB C , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Phosphorylation/drug effects , Mitochondrial Proteins/metabolism , Mitochondrial Proteins/genetics , Fluorouracil/pharmacology , Fluorouracil/therapeutic use , Gene Expression Regulation, Neoplastic/drug effects , Mitochondria/metabolism , Mitochondria/drug effects , Cisplatin/pharmacology , Cisplatin/therapeutic use , Middle Aged , Gasdermins
20.
Cell Death Dis ; 15(6): 411, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38866777

ABSTRACT

Intrahepatic cholangiocarcinoma (ICC) is a highly aggressive cancer characterized by a poor prognosis and resistance to chemotherapy. In this study, utilizing scRNA-seq, we discovered that the tetra-transmembrane protein mal, T cell differentiation protein 2 (MAL2), exhibited specific enrichment in ICC cancer cells and was strongly associated with a poor prognosis. The inhibition of MAL2 effectively suppressed cell proliferation, invasion, and migration. Transcriptomics and metabolomics analyses suggested that MAL2 promoted lipid accumulation in ICC by stabilizing EGFR membrane localization and activated the PI3K/AKT/SREBP-1 axis. Molecular docking and Co-IP proved that MAL2 interacted directly with EGFR. Based on constructed ICC organoids, the downregulation of MAL2 enhanced apoptosis and sensitized ICC cells to cisplatin. Lastly, we conducted a virtual screen to identify sarizotan, a small molecule inhibitor of MAL2, and successfully validated its ability to inhibit MAL2 function. Our findings highlight the tumorigenic role of MAL2 and its involvement in cisplatin sensitivity, suggesting the potential for novel combination therapeutic strategies in ICC.


Subject(s)
Bile Duct Neoplasms , Cholangiocarcinoma , ErbB Receptors , Lipid Metabolism , Cholangiocarcinoma/metabolism , Cholangiocarcinoma/genetics , Cholangiocarcinoma/pathology , Cholangiocarcinoma/drug therapy , Humans , ErbB Receptors/metabolism , ErbB Receptors/genetics , Lipid Metabolism/drug effects , Bile Duct Neoplasms/metabolism , Bile Duct Neoplasms/genetics , Bile Duct Neoplasms/pathology , Cell Line, Tumor , Animals , Cisplatin/pharmacology , Cisplatin/therapeutic use , Signal Transduction , Cell Proliferation , Single-Cell Analysis , Myelin and Lymphocyte-Associated Proteolipid Proteins/metabolism , Myelin and Lymphocyte-Associated Proteolipid Proteins/genetics , Mice , Gene Expression Regulation, Neoplastic , Sequence Analysis, RNA , Apoptosis/drug effects , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...