Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 128
Filter
1.
Theor Appl Genet ; 137(6): 126, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38727833

ABSTRACT

KEY MESSAGE: The gene controlling pink flesh in watermelon was finely mapped to a 55.26-kb region on chromosome 6. The prime candidate gene, Cla97C06G122120 (ClPPR5), was identified through forward genetics. Carotenoids offer numerous health benefits; while, they cannot be synthesized by the human body. Watermelon stands out as one of the richest sources of carotenoids. In this study, genetic generations derived from parental lines W15-059 (red flesh) and JQ13-3 (pink flesh) revealed the presence of the recessive gene Clpf responsible for the pink flesh (pf) trait in watermelon. Comparative analysis of pigment components and microstructure indicated that the disparity in flesh color between the parental lines primarily stemmed from variations in lycopene content, as well as differences in chromoplast number and size. Subsequent bulk segregant analysis (BSA-seq) and genetic mapping successfully narrowed down the Clpf locus to a 55.26-kb region on chromosome 6, harboring two candidate genes. Through sequence comparison and gene expression analysis, Cla97C06G122120 (annotated as a pentatricopeptide repeat, PPR) was predicted as the prime candidate gene related to pink flesh trait. To further investigate the role of the PPR gene, its homologous gene in tomato was silenced using a virus-induced system. The resulting silenced fruit lines displayed diminished carotenoid accumulation compared with the wild-type, indicating the potential regulatory function of the PPR gene in pigment accumulation. This study significantly contributes to our understanding of the forward genetics underlying watermelon flesh traits, particularly in relation to carotenoid accumulation. The findings lay essential groundwork for elucidating mechanisms governing pigment synthesis and deposition in watermelon flesh, thereby providing valuable insights for future breeding strategies aimed at enhancing fruit quality and nutritional value.


Subject(s)
Chromosome Mapping , Citrullus , Fruit , Phenotype , Pigmentation , Plant Proteins , Citrullus/genetics , Citrullus/metabolism , Pigmentation/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Fruit/genetics , Genes, Plant , Carotenoids/metabolism , Genes, Recessive , Gene Expression Regulation, Plant , Chromosomes, Plant/genetics , Lycopene/metabolism
2.
Plant Physiol Biochem ; 211: 108708, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38733938

ABSTRACT

S-Adenosyl-L-methionine (SAM) is widely involved in plant growth, development, and abiotic stress response. SAM synthetase (SAMS) is the key enzyme that catalyzes the synthesis of SAM from methionine and ATP. However, the SAMS gene family has not been identified and their functions have not been characterized in most Cucurbitaceae plants. Here, a total of 30 SAMS genes were identified in nine Cucurbitaceae species and they were categorized into 3 subfamilies. Physicochemical properties and gene structure analysis showed that the SAMS protein members are tightly conserved. Further analysis of the cis-regulatory elements (CREs) of SAMS genes' promoter implied their potential roles in stress tolerance. To further understand the molecular functions of SAMS genes, watermelon SAMSs (ClSAMSs) were chosen to analyze the expression patterns in different tissues and under various abiotic stress and hormone responses. Among the investigated genes, ClSAMS1 expression was observed in all tissues and found to be up-regulated by abiotic stresses including salt, cold and drought treatments as well as exogenous hormone treatments including ETH, SA, MeJA and ABA. Furthermore, knockdown of ClSAMS1 via virus-induced gene silencing (VIGS) decreased SAM contents in watermelon seedings. The pTRSV2-ClSAMS1 plants showed reduced susceptibility to drought, cold and NaCl stress, indicating a positive role of ClSAMS1 in abiotic stresses tolerance. Those results provided candidate SAMS genes to regulate plant resistance against abiotic stresses in Cucurbitaceae plants.


Subject(s)
Citrullus , Cucurbitaceae , Gene Expression Regulation, Plant , Plant Proteins , Stress, Physiological , Plant Proteins/genetics , Plant Proteins/metabolism , Stress, Physiological/genetics , Citrullus/genetics , Citrullus/metabolism , Citrullus/enzymology , Cucurbitaceae/genetics , Cucurbitaceae/metabolism , Multigene Family , Methionine Adenosyltransferase/genetics , Methionine Adenosyltransferase/metabolism , Phylogeny , Genes, Plant , Genome, Plant/genetics , Plants, Genetically Modified/genetics , Promoter Regions, Genetic/genetics
3.
BMC Plant Biol ; 24(1): 290, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38627629

ABSTRACT

BACKGROUND: Flesh firmness is a critical factor that influences fruit storability, shelf-life and consumer's preference as well. However, less is known about the key genetic factors that are associated with flesh firmness in fresh fruits like watermelon. RESULTS: In this study, through bulk segregant analysis (BSA-seq), we identified a quantitative trait locus (QTL) that influenced variations in flesh firmness among recombinant inbred lines (RIL) developed from cross between the Citrullus mucosospermus accession ZJU152 with hard-flesh and Citrullus lanatus accession ZJU163 with soft-flesh. Fine mapping and sequence variations analyses revealed that ethylene-responsive factor 1 (ClERF1) was the most likely candidate gene for watermelon flesh firmness. Furthermore, several variations existed in the promoter region between ClERF1 of two parents, and significantly higher expressions of ClERF1 were found in hard-flesh ZJU152 compared with soft-flesh ZJU163 at key developmental stages. DUAL-LUC and GUS assays suggested much stronger promoter activity in ZJU152 over ZJU163. In addition, the kompetitive allele-specific PCR (KASP) genotyping datasets of RIL populations and germplasm accessions further supported ClERF1 as a possible candidate gene for fruit flesh firmness variability and the hard-flesh genotype might only exist in wild species C. mucosospermus. Through yeast one-hybrid (Y1H) and dual luciferase assay, we found that ClERF1 could directly bind to the promoters of auxin-responsive protein (ClAux/IAA) and exostosin family protein (ClEXT) and positively regulated their expressions influencing fruit ripening and cell wall biosynthesis. CONCLUSIONS: Our results indicate that ClERF1 encoding an ethylene-responsive factor 1 is associated with flesh firmness in watermelon and provide mechanistic insight into the regulation of flesh firmness, and the ClERF1 gene is potentially applicable to the molecular improvement of fruit-flesh firmness by design breeding.


Subject(s)
Citrullus , Citrullus/genetics , Citrullus/metabolism , Plant Breeding , Quantitative Trait Loci/genetics , Fruit/genetics , Ethylenes/metabolism , Promoter Regions, Genetic/genetics
4.
Plant Physiol Biochem ; 211: 108639, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38688113

ABSTRACT

Melatonin (MT) is an extensively studied biomolecule with dual functions, serving as an antioxidant and a signaling molecule. Trichoderma Harzianum (TH) is widely recognized for its effectiveness as a biocontrol agent against many plant pathogens. However, the interplay between seed priming and MT (150 µm) in response to NaCl (100 mM) and its interaction with TH have rarely been investigated. This study aimed to evaluate the potential of MT and TH, alone and in combination, to mitigate salt stress (SS) in watermelon plants. The findings of this study revealed a significant decline in the morphological, physiological, and biochemical indices of watermelon seedlings exposed to SS. However, MT and TH treatments reduced the negative impact of salt stress. The combined application of MT and TH exerted a remarkable positive effect by increasing the growth, photosynthetic and gas exchange parameters, chlorophyll fluorescence indices, and ion balance (decreasing Na+ and enhancing K+). MT and TH effectively alleviated oxidative injury by inhibiting hydrogen peroxide formation in saline and non-saline environments, as established by reduced lipid peroxidation and electrolyte leakage. Moreover, oxidative injury induced by SS on the cells was significantly mitigated by regulation of the antioxidant system, AsA-GSH-related enzymes, the glyoxalase system, augmentation of osmolytes, and activation of several genes involved in the defense system. Additionally, the reduction in oxidative damage was examined by chloroplast integrity via transmission electron microscopy (TEM). Overall, the results of this study provide a promising contribution of MT and TH in safeguarding the watermelon crop from oxidative damage induced by salt stress.


Subject(s)
Antioxidants , Citrullus , Gene Expression Regulation, Plant , Melatonin , Plant Leaves , Citrullus/microbiology , Citrullus/drug effects , Citrullus/metabolism , Melatonin/pharmacology , Antioxidants/metabolism , Plant Leaves/drug effects , Plant Leaves/metabolism , Gene Expression Regulation, Plant/drug effects , Salt Stress , Hypocreales , Photosynthesis/drug effects , Oxidative Stress/drug effects
5.
Plant Cell ; 36(6): 2272-2288, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38421027

ABSTRACT

A number of cis-regulatory elements (CREs) conserved during evolution have been found to be responsible for phenotypic novelty and variation. Cucurbit crops such as cucumber (Cucumis sativus), watermelon (Citrullus lanatus), melon (Cucumis melo), and squash (Cucurbita maxima) develop fruits from an inferior ovary and share some similar biological processes during fruit development. Whether conserved regulatory sequences play critical roles in fruit development of cucurbit crops remains to be explored. In six well-studied cucurbit species, we identified 392,438 conserved noncoding sequences (CNSs), including 82,756 that are specific to cucurbits, by comparative genomics. Genome-wide profiling of accessible chromatin regions (ACRs) and gene expression patterns mapped 20,865 to 43,204 ACRs and their potential target genes for two fruit tissues at two key developmental stages in six cucurbits. Integrated analysis of CNSs and ACRs revealed 4,431 syntenic orthologous CNSs, including 1,687 cucurbit-specific CNSs that overlap with ACRs that are present in all six cucurbit crops and that may regulate the expression of 757 adjacent orthologous genes. CRISPR mutations targeting two CNSs present in the 1,687 cucurbit-specific sequences resulted in substantially altered fruit shape and gene expression patterns of adjacent NAC1 (NAM, ATAF1/2, and CUC2) and EXT-like (EXTENSIN-like) genes, validating the regulatory roles of these CNSs in fruit development. These results not only provide a number of target CREs for cucurbit crop improvement, but also provide insight into the roles of CREs in plant biology and during evolution.


Subject(s)
Conserved Sequence , Fruit , Gene Expression Regulation, Plant , Fruit/genetics , Fruit/growth & development , Regulatory Sequences, Nucleic Acid/genetics , Crops, Agricultural/genetics , Crops, Agricultural/growth & development , Cucurbita/genetics , Cucurbita/growth & development , Citrullus/genetics , Citrullus/growth & development , Citrullus/metabolism , Cucumis sativus/genetics , Cucumis sativus/growth & development , Plant Proteins/genetics , Plant Proteins/metabolism , Genome, Plant/genetics
6.
J Agric Food Chem ; 71(42): 15445-15455, 2023 Oct 25.
Article in English | MEDLINE | ID: mdl-37815876

ABSTRACT

Flesh color is a significant characteristic of watermelon. Although various flesh-color genes have been identified, the inheritance and molecular basis of the orange flesh trait remain relatively unexplored. In the present study, the genetic analysis of six generations derived from W1-1 (red flesh) and W1-61 (orange flesh) revealed that the orange flesh color trait was regulated by a single recessive gene, Clorf (orange flesh). Bulk segregant analysis (BSA) locked the range to ∼4.66 Mb, and initial mapping situated the Clorf locus within a 688.35-kb region of watermelon chromosome 10. Another 1,026 F2 plants narrowed the Clorf locus to a 304.62-kb region containing 32 candidate genes. Subsequently, genome sequence variations in this 304.62-kb region were extracted for in silico BSA strategy among 11 resequenced lines (one orange flesh and ten nonorange flesh) and finally narrowed the Clorf locus into an 82.51-kb region containing nine candidate genes. Sequence variation analysis of coding regions and gene expression levels supports Cla97C10G200950 as the most possible candidate for Clorf, which encodes carotenoid isomerase (Crtiso). This study provides a genetic resource for investigating the orange flesh color of watermelon, with Clorf malfunction resulting in low lycopene accumulation and, thus, orange flesh.


Subject(s)
Citrullus , Citrullus/genetics , Citrullus/metabolism , Carotenoids/metabolism , Phenotype , Lycopene/metabolism , Isomerases/genetics , Isomerases/metabolism
7.
Int J Mol Sci ; 24(20)2023 Oct 18.
Article in English | MEDLINE | ID: mdl-37895011

ABSTRACT

Fruit ripening is a highly complicated process that is accompanied by the formation of fruit quality. In recent years, a series of studies have demonstrated post-transcriptional control play important roles in fruit ripening and fruit quality formation. Till now, the post-transcriptional mechanisms for watermelon fruit ripening have not been comprehensively studied. In this study, we conducted PacBio single-molecule long-read sequencing to identify genome-wide alternative splicing (AS), alternative polyadenylation (APA) and long non-coding RNAs (lncRNAs) in watermelon fruit. In total, 6,921,295 error-corrected and mapped full-length non-chimeric (FLNC) reads were obtained. Notably, more than 42,285 distinct splicing isoforms were derived from 5,891,183 intron-containing full-length FLNC reads, including a large number of AS events associated with fruit ripening. In addition, we characterized 21,506 polyadenylation sites from 11,611 genes, 8703 of which have APA sites. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that fructose and mannose metabolism, starch and sucrose metabolism and carotenoid biosynthesis were both enriched in genes undergoing AS and APA. These results suggest that post-transcriptional regulation might potentially have a key role in regulation of fruit ripening in watermelon. Taken together, our comprehensive PacBio long-read sequencing results offer a valuable resource for watermelon research, and provide new insights into the molecular mechanisms underlying the complex regulatory networks of watermelon fruit ripening.


Subject(s)
Alternative Splicing , Citrullus , Citrullus/genetics , Citrullus/metabolism , Polyadenylation , Fruit/genetics , Fruit/metabolism , RNA Splicing , Gene Expression Regulation, Plant
8.
J Exp Bot ; 74(17): 5218-5235, 2023 09 13.
Article in English | MEDLINE | ID: mdl-37235634

ABSTRACT

Understanding the mechanisms underlying plant resistance to virus infections is crucial for viral disease management in agriculture. However, the defense mechanism of watermelon (Citrullus lanatus) against cucumber green mottle mosaic virus (CGMMV) infection remains largely unknown. In this study, we performed transcriptomic, metabolomic, and phytohormone analyses of a CGMMV susceptible watermelon cultivar 'Zhengkang No.2' ('ZK') and a CGMMV resistant wild watermelon accession PI 220778 (PI) to identify the key regulatory genes, metabolites, and phytohormones responsible for CGMMV resistance. We then tested several phytohormones and metabolites for their roles in watermelon CGMMV resistance via foliar application, followed by CGMMV inoculation. Several phenylpropanoid metabolism-associated genes and metabolites, especially those involved in the flavonoid biosynthesis pathway, were found to be significantly enriched in the CGMMV-infected PI plants compared with the CGMMV-infected 'ZK' plants. We also identified a gene encoding UDP-glycosyltransferase (UGT) that is involved in kaempferol-3-O-sophoroside biosynthesis and controls disease resistance, as well as plant height. Additionally, salicylic acid (SA) biogenesis increased in the CGMMV-infected 'ZK' plants, resulting in the activation of a downstream signaling cascade. SA levels in the tested watermelon plants correlated with that of total flavonoids, and SA pre-treatment up-regulated the expression of flavonoid biosynthesis genes, thus increasing the total flavonoid content. Furthermore, application of exogenous SA or flavonoids extracted from watermelon leaves suppressed CGMMV infection. In summary, our study demonstrates the role of SA-induced flavonoid biosynthesis in plant development and CGMMV resistance, which could be used to breed for CGMMV resistance in watermelon.


Subject(s)
Citrullus , Tobamovirus , Transcriptome , Citrullus/genetics , Citrullus/metabolism , Plant Growth Regulators/metabolism , Plant Breeding , Tobamovirus/genetics , Plant Diseases/genetics
9.
J Integr Plant Biol ; 65(10): 2336-2348, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37219233

ABSTRACT

Watermelon (Citrullus lanatus) as non-climacteric fruit is domesticated from the ancestors with inedible fruits. We previously revealed that the abscisic acid (ABA) signaling pathway gene ClSnRK2.3 might influence watermelon fruit ripening. However, the molecular mechanisms are unclear. Here, we found that the selective variation of ClSnRK2.3 resulted in lower promoter activity and gene expression level in cultivated watermelons than ancestors, which indicated ClSnRK2.3 might be a negative regulator in fruit ripening. Overexpression (OE) of ClSnRK2.3 significantly delayed watermelon fruit ripening and suppressed the accumulation of sucrose, ABA and gibberellin GA4 . Furthermore, we determined that the pyrophosphate-dependent phosphofructokinase (ClPFP1) in sugar metabolism pathway and GA biosynthesis enzyme GA20 oxidase (ClGA20ox) could be phosphorylated by ClSnRK2.3 and thereby resulting in accelerated protein degradation in OE lines and finally led to low levels of sucrose and GA4 . Besides that, ClSnRK2.3 phosphorylated homeodomain-leucine zipper protein (ClHAT1) and protected it from degradation to suppress the expression of the ABA biosynthesis gene 9'-cis-epoxycarotenoid dioxygenase 3 (ClNCED3). These results indicated that ClSnRK2.3 negatively regulated watermelon fruit ripening by manipulating the biosynthesis of sucrose, ABA and GA4 . Altogether, these findings revealed a novel regulatory mechanism in non-climacteric fruit development and ripening.


Subject(s)
Citrullus , Fruit , Fruit/metabolism , Sugars/metabolism , Citrullus/genetics , Citrullus/metabolism , Gene Expression Regulation, Plant , Plant Proteins/genetics , Plant Proteins/metabolism , Sucrose/metabolism , Abscisic Acid/metabolism
10.
Plant Signal Behav ; 18(1): 2186640, 2023 12 31.
Article in English | MEDLINE | ID: mdl-37083111

ABSTRACT

Zinc (Zn) is an important element in plants, but over-accumulation of Zn is harmful. The phytohormone brassinosteroids (BRs) play a key role in regulating plant growth, development, and response to stress. However, the role of BRs in watermelon (Citrullus lanatus L.) under Zn stress, one of the most important horticultural crops, remains largely unknown. In this study, we revealed that 24-epibrassinolide (EBR), a bioactive BR enhanced Zn tolerance in watermelon plants, which was related to the EBR-induced increase in the fresh weight, chlorophyll content, and net photosynthetic rate (Pn) and decrease in the content of hydrogen peroxide (H2O2), malondialdehyde (MDA), and Zn in watermelon leaves. Through RNA deep sequencing (RNA-seq), 350 different expressed genes (DEG) were found to be involved in the response to Zn stress after EBR treatment, including 175 up-regulated DEGs and 175 down-regulated DEGs. The up-regulated DEGs were significantly enriched in 'phenylpropanoid biosynthesis' pathway (map00940) using KEGG enrichment analysis. The gene expression levels of PAL, 4CL, CCR, and CCoAOMT, key genes involved in phenylpropanoid pathway, were significantly induced after EBR treatment. In addition, compared with Zn stress alone, EBR treatment significantly promoted the activities of PAL, 4CL, and POD by 30.90%, 20.69%, and 47.28%, respectively, and increased the content of total phenolic compounds, total flavonoids, and lignin by 23.02%, 40.37%, and 29.26%, respectively. The present research indicates that EBR plays an active role in strengthening Zn tolerance, thus providing new insights into the mechanism of BRs enhancing heavy metal tolerance.


Subject(s)
Citrullus , Steroids, Heterocyclic , Brassinosteroids/pharmacology , Zinc , Citrullus/genetics , Citrullus/metabolism , Hydrogen Peroxide/metabolism , Plant Growth Regulators/metabolism , Steroids, Heterocyclic/pharmacology
11.
Microbiol Res ; 272: 127389, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37099956

ABSTRACT

The Tup1-Cyc8 complex is a highly conserved transcriptional corepressor that regulates intricate genetic network associated with various biological processes in fungi. Here, we report the role and mechanism of FonTup1 in regulating physiological processes and pathogenicity in watermelon Fusarium wilt fungus, Fusarium oxysporum f. sp. niveum (Fon). FonTup1 deletion impairs mycelial growth, asexual reproduction, and macroconidia morphology, but not macroconidial germination in Fon. The ΔFontup1 mutant exhibits altered tolerance to cell wall perturbing agent (congo red) and osmotic stressors (sorbitol or NaCl), but unchanged sensitivity to paraquat. The deletion of FonTup1 significantly decreases the pathogenicity of Fon toward watermelon plants through attenuating the ability to colonize and grow within the host. Transcriptome analysis revealed that FonTup1 regulates primary metabolic pathways, including the tricarboxylic acid (TCA) cycle, via altering the expression of corresponding genes. Downregulation of three malate dehydrogenase genes, FonMDH1-3, occurs in ΔFontup1, and disruption of FonMDH2 causes significant abnormalities in mycelial growth, conidiation, and virulence of Fon. These findings demonstrate that FonTup1, as a global transcriptional corepressor, plays crucial roles in different biological processes and pathogenicity of Fon through regulating various primary metabolic processes, including the TCA cycle. This study highlights the importance and molecular mechanism of the Tup1-Cyc8 complex in multiple basic biological processes and pathogenicity of phytopathogenic fungi.


Subject(s)
Biological Phenomena , Citrullus , Fusarium , Virulence/genetics , Citric Acid Cycle , Gene Regulatory Networks , Citrullus/genetics , Citrullus/metabolism , Citrullus/microbiology , Co-Repressor Proteins/genetics , Co-Repressor Proteins/metabolism , Plant Diseases/microbiology
12.
Mol Plant Pathol ; 24(8): 961-972, 2023 08.
Article in English | MEDLINE | ID: mdl-37118922

ABSTRACT

RNA silencing, a core part of plants' antiviral defence, requires the ARGONAUTE, DICER-like, and RNA-dependent RNA polymerase proteins. However, how these proteins contribute to watermelon's RNA interference (RNAi) pathway response to cucumber green mottle mosaic virus (CGMMV) has not been characterized. Here, we identify seven ClAGO, four ClDCL, and 11 ClRDR genes in watermelon and analyse their expression profiles when infected with CGMMV. ClAGO1 and ClAGO5 expression levels were highly induced by CGMMV infection. The results of ClAGO1 and ClAGO5 overexpression and silencing experiments suggest that these genes play central roles in watermelon's antiviral defence. Furthermore, co-immunoprecipitation and bimolecular fluorescence complementation experiments showed that ClAGO1 interacts with ClAGO5 in vivo, suggesting that ClAGO1 and ClAGO5 co-regulate watermelon defence against CGMMV infection. We also identified the ethylene response factor (ERF) binding site in the promoters of the ClAGO1 and ClAGO5 genes, and ethylene (ETH) treatment significantly increased ClAGO5 expression. Two ERF genes (Cla97C08G147180 and Cla97C06G122830) closely related to ClAGO5 expression were identified using co-expression analysis. Subcellular localization revealed that two ERFs and ClAGO5 predominantly localize at the nucleus, suggesting that enhancement of resistance to CGMMV by ETH is probably achieved through ClAGO5 but not ClAGO1. Our findings reveal aspects of the mechanisms underlying RNA silencing in watermelon against CGMMV.


Subject(s)
Citrullus , Tobamovirus , Citrullus/metabolism , Tobamovirus/genetics , Promoter Regions, Genetic , Ethylenes/metabolism , Plant Diseases
13.
Nutrients ; 15(6)2023 Mar 20.
Article in English | MEDLINE | ID: mdl-36986220

ABSTRACT

The endothelium is crucial in controlling blood pressure and preventing cardiovascular diseases [...].


Subject(s)
Citrullus , Dietary Supplements , Citrulline/metabolism , Citrullus/metabolism , Blood Pressure , Arginine
14.
Protoplasma ; 260(2): 509-527, 2023 Mar.
Article in English | MEDLINE | ID: mdl-35804193

ABSTRACT

Watermelon and melon are members of the Cucurbitaceae family including economically significant crops in the world. The expansin protein family, which is one of the members of the cell wall, breaks down the non-covalent bonds between cell wall polysaccharides, causing pressure-dependent cell expansion. Comparative bioinformatics and molecular characterization analysis of the expansin protein family were carried out in the watermelon (Citrullus lanatus) and melon (Cucumis melo) plants in the study. Gene expression levels of expansin family members were analyzed in leaf and root tissues of watermelon and melon under ABA, drought, heat, cold, and salt stress conditions by quantitative real-time PCR analysis. After comprehensive searches, 40 expansin proteins (22 ClaEXPA, 14 ClaEXPLA, and 4 ClaEXPB) in watermelon and 43 expansin proteins (19 CmEXPA, 15 CmEXPLA, 3 CmEXPB, and 6 CmEXPLB) in melon were identified. The greatest orthologous genes were identified with soybean expansin genes for watermelon and melon. However, the latest divergence time between orthologous genes was determined with poplar expansin genes for watermelon and melon expansin genes. ClaEXPA-04, ClaEXPA-09, ClaEXPB-01, ClaEXPB-03, and ClaEXPLA-13 genes in watermelon and CmEXPA-12, CmEXPA-10, and CmEXPLA-01 genes in melon can be involved in tissue development and abiotic stress response of the plant. The current study combining bioinformatics and experimental analysis can provide a detailed characterization of the expansin superfamily which has roles in growth and reaction to the stress of the plant. The study ensures detailed data for future studies examining gene functions including the roles in plant growth and stress conditions.


Subject(s)
Citrullus , Cucurbitaceae , Citrullus/genetics , Citrullus/metabolism , Cucurbitaceae/genetics , Proteins/metabolism , Computational Biology , Stress, Physiological/genetics , Gene Expression Regulation, Plant
15.
Funct Plant Biol ; 50(3): 230-241, 2023 03.
Article in English | MEDLINE | ID: mdl-36456536

ABSTRACT

Soil salinity is a growing problem in agriculture, plant growth regulators (PGRs) can regulate plant response to stress. The objective of this study was to evaluate the effects of exogenous 6-benzyladenine (6-BA) on photosynthetic capacity and antioxidant defences in watermelon (Citrullus lanatus L.) seedlings under NaCl stress. Two watermelon genotypes were subjected to four different treatments: (1) normal water (control); (2) 20mgL-1 6-BA; (3) 120mmolL-1 NaCl; and (4) 120mmolL-1 NaCl+20mgL-1 6-BA. Our results showed that NaCl stress inhibited the growth of watermelon seedlings, decreased their photosynthetic capacity, promoted membrane lipid peroxidation, and lowered the activity of protective enzymes. Additionally the salt-tolerant Charleston Gray variety fared better than the salt-sensitive Zhengzi NO.017 variety under NaCl stress. Foliar spraying of 6-BA under NaCl stress significantly increased biomass accumulation, as well as photosynthetic pigment, soluble sugar, and protein content, while decreasing malondialdehyde levels, H2 O2 content, and electrolyte leakage. Moreover, 6-BA enhanced photosynthetic parameters, including net photosynthetic rate, stomatal conductance, intercellular CO2 concentration, and transpiration rate; activated antioxidant enzymes, such as superoxide dismutase, catalase, and peroxidase; and improved the efficiency of the ascorbate-glutathione cycle by stimulating glutathione reductase, dehydroascorbate reductase, and monodehydroascorbate reductase, as well as ascorbic acid and glutathione content. Principal component analysis confirmed that 6-BA improved salt tolerance of the two watermelon varieties, particularly Zhengzi NO.017, albeit through two different regulatory mechanisms. In conclusion, 6-BA treatment could alleviate NaCl stress-induced damage and improve salt tolerance of watermelons by regulating photosynthesis and osmoregulation, activating the ascorbate-glutathione cycle, and promoting antioxidant defences.


Subject(s)
Antioxidants , Citrullus , Antioxidants/pharmacology , Antioxidants/metabolism , Seedlings , Sodium Chloride/pharmacology , Sodium Chloride/metabolism , Citrullus/metabolism , Photosynthesis , Glutathione/metabolism , Glutathione/pharmacology
16.
Plant Biol (Stuttg) ; 25(2): 334-342, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36399029

ABSTRACT

Members of the GAPDH family play important roles in plant growth and development, as well as in stress responses. Our aim was to identify stress resistance genes through systematic analysis of the GAPDH family in watermelon. This could not only provide genetic resources for stress resistance breeding, but also form a basis for the study of plant stress resistance mechanisms. Eight GAPDHs representing four types of plant GAPDH in watermelon were identified (ClGAPA/B, ClGAPC1-3, ClGAPCp1-2 and ClGAPN). A comprehensive analysis of physicochemical properties, chromosome distribution, evolutionary relationships, exon-intron structure and conserved motifs of watermelon GAPDHs was performed using bioinformatics. Expression characteristics were assessed by RT-qPCR. Based on RT-qPCR results, ClGAPC2 was screened as a candidate for subcellular localization analysis and functional verification in Arabidopsis thaliana. Eight GAPDHs were classified into four subfamilies. GAPDHs in each subgroup were generally conserved and shared similarities in structure and conserved motifs. ClGAPDHs had notable tissue specificity and different expression patterns in response to H2 O2 , chilling, salt, osmotic stress, heat, salicylic acid, gibberellin, brassinosterol, ethylene and abscisic acid treatments. Three ClGAPC genes, especially ClGAPC2, were markedly induced by several treatments. ClGAPC2 was located in the nucleus and cytoplasm of tabacum epidermal cells. The ClGAPC2 transgenic Arabidopsis showed enhanced tolerance to salinity at the germination stage. We suggest that ClGAPC2 plays important roles in the adaptation of watermelon to salinity. Our findings provided candidate genes for further improving the salt tolerance of watermelon.


Subject(s)
Arabidopsis , Citrullus , Arabidopsis/genetics , Citrullus/genetics , Citrullus/metabolism , Plant Proteins/metabolism , Plant Breeding , Abscisic Acid/metabolism , Gene Expression Regulation, Plant , Phylogeny
17.
Eur J Clin Nutr ; 77(1): 71-74, 2023 01.
Article in English | MEDLINE | ID: mdl-36109652

ABSTRACT

BACKGROUND/OBJECTIVES: Watermelon rind (usually discarded by consumers) presents a high L-citrulline content. Given that Lcitrulline is involved in nitric oxide (NO) synthesis, a crucial molecule that regulates vascular function, this study aimed to evaluate the effect of microencapsulated watermelon rind (MWR) on endothelial function and tissue oxygen saturation (StO2) assessed by flow-mediated dilation (FMD) and near-infrared spectroscopy, respectively. Plasma L-arginine and L-citrulline were also evaluated. SUBJECT/METHODS: Eleven participants ingested 30 g of MWR (containing 4 g of L-citrulline) and a placebo. Before and 30, 60, 90, and 120 min after ingestion, StO2 parameters were assessed, whereas FMD and plasma amino acids were analyzed 60 and 120 min after ingestion. RESULTS: The FMD improved 60 min after MWR without changes in StO2 parameters. Absolute plasma L-citrulline and relative change from baseline in plasma L-arginine increased 60 min after MWR ingestion. CONCLUSION: A single dose of microencapsulated watermelon rind containing 4 g of L-citrulline seems adequate to improve FMD response, but not StO2 parameters in healthy adults. (NCT04781595).


Subject(s)
Citrulline , Citrullus , Humans , Young Adult , Arginine , Citrulline/metabolism , Citrullus/chemistry , Citrullus/metabolism , Dilatation , Oxygen Saturation
18.
Sci China Life Sci ; 66(3): 579-594, 2023 03.
Article in English | MEDLINE | ID: mdl-36346547

ABSTRACT

Although crop domestication has greatly aided human civilization, the sequential domestication and regulation of most quality traits remain poorly understood. Here, we report the stepwise selection and regulation of major fruit quality traits that occurred during watermelon evolution. The levels of fruit cucurbitacins and flavonoids were negatively selected during speciation, whereas sugar and carotenoid contents were positively selected during domestication. Interestingly, fruit malic acid and citric acid showed the opposite selection trends during the improvement. We identified a novel gene cluster (CGC1, cucurbitacin gene cluster on chromosome 1) containing both regulatory and structural genes involved in cucurbitacin biosynthesis, which revealed a cascade of transcriptional regulation operating mechanisms. In the CGC1, an allele caused a single nucleotide change in ClERF1 binding sites (GCC-box) in the promoter of ClBh1, which resulted in reduced expression of ClBh1 and inhibition of cucurbitacin synthesis in cultivated watermelon. Functional analysis revealed that a rare insertion of 244 amino acids, which arose in C. amarus and became fixed in sweet watermelon, in ClOSC (oxidosqualene cyclase) was critical for the negative selection of cucurbitacins during watermelon evolution. This research provides an important resource for metabolomics-assisted breeding in watermelon and for exploring metabolic pathway regulation mechanisms.


Subject(s)
Citrullus , Cucurbitacins , Humans , Citrullus/genetics , Citrullus/metabolism , Domestication , Plant Breeding , Metabolome , Fruit/genetics
19.
Int J Mol Sci ; 23(24)2022 Dec 12.
Article in English | MEDLINE | ID: mdl-36555422

ABSTRACT

Nuclear factor Y (NF-Y) is a heterotrimeric transcription factor that binds to the CCAAT cis-element in the promoters of target genes and plays critical roles in plant growth, development, and stress responses. In the present study, we aimed to re-characterize the ClNF-Y family in watermelon, examine the assembly of ClNF-Y complexes, and explore their possible involvement in disease resistance. A total of 25 ClNF-Y genes (7 ClNF-YAs, 10 ClNF-YBs, and 8 ClNF-YCs) were identified in the watermelon genome. The ClNF-Y family was comprehensively characterized in terms of gene and protein structures, phylogenetic relationships, and evolution events. Different types of cis-elements responsible for plant growth and development, phytohormones, and/or stress responses were identified in the promoters of the ClNF-Y genes. ClNF-YAs and ClNF-YCs were mainly localized in the nucleus, while most of the ClNF-YBs were localized in the cytoplasm of cells. ClNF-YB5, -YB6, -YB7, -YB8, -YB9, and -YB10 interacted with ClNF-YC2, -YC3, -YC4, -YC5, -YC6, -YC7, and -YC8, while ClNF-YB1 and -YB3 interacted with ClNF-YC1. A total of 37 putative ClNF-Y complexes were identified, e.g., ClNF-YA1, -YA2, -YA3, and -YA7 assembled into 13, 8, 8, and 8 ClNF-Y complexes with different ClNF-YB/-YC heterodimers. Most of the ClNF-Y genes responded with distinct expression patterns to defense hormones such as salicylic acid, methyl jasmonate, abscisic acid, and ethylene precursor 1-aminocyclopropane-1-carboxylate, and to infection by the vascular infecting fungus Fusarium oxysporum f. sp. niveum. Overexpression of ClNF-YB1, -YB8, -YB9, ClNF-YC2, and -YC7 in transgenic Arabidopsis resulted in an earlier flowering phenotype. Overexpression of ClNF-YB8 in Arabidopsis led to enhanced resistance while overexpression of ClNF-YA2 and -YC2 resulted in decreased resistance against Botrytis cinerea. Similarly, overexpression of ClNF-YA3, -YB1, and -YC4 strengthened resistance while overexpression of ClNF-YA2 and -YB8 attenuated resistance against Pseudomonas syringae pv. tomato DC3000. The re-characterization of the ClNF-Y family provides a basis from which to investigate the biological functions of ClNF-Y genes in respect of growth, development, and stress response in watermelon, and the identification of the functions of some ClNF-Y genes in disease resistance enables further exploration of the molecular mechanism of ClNF-Ys in the regulation of watermelon immunity against diverse pathogens.


Subject(s)
Arabidopsis , Citrullus , Transcription Factors/genetics , Transcription Factors/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , Plant Proteins/metabolism , Disease Resistance/genetics , Phylogeny , Citrullus/genetics , Citrullus/metabolism , Gene Expression Regulation, Plant , CCAAT-Binding Factor/metabolism , Hormones
20.
Molecules ; 27(22)2022 Nov 15.
Article in English | MEDLINE | ID: mdl-36431994

ABSTRACT

This study aims to evaluate the potential in vitro antioxidant and anti-obesity activities of watermelon seed protein hydrolysates (WSPH) obtained using different combinations of enzymes alcalase−proteinase K (ALC-PK) and alcalase−actinidin (ALC-ACT). There was a direct relationship between the degree of hydrolysis (DH) and the biological activities of the WSPH, with the highest DPPH (approximately 85%) and lipase inhibitory activities (≈59%) appreciated at DH of 36−37% and 33−35% when using ALC-PK and ALC-ACT, respectively. Following molecular weight fractionation, the ALC-PK WSPH < 3 kDa (F1) assayed at 1 mg.mL−1 had the highest DPPH-radical scavenging (89.22%), ferrous chelating (FC) (79.83%), reducing power (RP) (A 0.51), lipase inhibitory (71.36%), and α-amylase inhibitory (62.08%) activities. The amino acid analysis of ALC-PK WSPH and its fractions revealed a relationship between the biological activity of the extracts and their composition. High contents of hydrophobic amino acids, arginine, and aromatic amino acids were related to high antioxidant, lipase inhibitory, and α-amylase inhibitory activities in the extracts, respectively. Overall, this study revealed that underutilized protein sources such as WSPH, using the appropriate combination of enzymes, could result in the generation of new ingredients and compounds with powerful antioxidant and anti-obesity activities with promising applications as nutraceuticals or functional foods.


Subject(s)
Citrullus , Protein Hydrolysates , Protein Hydrolysates/pharmacology , Protein Hydrolysates/metabolism , Hydrolysis , Antioxidants/pharmacology , Antioxidants/chemistry , Molecular Weight , Lipase , Subtilisins/metabolism , Peptide Hydrolases/metabolism , Amino Acids/metabolism , alpha-Amylases , Citrullus/metabolism , Seeds/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL