Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 10.490
1.
Proc Natl Acad Sci U S A ; 121(24): e2401929121, 2024 Jun 11.
Article En | MEDLINE | ID: mdl-38843183

Punishment such as electric shock or physical discipline employs a mixture of physical pain and emotional distress to induce behavior modification. However, a neural circuit that produces behavior modification by selectively focusing the emotional component, while bypassing the pain typically induced by peripheral nociceptor activation, is not well studied. Here, we show that genetically silencing the activity of neurons expressing calcitonin gene-related peptide (CGRP) in the parabrachial nucleus blocks the suppression of addictive-like behavior induced by footshock. Furthermore, activating CGRP neurons suppresses not only addictive behavior induced by self-stimulating dopamine neurons but also behavior resulting from self-administering cocaine, without eliciting nocifensive reactions. Moreover, among multiple downstream targets of CGRP neurons, terminal activation of CGRP in the central amygdala is effective, mimicking the results of cell body stimulation. Our results indicate that unlike conventional electric footshock, stimulation of CGRP neurons does not activate peripheral nociceptors but effectively curb addictive behavior.


Behavior, Addictive , Calcitonin Gene-Related Peptide , Neurons , Parabrachial Nucleus , Animals , Parabrachial Nucleus/metabolism , Parabrachial Nucleus/physiology , Calcitonin Gene-Related Peptide/metabolism , Mice , Neurons/metabolism , Neurons/physiology , Behavior, Addictive/metabolism , Male , Dopaminergic Neurons/metabolism , Dopaminergic Neurons/physiology , Cocaine/pharmacology , Behavior, Animal/physiology
2.
Addict Biol ; 29(5): e13397, 2024 May.
Article En | MEDLINE | ID: mdl-38711205

Neuronal ensembles in the medial prefrontal cortex mediate cocaine self-administration via projections to the nucleus accumbens. We have recently shown that neuronal ensembles in the prelimbic cortex form rapidly to mediate cocaine self-administration. However, the role of neuronal ensembles within the nucleus accumbens in initial cocaine-seeking behaviour remains unknown. Here, we sought to expand the current literature by testing the necessity of the cocaine self-administration ensemble in the nucleus accumbens core (NAcCore) 1 day after male and female rats acquire cocaine self-administration by using the Daun02 inactivation procedure. We found that disrupting the NAcCore ensembles after a no-cocaine reward-seeking test increased subsequent cocaine seeking, while disrupting NAcCore ensembles following a cocaine self-administration session decreased subsequent cocaine seeking. We then characterized neuronal cell type in the NAcCore using RNAscope in situ hybridization. In the no-cocaine session, we saw reduced dopamine D1 type neuronal activation, while in the cocaine self-administration session, we found preferential dopamine D1 type neuronal activity in the NAcCore.


Cocaine , Drug-Seeking Behavior , Neurons , Nucleus Accumbens , Self Administration , Animals , Nucleus Accumbens/drug effects , Cocaine/pharmacology , Male , Female , Rats , Drug-Seeking Behavior/drug effects , Neurons/drug effects , Reward , Dopamine Uptake Inhibitors/pharmacology , Reinforcement, Psychology , Receptors, Dopamine D1 , Cocaine-Related Disorders/physiopathology , Rats, Sprague-Dawley , Prefrontal Cortex/drug effects
3.
J Neurosci ; 44(23)2024 Jun 05.
Article En | MEDLINE | ID: mdl-38719446

Drugs of abuse cause changes in the prefrontal cortex (PFC) and associated regions that impair inhibitory control over drug-seeking. Breaking the contingencies between drug-associated cues and the delivery of the reward during extinction learning reduces relapse. Vagus nerve stimulation (VNS) has previously been shown to enhance extinction learning and reduce drug-seeking. Here we determined the effects of VNS-mediated release of brain-derived neurotrophic factor (BDNF) on extinction and cue-induced reinstatement in male rats trained to self-administer cocaine. Pairing 10 d of extinction training with VNS facilitated extinction and reduced drug-seeking behavior during reinstatement. Rats that received a single extinction session with VNS showed elevated BDNF levels in the medial PFC as determined via an enzyme-linked immunosorbent assay. Systemic blockade of tropomyosin receptor kinase B (TrkB) receptors during extinction, via the TrkB antagonist ANA-12, decreased the effects of VNS on extinction and reinstatement. Whole-cell recordings in brain slices showed that cocaine self-administration induced alterations in the ratio of AMPA and NMDA receptor-mediated currents in Layer 5 pyramidal neurons of the infralimbic cortex (IL). Pairing extinction with VNS reversed cocaine-induced changes in glutamatergic transmission by enhancing AMPAR currents, and this effect was blocked by ANA-12. Our study suggests that VNS consolidates the extinction of drug-seeking behavior by reversing drug-induced changes in synaptic AMPA receptors in the IL, and this effect is abolished by blocking TrkB receptors during extinction, highlighting a potential mechanism for the therapeutic effects of VNS in addiction.


Drug-Seeking Behavior , Extinction, Psychological , Neuronal Plasticity , Prefrontal Cortex , Rats, Sprague-Dawley , Receptor, trkB , Vagus Nerve Stimulation , Animals , Male , Rats , Vagus Nerve Stimulation/methods , Drug-Seeking Behavior/physiology , Drug-Seeking Behavior/drug effects , Receptor, trkB/metabolism , Receptor, trkB/antagonists & inhibitors , Neuronal Plasticity/physiology , Neuronal Plasticity/drug effects , Extinction, Psychological/physiology , Extinction, Psychological/drug effects , Prefrontal Cortex/physiology , Prefrontal Cortex/drug effects , Prefrontal Cortex/metabolism , Brain-Derived Neurotrophic Factor/metabolism , Self Administration , Cocaine/pharmacology , Cocaine/administration & dosage
4.
J Neurosci Res ; 102(4): e25327, 2024 Apr.
Article En | MEDLINE | ID: mdl-38588037

Despite evidence of the beneficial effects of cannabidiol (CBD) in animal models of cocaine use disorder (CUD), CBD neuronal mechanisms remain poorly understood. This study investigated the effects of CBD treatment on brain glucose metabolism, in a CUD animal model, using [18F]FDG positron emission tomography (PET). Male C57Bl/6 mice were injected with cocaine (20 mg/kg, i.p.) every other day for 9 days, followed by 8 days of CBD administration (30 mg/kg, i.p.). After 48 h, animals were challenged with cocaine. Control animals received saline/vehicle. [18F]FDG PET was performed at four time points: baseline, last day of sensitization, last day of withdrawal/CBD treatment, and challenge. Subsequently, the animals were euthanized and immunohistochemistry was performed on the hippocampus and amygdala to assess the CB1 receptors, neuronal nuclear protein, microglia (Iba1), and astrocytes (GFAP). Results showed that cocaine administration increased [18F]FDG uptake following sensitization. CBD treatment also increased [18F]FDG uptake in both saline and cocaine groups. However, animals that were sensitized and challenged with cocaine, and those receiving only an acute cocaine injection during the challenge phase, did not exhibit increased [18F]FDG uptake when treated with CBD. Furthermore, CBD induced modifications in the integrated density of NeuN, Iba, GFAP, and CB1R in the hippocampus and amygdala. This is the first study addressing the impact of CBD on brain glucose metabolism in a preclinical model of CUD using PET. Our findings suggest that CBD disrupts cocaine-induced changes in brain energy consumption and activity, which might be correlated with alterations in neuronal and glial function.


Cannabidiol , Cocaine , Mice , Animals , Male , Cannabidiol/pharmacology , Cannabidiol/metabolism , Glucose/metabolism , Fluorodeoxyglucose F18/metabolism , Brain/metabolism , Cocaine/pharmacology , Mice, Inbred C57BL
5.
Science ; 384(6693): eadk6742, 2024 Apr 19.
Article En | MEDLINE | ID: mdl-38669575

Drugs of abuse are thought to promote addiction in part by "hijacking" brain reward systems, but the underlying mechanisms remain undefined. Using whole-brain FOS mapping and in vivo single-neuron calcium imaging, we found that drugs of abuse augment dopaminoceptive ensemble activity in the nucleus accumbens (NAc) and disorganize overlapping ensemble responses to natural rewards in a cell type-specific manner. Combining FOS-Seq, CRISPR-perturbation, and single-nucleus RNA sequencing, we identified Rheb as a molecular substrate that regulates cell type-specific signal transduction in NAc while enabling drugs to suppress natural reward consumption. Mapping NAc-projecting regions activated by drugs of abuse revealed input-specific effects on natural reward consumption. These findings characterize the dynamic, molecular and circuit basis of a common reward pathway, wherein drugs of abuse interfere with the fulfillment of innate needs.


Homeostasis , Nucleus Accumbens , Reward , Nucleus Accumbens/metabolism , Nucleus Accumbens/drug effects , Animals , Mice , Neurons/metabolism , Illicit Drugs/adverse effects , Ras Homolog Enriched in Brain Protein/metabolism , Ras Homolog Enriched in Brain Protein/genetics , Male , Mice, Inbred C57BL , Proto-Oncogene Proteins c-fos/metabolism , Proto-Oncogene Proteins c-fos/genetics , Signal Transduction , Substance-Related Disorders , Single-Cell Analysis , Cocaine/pharmacology , Calcium/metabolism
6.
Behav Pharmacol ; 35(4): 147-155, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38651979

Previous exposure to drugs of abuse produces impairments in studies of reversal learning, delay discounting and response inhibition tasks. While these studies contribute to the understanding of normal decision-making and how it is impaired by drugs of abuse, they do not fully capture how decision-making impacts the ability to delay gratification for greater long-term benefit. To address this issue, we used a diminishing returns task to study decision-making in rats that had previously self-administered cocaine. This task was designed to test the ability of the rat to choose to delay gratification in the short-term to obtain more reward over the course of the entire behavioral session. Rats were presented with two choices. One choice had a fixed amount of time delay needed to obtain reward [i.e. fixed delay (FD)], while the other choice had a progressive delay (PD) that started at 0 s and progressively increased by 1 s each time the PD option was selected. During the 'reset' variation of the task, rats could choose the FD option to reset the time delay associated with the PD option. Consistent with previous results, we found that prior cocaine exposure reduced rats' overall preference for the PD option in post-task reversal testing during 'no-reset' sessions, suggesting that cocaine exposure made rats more sensitive to the increasing delay of the PD option. Surprisingly, however, we found that rats that had self-administered cocaine 1-month prior, adapted behavior during 'reset' sessions by delaying gratification to obtain more reward in the long run similar to control rats.


Cocaine , Delay Discounting , Reward , Self Administration , Animals , Cocaine/pharmacology , Cocaine/administration & dosage , Male , Delay Discounting/drug effects , Rats , Choice Behavior/drug effects , Conditioning, Operant/drug effects , Dopamine Uptake Inhibitors/pharmacology , Dopamine Uptake Inhibitors/administration & dosage , Decision Making/drug effects , Cocaine-Related Disorders/psychology , Rats, Long-Evans , Time Factors
7.
Sci Signal ; 17(832): eadl4738, 2024 Apr 16.
Article En | MEDLINE | ID: mdl-38626009

Cocaine use disorder (CUD) is a chronic neuropsychiatric condition that results from enduring cellular and molecular adaptations. Among substance use disorders, CUD is notable for its rising prevalence and the lack of approved pharmacotherapies. The nucleus accumbens (NAc), a region that is integral to the brain's reward circuitry, plays a crucial role in the initiation and continuation of maladaptive behaviors that are intrinsic to CUD. Leveraging advancements in neuroproteomics, we undertook a proteomic analysis that spanned membrane, cytosolic, nuclear, and chromatin compartments of the NAc in a mouse model. The results unveiled immediate and sustained proteomic modifications after cocaine exposure and during prolonged withdrawal. We identified congruent protein regulatory patterns during initial cocaine exposure and reexposure after withdrawal, which contrasted with distinct patterns during withdrawal. Pronounced proteomic shifts within the membrane compartment indicated adaptive and long-lasting molecular responses prompted by cocaine withdrawal. In addition, we identified potential protein translocation events between soluble-nuclear and chromatin-bound compartments, thus providing insight into intracellular protein dynamics after cocaine exposure. Together, our findings illuminate the intricate proteomic landscape that is altered in the NAc by cocaine use and provide a dataset for future research toward potential therapeutics.


Cocaine-Related Disorders , Cocaine , Mice , Animals , Nucleus Accumbens/metabolism , Proteomics , Cocaine/pharmacology , Cocaine-Related Disorders/genetics , Cocaine-Related Disorders/metabolism , Cocaine-Related Disorders/psychology , Chromatin/metabolism
8.
Behav Neurosci ; 138(2): 108-124, 2024 Apr.
Article En | MEDLINE | ID: mdl-38661670

The cannabinoid system is being researched as a potential pharmaceutical target for a multitude of disorders. The present study examined the effect of indirect and direct cannabinoid agonists on mesolimbic dopamine release and related behaviors in C57BL/6J (B6) mice. The indirect cannabinoid agonist N-arachidonoyl serotonin (AA-5-HT) indirectly agonizes the cannabinoid system by preventing the metabolism of endocannabinoids through fatty acid amide hydrolase inhibition while also inhibiting transient receptor potential vanilloid Type 1 channels. Effects of AA-5-HT were compared with the direct cannabinoid receptor Type 1 agonist arachidonoyl-2'-chloroethylamide (ACEA). In Experiment 1, mice were pretreated with seven daily injections of AA-5-HT, ACEA, or vehicle prior to assessments of locomotor activity using open field (OF) testing and phasic dopamine release using in vivo fixed potential amperometry. Chronic exposure to AA-5-HT did not alter locomotor activity or mesolimbic dopamine functioning. Chronic exposure to ACEA decreased rearing and decreased phasic dopamine release while increasing the dopaminergic response to cocaine. In Experiment 2, mice underwent AA-5-HT, ACEA, or vehicle conditioned place preference, then saccharin preference testing, a measure commonly associated with anhedonia. Mice did not develop a conditioned place preference or aversion for AA-5-HT or ACEA, and repeated exposure to AA-5-HT or ACEA did not alter saccharin preference. Altogether, the findings suggest that neither of these drugs induce behaviors that are classically associated with abuse liability in mice; however, direct cannabinoid receptor Type 1 agonism may play more of a role in mediating mesolimbic dopamine functioning than indirect cannabinoid agonism. (PsycInfo Database Record (c) 2024 APA, all rights reserved).


Cannabinoid Receptor Agonists , Dopamine , Mice, Inbred C57BL , Animals , Dopamine/metabolism , Male , Mice , Cannabinoid Receptor Agonists/pharmacology , Serotonin/metabolism , Locomotion/drug effects , Behavior, Animal/drug effects , Arachidonic Acids/pharmacology , Nucleus Accumbens/drug effects , Nucleus Accumbens/metabolism , Cocaine/pharmacology , Receptor, Cannabinoid, CB1/agonists , Receptor, Cannabinoid, CB1/metabolism , Motor Activity/drug effects
9.
J Neurosci ; 44(23)2024 Jun 05.
Article En | MEDLINE | ID: mdl-38637154

Cocaine use disorder is a significant public health issue without an effective pharmacological treatment. Successful treatments are hindered in part by an incomplete understanding of the molecular mechanisms that underlie long-lasting maladaptive plasticity and addiction-like behaviors. Here, we leverage a large RNA sequencing dataset to generate gene coexpression networks across six interconnected regions of the brain's reward circuitry from mice that underwent saline or cocaine self-administration. We identify phosphodiesterase 1b (Pde1b), a Ca2+/calmodulin-dependent enzyme that increases cAMP and cGMP hydrolysis, as a central hub gene within a nucleus accumbens (NAc) gene module that was bioinformatically associated with addiction-like behavior. Chronic cocaine exposure increases Pde1b expression in NAc D2 medium spiny neurons (MSNs) in male but not female mice. Viral-mediated Pde1b overexpression in NAc reduces cocaine self-administration in female rats but increases seeking in both sexes. In female mice, overexpressing Pde1b in D1 MSNs attenuates the locomotor response to cocaine, with the opposite effect in D2 MSNs. Overexpressing Pde1b in D1/D2 MSNs had no effect on the locomotor response to cocaine in male mice. At the electrophysiological level, Pde1b overexpression reduces sEPSC frequency in D1 MSNs and regulates the excitability of NAc MSNs. Lastly, Pde1b overexpression significantly reduced the number of differentially expressed genes (DEGs) in NAc following chronic cocaine, with discordant effects on gene transcription between sexes. Together, we identify novel gene modules across the brain's reward circuitry associated with addiction-like behavior and explore the role of Pde1b in regulating the molecular, cellular, and behavioral responses to cocaine.


Cocaine-Related Disorders , Cyclic Nucleotide Phosphodiesterases, Type 1 , Gene Regulatory Networks , Mice, Inbred C57BL , Nucleus Accumbens , Sex Characteristics , Animals , Male , Female , Cyclic Nucleotide Phosphodiesterases, Type 1/genetics , Cyclic Nucleotide Phosphodiesterases, Type 1/metabolism , Mice , Cocaine-Related Disorders/genetics , Cocaine-Related Disorders/metabolism , Gene Regulatory Networks/drug effects , Gene Regulatory Networks/genetics , Nucleus Accumbens/drug effects , Nucleus Accumbens/metabolism , Rats , Cocaine/pharmacology , Reward
10.
Article En | MEDLINE | ID: mdl-38649130

Cocaine use disorder (CUD) is a global health problem with no approved medications. One potential treatment target is the gut microbiome, but it is unknown if cocaine induces long-lasting effects on gut microbes. A novel therapeutic candidate for CUD, cannabidiol (CBD), can improve gut function in rodent models. It is possible that protective effects of CBD against cocaine use are mediated by improving gut health. We examined this question in this experiment. Cocaine conditioned place preference (CPP) was conducted in adult male C57BL/6JArc mice. Mice were treated with vehicle or 20 mg/kg CBD prior to all cocaine CPP sessions (N = 11-13/group). Mice were tested drug free 1, 14 and 28 days after cessation of cocaine and CBD treatment. Fecal samples were collected prior to drug treatment and after each test session. Gut microbiome analyses were conducted using 16 s rRNA sequencing and correlated with behavioural parameters. We found a persistent preference for a cocaine-environment in mice, and long-lasting changes to gut microbe alpha diversity. Cocaine caused persistent changes to beta diversity which lasted for 4 weeks. CBD treatment reduced cocaine-environment preference during abstinence from cocaine and returned gut beta diversity measures to control levels. CBD treatment increased the relative abundance of Firmicutes phyla and Oscillospira genus, but decreased Bacteroidetes phyla and Bacteroides acidifaciens species. Preference score in cocaine-treated mice was positively correlated with abundance of Actinobacteria, whereas in mice treated with CBD and cocaine, the preference score was negatively correlated with Tenericutes abundance. Here we show that CBD facilitates cocaine extinction memory and reverses persistent cocaine-induced changes to gut microbe diversity. Furthermore, CBD increases the abundance of gut microbes which have anti-inflammatory properties. This suggests that CBD may act via the gut to reduce the memory of cocaine reward. Our data suggest that improving gut health and using CBD could limit cocaine abuse.


Cannabidiol , Cocaine , Extinction, Psychological , Gastrointestinal Microbiome , Mice, Inbred C57BL , Animals , Cannabidiol/pharmacology , Male , Gastrointestinal Microbiome/drug effects , Cocaine/pharmacology , Mice , Extinction, Psychological/drug effects , Cocaine-Related Disorders/drug therapy
11.
Rev. Ciênc. Plur ; 10 (1) 2024;10(1): 32867, 2024 abr. 30. tab
Article Pt | LILACS, BBO | ID: biblio-1553542

Introdução: A utilização de cocaína é bastante associada ao surgimento de algumas manifestações sistêmicas e também de algumas alterações orais. Objetivo: Identificaras alterações sistêmicas e bucais mais comuns a pacientes usuários de cocaína. Metodologia: Trata-se de uma revisão sistemática da literatura, considerando artigos com texto completo, com restrição de idioma em Português ou Inglês e que tenham sido publicados entre os anos de 2017 a 2022. Usou-se as bases de dados LiLaCS, MedLine e BBO, por via portal Biblioteca Virtual de Saúde, e SciELO. Os artigos excluídosf oram aqueles que não apresentaram relação explícita do uso de cocaína com alguma manifestação sistêmica e/ou bucal. Resultados: Após o processo de triagem,10 artigos foram salvos para serem analisados e 111 foram descartados por não atenderem aos critérios de inclusão. Dos 10 artigosselecionados,40% deles (n=4) trouxeram informações identificando possíveis riscos de desenvolvimento de doenças cardiovasculares sofridas pelos usuários de cocaína, 10%(n=1) identificou problemas cognitivos associados ao uso da cocaína,30% dos artigos (n=3) mostrou as alterações bucais associadas à utilização abusiva de cocaína. Conclusões: Houve a predominância de algumas manifestações sistêmicas e bucais nos indivíduos usuários de cocaína, como doenças cardiovasculares, xerostomia, perfurações no palato, etc. A partir disso, há algumas alterações sistêmicas e bucais provocadas por esse uso. Mediante o risco considerável, faz-se necessário que o Cirurgião-Dentista se atualize sobre essas alterações em pacientes usuários de cocaína visando promover um trabalho transdisciplinare multiprofissional para atender adequadamente às suas necessidades (AU).


Introduction: The use of cocaine is closely associated with the appearance of some systemic manifestations and also some oral alterations.Objective: To identify the most common systemic and oral alterations in cocaine-using patients.Methodology:This is a systematic review of the literature, considering full-text articles, with a language restriction of "Portuguese" or "English" and published between 2017 and 2022. We used the LiLaCS, MedLine and BBO databases, via the Virtual Health Library (VHL) portal, and SciELO.The articles excluded were those that did not explicitly relate cocaine use to some systemic and/or oral manifestation.Results: After the screening process, 10 articles were saved for analysis and 111 were discarded because they did not meet the inclusion criteria. Of the 10 articles selected, 40% (n=4) provided information identifying possible risks of developing cardiovascular diseases suffered by cocaine users, 10% (n=1)identified cognitive problems associated with cocaine use, 30% of the articles (n=3) showed oral alterations associated with cocaine abuse.Conclusions: There has been a predominance of some systemic and oral manifestations in cocaine users, such as cardiovascular diseases, xerostomia, perforations in the palate, etc. Based on this, there are some systemic and oral alterations caused by this use. Given the considerable risk, it is necessary for dentists to be up-to-date on these alterations in cocaine-using patients in order to promote transdisciplinary and multi-professional work to adequately meet their needs (AU).


Introducción: El consumo de cocaína está estrechamente asociado a la aparición de algunas manifestaciones sistémicas y también de algunas alteraciones orales. Objetivo:Identificar las alteraciones sistémicas y bucales más frecuentes en los consumidores de cocaína. Metodología: Se trata de una revisión sistemática de la literatura, considerando artículos a texto completo, con restricción de idioma en "portugués" o "inglés" y publicados entre 2017 y 2022. Se utilizaron las bases de datos LiLaCS, MedLine y BBO, a través del portal Biblioteca Virtual en Salud (BVS) y SciELO. Los artículos excluidos fueron aquellos que no mostraban una relación explícita entre el consumo de cocaína y alguna manifestación sistémica y/o oral. Resultados: Tras el proceso de cribado, se guardaron10 artículos para el análisis y se descartaron 111 por no cumplir los criterios de inclusión. De los 10 artículos seleccionados, el 40% (n=4) proporcionaba información que identificaba posibles riesgos de desarrollar enfermedades cardiovasculares sufridaspor consumidores de cocaína, el 10% (n=1) identificaba problemas cognitivos asociados al consumo de cocaína, el 30% de los artículos (n=3) mostraban alteraciones orales asociadas al abuso de cocaína.Conclusiones:Ha habido un predominio de algunas manifestaciones sistémicas y orales en los consumidores de cocaína, como enfermedades cardiovasculares, xerostomía, perforaciones en el paladar, etc. De acuerdo con esto, existen algunas alteraciones sistémicas y orales causadas por este uso. Dado el considerable riesgo, es necesario que los odontólogos estén al día sobre estas alteraciones en los pacientes consumidores de cocaína, con el fin de promover el trabajo transdisciplinar y multiprofesional para atender adecuadamente sus necesidades (AU).


Humans , Cocaine/pharmacology , Cocaine-Related Disorders , Dentists , Drug Users , Substance-Related Disorders , Health Services Needs and Demand
12.
Neuropharmacology ; 250: 109927, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38508306

Signaling through nicotinic acetylcholine receptors (nAChRs) plays a role in cocaine reward and reinforcement, suggesting that the cholinergic system could be manipulated with therapeutics to modulate aspects of cocaine use disorder (CUD). We examined the interaction between nAChRs and cocaine reinforcement by expressing a hypersensitive ß2 nAChR subunit (ß2Leu9'Ser) in the ventral tegmental area of male Sprague Dawley rats. Compared to control rats, ß2Leu9'Ser rats acquired (fixed ratio) intravenous cocaine self-administration faster and with greater likelihood. By contrast, ß2Leu9'Ser rats were approximately equivalent to controls in their intake of cocaine on a progressive ratio schedule of reinforcement, suggesting differential effects of cholinergic signaling depending on experimental parameters. Like progressive ratio cocaine SA, ß2Leu9'Ser rats and controls did not differ significantly in food SA assays, including acquisition on a fixed ratio schedule or in progressive ratio sessions. These results highlight the specific role of high-affinity, heteropentameric ß2* (ß2-containing) nAChRs in acquisition of cocaine SA, suggesting that mesolimbic acetylcholine signaling is active during this process.


Cocaine , Receptors, Nicotinic , Rats , Male , Animals , Rats, Sprague-Dawley , Cocaine/pharmacology , Receptors, Nicotinic/metabolism , Synaptic Transmission , Cholinergic Agents , Self Administration
13.
Eur J Pharmacol ; 971: 176489, 2024 May 15.
Article En | MEDLINE | ID: mdl-38492875

Substance abuse disorder is a chronic condition for which pharmacological treatment options remain limited. L-type calcium channels (LTCC) have been implicated in drug-related plasticity and behavior. Specifically, dopaminergic neurons in the mesocorticolimbic pathway express Cav1.2 and Cav1.3 channels, which may regulate dopaminergic activity associated with reward behavior. Therefore, this study aimed to investigate the hypothesis that pre-administration of the LTCC blocker, isradipine can mitigate the effects of cocaine by modulating central glutamatergic transmission. For that, we administered isradipine at varying concentrations (1, 7.5, and 15 µg/µL) via intracerebroventricular injection in male Swiss mice. This pretreatment was carried out prior to subjecting animals to behavioral assessments to evaluate cocaine-induced locomotor sensitization and conditioned place preference (CPP). The results revealed that isradipine administered at a concentration of 1 µg/µL effectively attenuated both the sensitization and CPP induced by cocaine (15 mg/kg, via i. p.). Moreover, mice treated with 1 µg/µL of isradipine showed decreased presynaptic levels of glutamate and calcium in the cortex and hippocampus as compared to control mice following cocaine exposure. Notably, the gene expression of ionotropic glutamate receptors, AMPA, and NMDA, remained unchanged, as did the expression of Cav1.2 and Cav1.3 channels. Importantly, these findings suggest that LTCC blockage may inhibit behavioral responses to cocaine, most likely by decreasing glutamatergic input in areas related to addiction.


Calcium Channel Blockers , Cocaine , Mice , Male , Animals , Calcium Channel Blockers/pharmacology , Isradipine/pharmacology , Glutamic Acid , Cocaine/pharmacology , Dopamine/metabolism
14.
Eur J Pharmacol ; 969: 176466, 2024 Apr 15.
Article En | MEDLINE | ID: mdl-38431243

The chronic use of the novel synthetic cathinone mexedrone, like other psychoactive drugs, can be considered addictive, with a high potential for abuse and the ability to cause psychological dependence in certain users. However, little is known about the neurobehavioral effects of mexedrone in association with its potential for abuse. We investigated the abuse potential for mexedrone abuse through multiple behavioral tests. In addition, serotonin transporter (SERT) levels were measured in the synaptosome of the dorsal striatum, and serotonin (5-HT) levels were measured in the dorsal striatum of acute mexedreone (50 mg/kg)-treated mice. To clarify the neuropharmacological mechanisms underlying the locomotor response of mexedrone, the 5-HT2A receptor antagonist M100907 (0.5 or 1.0 mg/kg) was administered prior to the acute injection of mexedrone in the locomotor activity experiment in mice. Mexedrone (10-50 mg/kg) produced a significant place preference in mice and mexedrone (0.1-0.5 mg/kg/infusion) maintained self-administration behavior in rats in a dose-dependent manner. In the drug discrimination experiment, mexedrone (5.6-32 mg/kg) was fully substituted for the discriminative stimulus effects of cocaine in rats. Mexedrone increased locomotor activity, and these effects were reversed by pretreatment with M100907. Acute mexedrone significantly increased c-Fos expression in the dorsal striatum and decreased SERT levels in the synaptosome of the dorsal striatum of mice, resulting in an elevation of 5-HT levels. Taken together, our results provide the possibility that mexedrone has abuse potential, which might be mediated, at least in part, by the activation of the serotonergic system in the dorsal striatum.


Cocaine , Fluorobenzenes , Methamphetamine/analogs & derivatives , Piperidines , Synthetic Cathinone , Rats , Mice , Male , Animals , Rats, Sprague-Dawley , Serotonin/metabolism , Cocaine/pharmacology , Dose-Response Relationship, Drug
15.
Sci Rep ; 14(1): 6509, 2024 03 18.
Article En | MEDLINE | ID: mdl-38499566

Cocaine disrupts dopamine (DA) and kappa opioid receptor (KOR) system activity, with long-term exposure reducing inhibiton of DA uptake by cocaine and increasing KOR system function. Single treatment therapies have not been successful for cocaine use disorder; therefore, this study focuses on a combination therapy targeting the dopamine transporter (DAT) and KOR. Sprague Dawley rats self-administered 5 days of cocaine (1.5 mg/kg/inf, max 40 inf/day, FR1), followed by 14 days on a progressive ratio (PR) schedule (0.19 mg/kg/infusion). Behavioral effects of individual and combined administration of phenmetrazine and nBNI were then examined using PR. Additionally, ex vivo fast scan cyclic voltammetry was then used to assess alterations in DA and KOR system activity in the nucleus accumbens before and after treatments. Chronic administration of phenmetrazine as well as the combination of phenmetrazine and nBNI-but not nBNI alone-significantly reduced PR breakpoints. In addition, the combination of phenmetrazine and nBNI partially reversed cocaine-induced neurodysregulations of the KOR and DA systems, indicating therapeutic benefits of targeting the DA and KOR systems in tandem. These data highlight the potential benefits of the DAT and KOR as dual-cellular targets to reduce motivation to administer cocaine and reverse cocaine-induced alterations of the DA system.


Cocaine , Receptors, Opioid, kappa , Rats , Animals , Receptors, Opioid, kappa/metabolism , Dopamine Plasma Membrane Transport Proteins , Motivation , Dopamine/pharmacology , Rats, Sprague-Dawley , Phenmetrazine/pharmacology , Cocaine/pharmacology , Nucleus Accumbens/metabolism , Self Administration
16.
J Neurosci ; 44(17)2024 Apr 24.
Article En | MEDLINE | ID: mdl-38514181

The initiation of abstinence after chronic drug self-administration is stressful. Cocaine-seeking behavior on the first day of the absence of the expected drug (Extinction Day 1, ED1) is reduced by blocking 5-HT signaling in dorsal hippocampal cornu ammonis 1 (CA1) in both male and female rats. We hypothesized that the experience of ED1 can substantially influence later relapse behavior and that dorsal raphe (DR) serotonin (5-HT) input to CA1 may be involved. We inhibited 5-HT1A/1B receptors (WAY-100635 plus GR-127935), or DR input (chemogenetics), in CA1 on ED1 to test the role of this pathway on cocaine-seeking persistence 2 weeks later. We also inhibited 5-HT1A or 5-HT1B receptors in CA1 during conditioned place preference (CPP) for cocaine, to examine mechanisms involved in the persistent effects of ED1 manipulations. Inhibition of DR inputs, or 5-HT1A/1B signaling, in CA1 decreased drug seeking on ED1 and decreased cocaine seeking 2 weeks later revealing that 5-HT signaling in CA1 during ED1 contributes to persistent drug seeking during abstinence. In addition, 5-HT1B antagonism alone transiently decreased drug-associated memory performance when given prior to a CPP test, whereas similar antagonism of 5-HT1A alone had no such effect but blocked CPP retrieval on a test 24 h later. These CPP findings are consistent with prior work showing that DR inputs to CA1 augment recall of the drug-associated context and drug seeking via 5-HT1B receptors and prevent consolidation of the updated nondrug context via 5-HT1A receptors. Thus, treatments that modulate 5-HT-dependent memory mechanisms in CA1 during initial abstinence may facilitate later maintenance of abstinence.


Cocaine , Drug-Seeking Behavior , Oxadiazoles , Serotonin , Animals , Male , Drug-Seeking Behavior/physiology , Drug-Seeking Behavior/drug effects , Rats , Serotonin/metabolism , Female , Cocaine/administration & dosage , Cocaine/pharmacology , Hippocampus/metabolism , Hippocampus/drug effects , Pyridines/pharmacology , Serotonin Antagonists/pharmacology , Signal Transduction/drug effects , Signal Transduction/physiology , Piperazines/pharmacology , Rats, Sprague-Dawley , Cocaine-Related Disorders/metabolism , Cocaine-Related Disorders/psychology , Self Administration , Extinction, Psychological/drug effects , Extinction, Psychological/physiology , Receptor, Serotonin, 5-HT1B/metabolism , CA1 Region, Hippocampal/drug effects , CA1 Region, Hippocampal/metabolism
17.
Pharmacol Rep ; 76(2): 338-347, 2024 Apr.
Article En | MEDLINE | ID: mdl-38480667

BACKGROUND: Cocaine use disorder (CUD) remains a severe health problem with no effective pharmacological therapy. One of the potential pharmacological strategies for CUD pharmacotherapy includes manipulations of the brain glutamatergic (Glu) system which is particularly involved in drug withdrawal and relapse. Previous research indicated a pivotal role of ionotropic N-methyl-D-aspartate (NMDA) receptors or metabotropic receptors' type 5 (mGlu5) receptors in controlling the reinstatement of cocaine. Stimulation of the above molecules results in the activation of the downstream signaling targets such as neuronal nitric oxide synthase (nNOS) and the release of nitric oxide. METHODS: In this paper, we investigated the molecular changes in nNOS in the prefrontal cortex and nucleus accumbens following 3 and 10 days of cocaine abstinence as well as the effectiveness of nNOS blockade with the selective enzyme inhibitor N-ω-propyl-L-arginine hydrochloride (L-NPA) on cocaine seeking in male rats. The effect of L-NPA on locomotor activity in drug-naïve animals was investigated. RESULTS: Ten-day (but not 3-day) cocaine abstinence from cocaine self-administration increased nNOS gene and protein expression in the nucleus accumbens, but not in the prefrontal cortex. L-NPA (0.5-5 mg/kg) administered peripherally did not change locomotor activity but attenuated the reinstatement induced with cocaine priming or the drug-associated conditioned cue. CONCLUSIONS: Our findings support accumbal nNOS as an important molecular player for cocaine seeking while its inhibitors could be considered as anti-cocaine pharmacological tools in male rats.


Cocaine , Drug-Seeking Behavior , Animals , Male , Rats , Brain/metabolism , Cocaine/pharmacology , Nitric Oxide Synthase Type I/metabolism , Nucleus Accumbens/metabolism , Self Administration
18.
Cell Rep ; 43(3): 113956, 2024 Mar 26.
Article En | MEDLINE | ID: mdl-38489267

Drugs of abuse can persistently change the reward circuit in ways that contribute to relapse behavior, partly via mechanisms that regulate chromatin structure and function. Nuclear orphan receptor subfamily4 groupA member2 (NR4A2, also known as NURR1) is an important effector of histone deacetylase 3 (HDAC3)-dependent mechanisms in persistent memory processes and is highly expressed in the medial habenula (MHb), a region that regulates nicotine-associated behaviors. Here, expressing the Nr4a2 dominant negative (Nurr2c) in the MHb blocks reinstatement of cocaine seeking in mice. We use single-nucleus transcriptomics to characterize the molecular cascade following Nr4a2 manipulation, revealing changes in transcriptional networks related to addiction, neuroplasticity, and GABAergic and glutamatergic signaling. The network controlled by NR4A2 is characterized using a transcription factor regulatory network inference algorithm. These results identify the MHb as a pivotal regulator of relapse behavior and demonstrate the importance of NR4A2 as a key mechanism driving the MHb component of relapse.


Cocaine , Habenula , Mice , Animals , Habenula/physiology , Cocaine/pharmacology , Memory , Gene Expression Regulation , Recurrence
19.
Eur J Neurosci ; 59(10): 2436-2449, 2024 May.
Article En | MEDLINE | ID: mdl-38444104

Psychostimulant use disorders (PSUD) are prevalent; however, no FDA-approved medications have been made available for treatment. Previous studies have shown that dual inhibitors of the dopamine transporter (DAT) and sigma receptors significantly reduce the behavioral/reinforcing effects of cocaine, which have been associated with stimulation of extracellular dopamine (DA) levels resulting from DAT inhibition. Here, we employ microdialysis and fast scan cyclic voltammetry (FSCV) procedures to investigate the effects of dual inhibitors of DAT and sigma receptors in combination with cocaine on nucleus accumbens shell (NAS) DA dynamics in naïve male Sprague Dawley rats. In microdialysis studies, administration of rimcazole (3, 10 mg/kg; i.p.) or its structural analog SH 3-24 (1, 3 mg/kg; i.p.), compounds that are dual inhibitors of DAT and sigma receptors, significantly reduced NAS DA efflux stimulated by increasing doses of cocaine (0.1, 0.3, 1.0 mg/kg; i.v.). Using the same experimental conditions, in FSCV tests, we show that rimcazole pretreatments attenuated cocaine-induced stimulation of evoked NAS DA release but produced no additional effect on DA clearance rate. Under the same conditions, JJC8-091, a modafinil analog and dual inhibitor of DAT and sigma receptors, similarly attenuated cocaine-induced stimulation of evoked NAS DA release but produced no additional effect on DA clearance rate. Our results provide the neurochemical groundwork towards understanding actions of dual inhibitors of DAT and sigma receptors on DA dynamics that likely mediate the behavioral effects of psychostimulants like cocaine.


Cocaine , Dopamine Plasma Membrane Transport Proteins , Dopamine Uptake Inhibitors , Dopamine , Nucleus Accumbens , Rats, Sprague-Dawley , Receptors, sigma , Animals , Nucleus Accumbens/drug effects , Nucleus Accumbens/metabolism , Receptors, sigma/metabolism , Receptors, sigma/antagonists & inhibitors , Male , Dopamine Plasma Membrane Transport Proteins/metabolism , Dopamine Plasma Membrane Transport Proteins/antagonists & inhibitors , Dopamine Plasma Membrane Transport Proteins/drug effects , Dopamine/metabolism , Cocaine/pharmacology , Rats , Dopamine Uptake Inhibitors/pharmacology , Piperidines/pharmacology , Benzhydryl Compounds/pharmacology , Microdialysis/methods , Modafinil/pharmacology
20.
Adv Pharmacol ; 99: 35-59, 2024.
Article En | MEDLINE | ID: mdl-38467486

The dopamine transporter (DAT) is a key site of action for cocaine and amphetamines. Dysfunctional DAT is associated with aberrant synaptic dopamine transmission and enhanced drug-seeking and taking behavior. Studies in cultured cells and ex vivo suggest that DAT function is sensitive to membrane cholesterol content. Although it is largely unknown whether psychostimulants alter cholesterol metabolism in the brain, emerging evidence indicates that peripheral cholesterol metabolism is altered in patients with psychostimulant use disorder and circulating cholesterol levels are associated with vulnerability to relapse. Cholesterol interacts with sphingolipids forming lipid raft microdomains on the membrane. These cholesterol-rich lipid raft microdomains serve to recruit and assemble other lipids and proteins to initiate signal transduction. There are two spatially and functionally distinct populations of the DAT segregated by cholesterol-rich lipid raft microdomains and cholesterol-scarce non-raft microdomains on the plasma membrane. These two DAT populations are differentially regulated by DAT blockers (e.g. cocaine), substrates (e.g. amphetamine), and protein kinase C providing distinct cholesterol-dependent modulation of dopamine uptake and efflux. In this chapter, we summarize the impact of depletion and addition of membrane cholesterol on DAT conformational changes between the outward-facing and the inward-facing states, lipid raft-associated DAT localization, basal and induced DAT internalization, and DAT function. In particular, we focus on how the interactions of the DAT with cocaine and amphetamine are influenced by membrane cholesterol. Lastly, we discuss the therapeutic potential of cholesterol-modifying drugs as a new avenue to normalize DAT function and dopamine transmission in patients with psychostimulant use disorder.


Cocaine , Dopamine Plasma Membrane Transport Proteins , Humans , Dopamine Plasma Membrane Transport Proteins/chemistry , Dopamine/metabolism , Amphetamine/pharmacology , Cocaine/pharmacology , Cholesterol/chemistry , Cholesterol/metabolism
...