Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 19.548
1.
J Acoust Soc Am ; 155(6): R11-R12, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38829158

The Reflections series takes a look back on historical articles from The Journal of the Acoustical Society of America that have had a significant impact on the science and practice of acoustics.


Acoustics , Cochlea , History, 20th Century , Humans , Cochlea/physiology , Animals , Sound
2.
Sci Rep ; 14(1): 13376, 2024 06 10.
Article En | MEDLINE | ID: mdl-38862572

In individuals with hearing loss, protection of residual hearing is essential following cochlear implantation to facilitate acoustic and electric hearing. Hearing preservation requires slow insertion, atraumatic electrode and delivery of the optimal quantity of a pharmacological agent. Several studies have reported variable hearing outcomes with osmotic pump-mediated steroid delivery. New drugs, such as sialyllactose (SL) which have anti-inflammatory effect in many body parts, can prevent tissue overgrowth. In the present study, the positive effects of the pharmacological agent SL against insults were evaluated in vitro using HEI-OC1 cells. An animal model to simulate the damage due to electrode insertion during cochlear implantation was used. SL was delivered using osmotic pumps to prevent loss of the residual hearing in this animal model. Hearing deterioration, tissue fibrosis and ossification were confirmed in this animal model. Increased gene expressions of inflammatory cytokines were identified in the cochleae following dummy electrode insertion. Following the administration of SL, insertion led to a decrease in hearing threshold shifts, tissue reactions, and inflammatory markers. These results emphasize the possible role of SL in hearing preservation and improve our understanding of the mechanism underlying hearing loss after cochlear implantation.


Cochlear Implantation , Hearing Loss , Lactose , Animals , Lactose/analogs & derivatives , Lactose/pharmacology , Hearing Loss/prevention & control , Hearing Loss/drug therapy , Hearing/drug effects , Cochlea/drug effects , Cochlea/metabolism , Mice , Disease Models, Animal , Cell Line , Cytokines/metabolism , Male , Sialic Acids
3.
Sensors (Basel) ; 24(11)2024 May 22.
Article En | MEDLINE | ID: mdl-38894099

Cochlear implants are crucial for addressing severe-to-profound hearing loss, with the success of the procedure requiring careful electrode placement. This scoping review synthesizes the findings from 125 studies examining the factors influencing insertion forces (IFs) and intracochlear pressure (IP), which are crucial for optimizing implantation techniques and enhancing patient outcomes. The review highlights the impact of variables, including insertion depth, speed, and the use of robotic assistance on IFs and IP. Results indicate that higher insertion speeds generally increase IFs and IP in artificial models, a pattern not consistently observed in cadaveric studies due to variations in methodology and sample size. The study also explores the observed minimal impact of robotic assistance on reducing IFs compared to manual methods. Importantly, this review underscores the need for a standardized approach in cochlear implant research to address inconsistencies and improve clinical practices aimed at preserving hearing during implantation.


Cochlear Implantation , Cochlear Implants , Humans , Cochlear Implantation/methods , Pressure , Cochlea/surgery , Cochlea/physiology , Robotic Surgical Procedures/methods , Robotics/methods , Hearing Loss/surgery , Hearing Loss/physiopathology
4.
Redox Biol ; 74: 103218, 2024 Aug.
Article En | MEDLINE | ID: mdl-38870779

The ABCC1 gene belongs to the ATP-binding cassette membrane transporter superfamily, which plays a crucial role in the efflux of various endogenous and exogenous substances. Mutations in ABCC1 can result in autosomal dominant hearing loss. However, the specific roles of ABCC1 in auditory function are not fully understood. Through immunofluorescence, we found that ABCC1 was expressed in microvascular endothelial cells (ECs) of the stria vascularis (StV) in the murine cochlea. Then, an Abcc1 knockout mouse model was established by using CRISPR/Cas9 technology to elucidate the role of ABCC1 in the inner ear. The ABR threshold did not significantly differ between WT and Abcc1-/- mice at any age studied. After noise exposure, the ABR thresholds of the WT and Abcc1-/- mice were significantly elevated. Interestingly, after 14 days of noise exposure, ABR thresholds largely returned to pre-exposure levels in WT mice but not in Abcc1-/- mice. Our subsequent experiments showed that microvascular integrity in the StV was compromised and that the number of outer hair cells and the number of ribbons were significantly decreased in the cochleae of Abcc1-/- mice post-exposure. Besides, the production of ROS and the accumulation of 4-HNE significantly increased. Furthermore, StV microvascular ECs were cultured to elucidate the role of ABCC1 in these cells under glucose oxidase challenge. Notably, 30 U/L glucose oxidase (GO) induced severe oxidative stress damage in Abcc1-/- cells. Compared with WT cells, the ROS and 4-HNE levels and the apoptotic rate were significantly elevated in Abcc1-/- cells. In addition, the reduced GSH/GSSG ratio was significantly decreased in Abcc1-/- cells after GO treatment. Taken together, Abcc1-/- mice are more susceptible to noise-induced hearing loss, possibly because ABCC1 knockdown compromises the GSH antioxidant system of StV ECs. The exogenous antioxidant N-acetylcysteine (NAC) may protect against oxidative damage in Abcc1-/- murine cochleae and ECs.


Antioxidants , Cochlea , Hearing Loss, Noise-Induced , Mice, Knockout , Multidrug Resistance-Associated Proteins , Oxidative Stress , Animals , Mice , Multidrug Resistance-Associated Proteins/metabolism , Multidrug Resistance-Associated Proteins/genetics , Cochlea/metabolism , Cochlea/pathology , Hearing Loss, Noise-Induced/metabolism , Hearing Loss, Noise-Induced/genetics , Antioxidants/metabolism , Disease Models, Animal , Reactive Oxygen Species/metabolism , Endothelial Cells/metabolism
5.
Sci Rep ; 14(1): 13768, 2024 06 14.
Article En | MEDLINE | ID: mdl-38877090

Sound transmission to the human inner ear by bone conduction pathway with an implant attached to the otic capsule is a specific case where the cochlear response depends on the direction of the stimulating force. A finite element model of the temporal bone with the inner ear, no middle and outer ear structures, and an immobilized stapes footplate was used to assess the directional sensitivity of the cochlea. A concentrated mass represented the bone conduction implant. The harmonic analysis included seventeen frequencies within the hearing range and a full range of excitation directions. Two assessment criteria included: (1) bone vibrations of the round window edge in the direction perpendicular to its surface and (2) the fluid volume displacement of the round window membrane. The direction of maximum bone vibration at the round window edge was perpendicular to the round window. The maximum fluid volume displacement direction was nearly perpendicular to the modiolus axis, almost tangent to the stapes footplate, and inclined slightly to the round window. The direction perpendicular to the stapes footplate resulted in small cochlear responses for both criteria. A key factor responsible for directional sensitivity was the small distance of the excitation point from the cochlea.


Bone Conduction , Finite Element Analysis , Temporal Bone , Humans , Temporal Bone/physiology , Bone Conduction/physiology , Cochlea/physiology , Vibration , Round Window, Ear/physiology , Stapes/physiology , Models, Biological , Acoustic Stimulation
6.
Acta Otolaryngol ; 144(3): 159-167, 2024 Mar.
Article En | MEDLINE | ID: mdl-38742731

BACKGROUND: In temporal bone specimens from long-term cochlear implant users, foreign body response within the cochlea has been demonstrated. However, how hearing changes after implantation and fibrosis progresses within the cochlea is unknown. OBJECTIVES: To investigate the short-term dynamic changes in hearing and cochlear histopathology in minipigs after electrode array insertion. MATERIAL AND METHODS: Twelve minipigs were selected for electrode array insertion (EAI) and the Control. Hearing tests were performed preoperatively and on 0, 7, 14, and 28 day(s) postoperatively, and cochlear histopathology was performed after the hearing tests on 7, 14, and 28 days after surgery. RESULTS: Electrode array insertion had a significant effect for the frequency range tested (1 kHz-20kHz). Exudation was evident one week after electrode array insertion; at four weeks postoperatively, a fibrous sheath formed around the electrode. At each time point, the endolymphatic hydrops was found; no significant changes in the morphology and packing density of the spiral ganglion neurons were observed. CONCLUSIONS AND SIGNIFICANCE: The effect of electrode array insertion on hearing and intracochlear fibrosis was significant. The process of fibrosis and endolymphatic hydrops seemed to not correlate with the degree of hearing loss, nor did it affect spiral ganglion neuron integrity in the 4-week postoperative period.


Cochlea , Cochlear Implantation , Cochlear Implants , Swine, Miniature , Animals , Swine , Cochlea/pathology , Cochlear Implants/adverse effects , Cochlear Implantation/methods , Cochlear Implantation/adverse effects , Fibrosis , Electrodes, Implanted/adverse effects
7.
Commun Biol ; 7(1): 600, 2024 May 18.
Article En | MEDLINE | ID: mdl-38762693

Pending questions regarding cochlear amplification and tuning are hinged upon the organ of Corti (OoC) active mechanics: how outer hair cells modulate OoC vibrations. Our knowledge regarding OoC mechanics has advanced over the past decade thanks to the application of tomographic vibrometry. However, recent data from live cochlea experiments often led to diverging interpretations due to complicated interaction between passive and active responses, lack of image resolution in vibrometry, and ambiguous measurement angles. We present motion measurements and analyses of the OoC sub-components at the close-to-true cross-section, measured from acutely excised gerbil cochleae. Specifically, we focused on the vibrating patterns of the reticular lamina, the outer pillar cell, and the basilar membrane because they form a structural frame encasing active outer hair cells. For passive transmission, the OoC frame serves as a rigid truss. In contrast, motile outer hair cells exploit their frame structures to deflect the upper compartment of the OoC while minimally disturbing its bottom side (basilar membrane). Such asymmetric OoC vibrations due to outer hair cell motility explain how recent observations deviate from the classical cochlear amplification theory.


Gerbillinae , Hair Cells, Auditory, Outer , Organ of Corti , Vibration , Animals , Gerbillinae/physiology , Hair Cells, Auditory, Outer/physiology , Organ of Corti/physiology , Organ of Corti/cytology , Cochlea/physiology , Cochlea/cytology , Basilar Membrane/physiology
8.
Trends Hear ; 28: 23312165241252240, 2024.
Article En | MEDLINE | ID: mdl-38715410

In recent years, tools for early detection of irreversible trauma to the basilar membrane during hearing preservation cochlear implant (CI) surgery were established in several clinics. A link with the degree of postoperative hearing preservation in patients was investigated, but patient populations were usually small. Therefore, this study's aim was to analyze data from intraoperative extracochlear electrocochleography (ECochG) recordings for a larger group.During hearing preservation CI surgery, extracochlear recordings were made before, during, and after CI electrode insertion using a cotton wick electrode placed at the promontory. Before and after insertion, amplitudes and stimulus response thresholds were recorded at 250, 500, and 1000 Hz. During insertion, response amplitudes were recorded at one frequency and one stimulus level. Data from 121 patient ears were analyzed.The key benefit of extracochlear recordings is that they can be performed before, during, and after CI electrode insertion. However, extracochlear ECochG threshold changes before and after CI insertion were relatively small and did not independently correlate well with hearing preservation, although at 250 Hz they added some significant information. Some tendencies-although no significant relationships-were detected between amplitude behavior and hearing preservation. Rising amplitudes seem favorable and falling amplitudes disadvantageous, but constant amplitudes do not appear to allow stringent predictions.Extracochlear ECochG measurements seem to only partially realize expected benefits. The questions now are: do gains justify the effort, and do other procedures or possible combinations lead to greater benefits for patients?


Audiometry, Evoked Response , Auditory Threshold , Cochlea , Cochlear Implantation , Cochlear Implants , Hearing , Humans , Audiometry, Evoked Response/methods , Retrospective Studies , Cochlear Implantation/instrumentation , Female , Middle Aged , Male , Aged , Adult , Hearing/physiology , Cochlea/surgery , Cochlea/physiopathology , Treatment Outcome , Adolescent , Predictive Value of Tests , Young Adult , Child , Audiometry, Pure-Tone , Aged, 80 and over , Child, Preschool , Hearing Loss/diagnosis , Hearing Loss/physiopathology , Hearing Loss/surgery , Hearing Loss/rehabilitation
9.
Trends Hear ; 28: 23312165241248973, 2024.
Article En | MEDLINE | ID: mdl-38717441

To preserve residual hearing during cochlear implant (CI) surgery it is desirable to use intraoperative monitoring of inner ear function (cochlear monitoring). A promising method is electrocochleography (ECochG). Within this project the relations between intracochlear ECochG recordings, position of the recording contact in the cochlea with respect to anatomy and frequency and preservation of residual hearing were investigated. The aim was to better understand the changes in ECochG signals and whether these are due to the electrode position in the cochlea or to trauma generated during insertion. During and after insertion of hearing preservation electrodes, intraoperative ECochG recordings were performed using the CI electrode (MED-EL). During insertion, the recordings were performed at discrete insertion steps on electrode contact 1. After insertion as well as postoperatively the recordings were performed at different electrode contacts. The electrode location in the cochlea during insertion was estimated by mathematical models using preoperative clinical imaging, the postoperative location was measured using postoperative clinical imaging. The recordings were analyzed from six adult CI recipients. In the four patients with good residual hearing in the low frequencies the signal amplitude rose with largest amplitudes being recorded closest to the generators of the stimulation frequency, while in both cases with severe pantonal hearing losses the amplitude initially rose and then dropped. This might be due to various reasons as discussed in the following. Our results indicate that this approach can provide valuable information for the interpretation of intracochlearly recorded ECochG signals.


Audiometry, Evoked Response , Cochlea , Cochlear Implantation , Cochlear Implants , Humans , Cochlea/surgery , Cochlea/physiology , Cochlea/physiopathology , Cochlear Implantation/instrumentation , Cochlear Implantation/methods , Audiometry, Evoked Response/methods , Middle Aged , Aged , Male , Female , Hearing/physiology , Adult , Treatment Outcome , Predictive Value of Tests , Electric Stimulation , Persons With Hearing Impairments/rehabilitation , Persons With Hearing Impairments/psychology , Auditory Threshold/physiology
10.
PLoS One ; 19(5): e0303375, 2024.
Article En | MEDLINE | ID: mdl-38728348

Hearing loss is a pivotal risk factor for dementia. It has recently emerged that a disruption in the intercommunication between the cochlea and brain is a key process in the initiation and progression of this disease. However, whether the cochlear properties can be influenced by pathological signals associated with dementia remains unclear. In this study, using a mouse model of Alzheimer's disease (AD), we investigated the impacts of the AD-like amyloid ß (Aß) pathology in the brain on the cochlea. Despite little detectable change in the age-related shift of the hearing threshold, we observed quantitative and qualitative alterations in the protein profile in perilymph, an extracellular fluid that fills the path of sound waves in the cochlea. Our findings highlight the potential contribution of Aß pathology in the brain to the disturbance of cochlear homeostasis.


Alzheimer Disease , Cochlea , Disease Models, Animal , Perilymph , Animals , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Mice , Perilymph/metabolism , Cochlea/metabolism , Cochlea/pathology , Amyloid beta-Peptides/metabolism , Mice, Transgenic , Hearing Loss/metabolism , Hearing Loss/pathology
11.
Int J Mol Sci ; 25(10)2024 May 09.
Article En | MEDLINE | ID: mdl-38791192

The synapses between inner hair cells (IHCs) and spiral ganglion neurons (SGNs) are the most vulnerable structures in the noise-exposed cochlea. Cochlear synaptopathy results from the disruption of these synapses following noise exposure and is considered the main cause of poor speech understanding in noisy environments, even when audiogram results are normal. Cochlear synaptopathy leads to the degeneration of SGNs if damaged IHC-SGN synapses are not promptly recovered. Oxidative stress plays a central role in the pathogenesis of cochlear synaptopathy. C-Phycocyanin (C-PC) has antioxidant and anti-inflammatory activities and is widely utilized in the food and drug industry. However, the effect of the C-PC on noise-induced cochlear damage is unknown. We first investigated the therapeutic effect of C-PC on noise-induced cochlear synaptopathy. In vitro experiments revealed that C-PC reduced the H2O2-induced generation of reactive oxygen species in HEI-OC1 auditory cells. H2O2-induced cytotoxicity in HEI-OC1 cells was reduced with C-PC treatment. After white noise exposure for 3 h at a sound pressure of 118 dB, the guinea pigs intratympanically administered 5 µg/mL C-PC exhibited greater wave I amplitudes in the auditory brainstem response, more IHC synaptic ribbons and more IHC-SGN synapses according to microscopic analysis than the saline-treated guinea pigs. Furthermore, the group treated with C-PC had less intense 4-hydroxynonenal and intercellular adhesion molecule-1 staining in the cochlea compared with the saline group. Our results suggest that C-PC improves cochlear synaptopathy by inhibiting noise-induced oxidative stress and the inflammatory response in the cochlea.


Cochlea , Intercellular Adhesion Molecule-1 , Noise , Oxidative Stress , Phycocyanin , Synapses , Animals , Oxidative Stress/drug effects , Guinea Pigs , Phycocyanin/pharmacology , Phycocyanin/therapeutic use , Cochlea/metabolism , Cochlea/drug effects , Cochlea/pathology , Synapses/drug effects , Synapses/metabolism , Noise/adverse effects , Intercellular Adhesion Molecule-1/metabolism , Hearing Loss, Noise-Induced/drug therapy , Hearing Loss, Noise-Induced/metabolism , Hearing Loss, Noise-Induced/pathology , Reactive Oxygen Species/metabolism , Male , Spiral Ganglion/drug effects , Spiral Ganglion/metabolism , Spiral Ganglion/pathology , Hydrogen Peroxide/metabolism , Hair Cells, Auditory, Inner/drug effects , Hair Cells, Auditory, Inner/metabolism , Hair Cells, Auditory, Inner/pathology , Antioxidants/pharmacology , Cell Line , Hearing Loss, Hidden
12.
Int J Mol Sci ; 25(10)2024 May 15.
Article En | MEDLINE | ID: mdl-38791427

Age-related hearing loss (HL), or presbycusis, is a complex and heterogeneous condition, affecting a significant portion of older adults and involving various interacting mechanisms. Metabolic presbycusis, a type of age-related HL, is characterized by the dysfunction of the stria vascularis, which is crucial for maintaining the endocochlear potential necessary for hearing. Although attention on metabolic presbycusis has waned in recent years, research continues to identify strial pathology as a key factor in age-related HL. This narrative review integrates past and recent research, bridging findings from animal models and human studies, to examine the contributions of the stria vascularis to age-related HL. It provides a brief overview of the structure and function of the stria vascularis and then examines mechanisms contributing to age-related strial dysfunction, including altered ion transport, changes in pigmentation, inflammatory responses, and vascular atrophy. Importantly, this review outlines the contribution of metabolic mechanisms to age-related HL, highlighting areas for future research. It emphasizes the complex interdependence of metabolic and sensorineural mechanisms in the pathology of age-related HL and highlights the importance of animal models in understanding the underlying mechanisms. The comprehensive and mechanistic investigation of all factors contributing to age-related HL, including cochlear metabolic dysfunction, remains crucial to identifying the underlying mechanisms and developing personalized, protective, and restorative treatments.


Aging , Presbycusis , Stria Vascularis , Humans , Stria Vascularis/metabolism , Stria Vascularis/pathology , Animals , Presbycusis/metabolism , Presbycusis/pathology , Presbycusis/physiopathology , Aging/metabolism , Aging/physiology , Cochlea/metabolism , Cochlea/pathology , Hearing Loss/metabolism , Hearing Loss/pathology
13.
Hear Res ; 447: 109022, 2024 Jun.
Article En | MEDLINE | ID: mdl-38705005

The disruption of ribbon synapses in the cochlea impairs the transmission of auditory signals from the cochlear sensory receptor cells to the auditory cortex. Although cisplatin-induced loss of ribbon synapses is well-documented, and studies have reported nitration of cochlear proteins after cisplatin treatment, yet the underlying mechanism of cochlear synaptopathy is not fully understood. This study tests the hypothesis that cisplatin treatment alters the abundance of cochlear synaptosomal proteins, and selective targeting of nitrative stress prevents the associated synaptic dysfunction. Auditory brainstem responses of mice treated with cisplatin showed a reduction in amplitude and an increase in latency of wave I, indicating cisplatin-induced synaptic dysfunction. The mass spectrometry analysis of cochlear synaptosomal proteins identified 102 proteins that decreased in abundance and 249 that increased in abundance after cisplatin treatment. Pathway analysis suggested that the dysregulated proteins were involved in calcium binding, calcium ion regulation, synapses, and endocytosis pathways. Inhibition of nitrative stress by co-treatment with MnTBAP, a peroxynitrite scavenger, attenuated cisplatin-induced changes in the abundance of 27 proteins. Furthermore, MnTBAP co-treatment prevented the cisplatin-induced decrease in the amplitude and increase in the latency of wave I. Together, these findings suggest a potential role of oxidative/nitrative stress in cisplatin-induced cochlear synaptic dysfunction.


Cisplatin , Cochlea , Evoked Potentials, Auditory, Brain Stem , Proteomics , Synapses , Synaptosomes , Cisplatin/toxicity , Cisplatin/pharmacology , Animals , Cochlea/drug effects , Cochlea/metabolism , Cochlea/pathology , Cochlea/physiopathology , Evoked Potentials, Auditory, Brain Stem/drug effects , Synapses/drug effects , Synapses/metabolism , Synapses/pathology , Synaptosomes/metabolism , Synaptosomes/drug effects , Oxidative Stress/drug effects , Mice, Inbred CBA , Male , Ototoxicity/metabolism , Ototoxicity/physiopathology , Mice
14.
J Acoust Soc Am ; 155(5): 3183-3194, 2024 May 01.
Article En | MEDLINE | ID: mdl-38738939

Medial olivocochlear (MOC) efferents modulate outer hair cell motility through specialized nicotinic acetylcholine receptors to support encoding of signals in noise. Transgenic mice lacking the alpha9 subunits of these receptors (α9KOs) have normal hearing in quiet and noise, but lack classic cochlear suppression effects and show abnormal temporal, spectral, and spatial processing. Mice deficient for both the alpha9 and alpha10 receptor subunits (α9α10KOs) may exhibit more severe MOC-related phenotypes. Like α9KOs, α9α10KOs have normal auditory brainstem response (ABR) thresholds and weak MOC reflexes. Here, we further characterized auditory function in α9α10KO mice. Wild-type (WT) and α9α10KO mice had similar ABR thresholds and acoustic startle response amplitudes in quiet and noise, and similar frequency and intensity difference sensitivity. α9α10KO mice had larger ABR Wave I amplitudes than WTs in quiet and noise. Other ABR metrics of hearing-in-noise function yielded conflicting findings regarding α9α10KO susceptibility to masking effects. α9α10KO mice also had larger startle amplitudes in tone backgrounds than WTs. Overall, α9α10KO mice had grossly normal auditory function in quiet and noise, although their larger ABR amplitudes and hyperreactive startles suggest some auditory processing abnormalities. These findings contribute to the growing literature showing mixed effects of MOC dysfunction on hearing.


Acoustic Stimulation , Auditory Threshold , Evoked Potentials, Auditory, Brain Stem , Mice, Knockout , Noise , Receptors, Nicotinic , Reflex, Startle , Animals , Noise/adverse effects , Receptors, Nicotinic/genetics , Receptors, Nicotinic/deficiency , Perceptual Masking , Behavior, Animal , Mice , Mice, Inbred C57BL , Cochlea/physiology , Cochlea/physiopathology , Male , Phenotype , Olivary Nucleus/physiology , Auditory Pathways/physiology , Auditory Pathways/physiopathology , Female , Auditory Perception/physiology , Hearing
15.
Trends Hear ; 28: 23312165241239541, 2024.
Article En | MEDLINE | ID: mdl-38738337

Cochlear synaptopathy, a form of cochlear deafferentation, has been demonstrated in a number of animal species, including non-human primates. Both age and noise exposure contribute to synaptopathy in animal models, indicating that it may be a common type of auditory dysfunction in humans. Temporal bone and auditory physiological data suggest that age and occupational/military noise exposure also lead to synaptopathy in humans. The predicted perceptual consequences of synaptopathy include tinnitus, hyperacusis, and difficulty with speech-in-noise perception. However, confirming the perceptual impacts of this form of cochlear deafferentation presents a particular challenge because synaptopathy can only be confirmed through post-mortem temporal bone analysis and auditory perception is difficult to evaluate in animals. Animal data suggest that deafferentation leads to increased central gain, signs of tinnitus and abnormal loudness perception, and deficits in temporal processing and signal-in-noise detection. If equivalent changes occur in humans following deafferentation, this would be expected to increase the likelihood of developing tinnitus, hyperacusis, and difficulty with speech-in-noise perception. Physiological data from humans is consistent with the hypothesis that deafferentation is associated with increased central gain and a greater likelihood of tinnitus perception, while human data on the relationship between deafferentation and hyperacusis is extremely limited. Many human studies have investigated the relationship between physiological correlates of deafferentation and difficulty with speech-in-noise perception, with mixed findings. A non-linear relationship between deafferentation and speech perception may have contributed to the mixed results. When differences in sample characteristics and study measurements are considered, the findings may be more consistent.


Cochlea , Speech Perception , Tinnitus , Humans , Cochlea/physiopathology , Tinnitus/physiopathology , Tinnitus/diagnosis , Animals , Speech Perception/physiology , Hyperacusis/physiopathology , Noise/adverse effects , Auditory Perception/physiology , Synapses/physiology , Hearing Loss, Noise-Induced/physiopathology , Hearing Loss, Noise-Induced/diagnosis , Loudness Perception
16.
Sci Rep ; 14(1): 10910, 2024 05 13.
Article En | MEDLINE | ID: mdl-38740884

Transforming growth factor-ß (TGF-ß) signaling plays a significant role in multiple biological processes, including inflammation, immunity, and cell death. However, its specific impact on the cochlea remains unclear. In this study, we aimed to investigate the effects of TGF-ß signaling suppression on auditory function and cochlear pathology in mice with kanamycin-induced ototoxicity. Kanamycin and furosemide (KM-FS) were systemically administered to 8-week-old C57/BL6 mice, followed by immediate topical application of a TGF-ß receptor inhibitor (TGF-ßRI) onto the round window membrane. Results showed significant TGF-ß receptor upregulation in spiral ganglion neurons (SGNs) after KM-FA ototoxicity, whereas expression levels in the TGF-ßRI treated group remained unchanged. Interestingly, despite no significant change in cochlear TGF-ß expression after KM-FS ototoxicity, TGF-ßRI treatment resulted in a significant decrease in TGF-ß signaling. Regarding auditory function, TGF-ßRI treatment offered no therapeutic effects on hearing thresholds and hair cell survival following KM-FS ototoxicity. However, SGN loss and macrophage infiltration were significantly increased with TGF-ßRI treatment. These results imply that inhibition of TGF-ß signaling after KM-FS ototoxicity promotes cochlear inflammation and SGN degeneration.


Kanamycin , Mice, Inbred C57BL , Ototoxicity , Signal Transduction , Spiral Ganglion , Transforming Growth Factor beta , Animals , Kanamycin/toxicity , Signal Transduction/drug effects , Ototoxicity/etiology , Ototoxicity/metabolism , Ototoxicity/pathology , Transforming Growth Factor beta/metabolism , Mice , Spiral Ganglion/drug effects , Spiral Ganglion/metabolism , Spiral Ganglion/pathology , Cochlea/metabolism , Cochlea/drug effects , Cochlea/pathology , Hair Cells, Auditory/drug effects , Hair Cells, Auditory/metabolism , Hair Cells, Auditory/pathology , Furosemide/pharmacology , Male
17.
Hear Res ; 447: 109027, 2024 Jun.
Article En | MEDLINE | ID: mdl-38723386

Despite that fact that the cochlear implant (CI) is one of the most successful neuro-prosthetic devices which allows hearing restoration, several aspects still need to be improved. Interactions between stimulating electrodes through current spread occurring within the cochlea drastically limit the number of discriminable frequency channels and thus can ultimately result in poor speech perception. One potential solution relies on the use of new pulse shapes, such as asymmetric pulses, which can potentially reduce the current spread within the cochlea. The present study characterized the impact of changing electrical pulse shapes from the standard biphasic symmetric to the asymmetrical shape by quantifying the evoked firing rate and the spatial activation in the guinea pig primary auditory cortex (A1). At a fixed charge, the firing rate and the spatial activation in A1 decreased by 15 to 25 % when asymmetric pulses were used to activate the auditory nerve fibers, suggesting a potential reduction of the spread of excitation inside the cochlea. A strong "polarity-order" effect was found as the reduction was more pronounced when the first phase of the pulse was cathodic with high amplitude. These results suggest that the use of asymmetrical pulse shapes in clinical settings can potentially reduce the channel interactions in CI users.


Auditory Cortex , Cochlear Implants , Electric Stimulation , Animals , Guinea Pigs , Auditory Cortex/physiology , Evoked Potentials, Auditory , Cochlear Nerve/physiopathology , Acoustic Stimulation , Cochlea/surgery , Cochlear Implantation/instrumentation , Action Potentials , Female
18.
Hear Res ; 449: 109029, 2024 Aug.
Article En | MEDLINE | ID: mdl-38820739

The study focuses on the underlying regulatory mechanism of age-related hearing loss (ARHL), which results from autophagy dysregulation mediated by miR-130b-3p targeting PPARγ. We constructed miR-130b-3p knockout (antagomir) and PPARγ over-expression (OE-PPARγ) mice model by injecting mmu-miR-130b-3p antagomir and HBAAV2/Anc80-m-Pparg-T2A-mCHerry into the right ear' round window of each mouse, respectively. In vitro, we introduced oxidative stress within HEI-OC1 cells by H2O2 and exogenously changed the miR-130b-3p and PPARγ levels. MiRNA level was detected by RT-qPCR, proteins by western blotting and immunohistochemistry. Morphology of autophagosomes was observed by electron microscopy. In vivo, the cochlea of aged mice showed higher miR-130b-3p expression and lower PPARγ expression, while exogenous inhibition of miR-130b-3p up-regulated PPARγ expression. Autophagy-related biomarkers expression (ATG5, Beclin-1 and LC3B II/I) decreased in aged mice, which reversely increased after the inhibition of miR-130b-3p. The elevation of PPARγ demonstrated similar effects. Contrarily, exogenous overexpression of miR-130b-3p resulted in the decrease of ATG5, Beclin-1 and LC3B II/I. We created oxidative stress within HEI-OC1 by H2O2, subsequently observed the formation of autophagosomes under electron microscope, so as the elevated cell apoptosis rate and weakened cell viability. MiR-130b-3p/PPARγ contributed to the premature senescence of these H2O2-induced HEI-OC1 cells. MiR-130b-3p regulated HEI-OC1 cell growth by targeting PPARγ, thus leading to ARHL.


Autophagy , Disease Models, Animal , Mice, Knockout , MicroRNAs , Oxidative Stress , PPAR gamma , Presbycusis , Animals , PPAR gamma/metabolism , PPAR gamma/genetics , MicroRNAs/metabolism , MicroRNAs/genetics , Mice , Presbycusis/genetics , Presbycusis/metabolism , Presbycusis/pathology , Presbycusis/physiopathology , Cell Line , Aging/metabolism , Aging/pathology , Mice, Inbred C57BL , Age Factors , Signal Transduction , Hearing/genetics , Cochlea/metabolism , Cochlea/pathology , Apoptosis , Gene Expression Regulation
19.
Hear Res ; 448: 109030, 2024 Jul.
Article En | MEDLINE | ID: mdl-38776705

Sex is a pivotal biological factor that significantly impacts tissue homeostasis and disease susceptibility. In the auditory system, sex differences have been observed in cochlear physiology and responses to pathological conditions. However, the underlying molecular mechanisms responsible for these differences remain elusive. The current research explores the differences in gene expression profiles in the cochlea between male and female mice, aiming to understand the functional implication of sex-biased gene expression in each sex. Using RNA-sequencing analysis on cochlear tissues obtained from male and female mice, we identified a significant number of genes exhibiting sex-biased expression differences. While some of these differentially expressed genes are located on sex chromosomes, most are found on autosomal chromosomes. Further bioinformatic analysis revealed that these genes are involved in several key cellular functions. In males, these genes are notably linked to oxidative phosphorylation and RNA synthesis and processing, suggesting their involvement in mitochondrial energy production and regulatory control of gene expression. In contrast, sex-biased genes are associated with mechano-transduction and synaptic transmission within female cochleae. Collectively, our study provides valuable insights into the molecular differences between the sexes and emphasizes the need for future research to uncover their functional implications and relevance to auditory health and disease development.


Cochlea , Gene Expression Profiling , Transcriptome , Animals , Female , Cochlea/metabolism , Male , Sex Factors , Mice , RNA-Seq , Mechanotransduction, Cellular , Mice, Inbred C57BL , Synaptic Transmission/genetics , Sex Characteristics , Gene Expression Regulation , Sex Chromosomes/genetics
20.
Hear Res ; 447: 109021, 2024 Jun.
Article En | MEDLINE | ID: mdl-38703432

Understanding the complex pathologies associated with hearing loss is a significant motivation for conducting inner ear research. Lifelong exposure to loud noise, ototoxic drugs, genetic diversity, sex, and aging collectively contribute to human hearing loss. Replicating this pathology in research animals is challenging because hearing impairment has varied causes and different manifestations. A central aspect, however, is the loss of sensory hair cells and the inability of the mammalian cochlea to replace them. Researching therapeutic strategies to rekindle regenerative cochlear capacity, therefore, requires the generation of animal models in which cochlear hair cells are eliminated. This review discusses different approaches to ablate cochlear hair cells in adult mice. We inventoried the cochlear cyto- and histo-pathology caused by acoustic overstimulation, systemic and locally applied drugs, and various genetic tools. The focus is not to prescribe a perfect damage model but to highlight the limitations and advantages of existing approaches and identify areas for further refinement of damage models for use in regenerative studies.


Cochlea , Disease Models, Animal , Hair Cells, Auditory , Regeneration , Animals , Hair Cells, Auditory/pathology , Hair Cells, Auditory/metabolism , Mice , Cochlea/pathology , Cochlea/physiopathology , Humans , Hearing , Hearing Loss, Noise-Induced/physiopathology , Hearing Loss, Noise-Induced/pathology , Hearing Loss/pathology , Hearing Loss/physiopathology , Acoustic Stimulation
...