Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.007
Filter
1.
Cancer Biol Med ; 21(7)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38953696

ABSTRACT

OBJECTIVE: Mitochondrial fatty acid oxidation is a metabolic pathway whose dysregulation is recognized as a critical factor in various cancers, because it sustains cancer cell survival, proliferation, and metastasis. The acyl-CoA synthetase long-chain (ACSL) family is known to activate long-chain fatty acids, yet the specific role of ACSL3 in breast cancer has not been determined. METHODS: We assessed the prognostic value of ACSL3 in breast cancer by using data from tumor samples. Gain-of-function and loss-of-function assays were also conducted to determine the roles and downstream regulatory mechanisms of ACSL3 in vitro and in vivo. RESULTS: ACSL3 expression was notably downregulated in breast cancer tissues compared with normal tissues, and this phenotype correlated with improved survival outcomes. Functional experiments revealed that ACSL3 knockdown in breast cancer cells promoted cell proliferation, migration, and epithelial-mesenchymal transition. Mechanistically, ACSL3 was found to inhibit ß-oxidation and the formation of associated byproducts, thereby suppressing malignant behavior in breast cancer. Importantly, ACSL3 was found to interact with YES proto-oncogene 1, a member of the Src family of tyrosine kinases, and to suppress its activation through phosphorylation at Tyr419. The decrease in activated YES1 consequently inhibited YAP1 nuclear colocalization and transcriptional complex formation, and the expression of its downstream genes in breast cancer cell nuclei. CONCLUSIONS: ACSL3 suppresses breast cancer progression by impeding lipid metabolism reprogramming, and inhibiting malignant behaviors through phospho-YES1 mediated inhibition of YAP1 and its downstream pathways. These findings suggest that ACSL3 may serve as a potential biomarker and target for comprehensive therapeutic strategies for breast cancer.


Subject(s)
Breast Neoplasms , Cell Proliferation , Coenzyme A Ligases , Disease Progression , Lipid Metabolism , Proto-Oncogene Mas , Proto-Oncogene Proteins c-yes , Transcription Factors , YAP-Signaling Proteins , Humans , Breast Neoplasms/pathology , Breast Neoplasms/metabolism , Breast Neoplasms/genetics , Female , Coenzyme A Ligases/metabolism , Coenzyme A Ligases/genetics , YAP-Signaling Proteins/metabolism , Animals , Mice , Transcription Factors/metabolism , Transcription Factors/genetics , Proto-Oncogene Proteins c-yes/metabolism , Proto-Oncogene Proteins c-yes/genetics , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Epithelial-Mesenchymal Transition , Mice, Nude , Prognosis , Cell Movement , Signal Transduction , Metabolic Reprogramming
2.
PLoS Pathog ; 20(7): e1012376, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39008531

ABSTRACT

Antimicrobial resistance is an ongoing "one health" challenge of global concern. The acyl-ACP synthetase (termed AasS) of the zoonotic pathogen Vibrio harveyi recycles exogenous fatty acid (eFA), bypassing the requirement of type II fatty acid synthesis (FAS II), a druggable pathway. A growing body of bacterial AasS-type isoenzymes compromises the clinical efficacy of FAS II-directed antimicrobials, like cerulenin. Very recently, an acyl adenylate mimic, C10-AMS, was proposed as a lead compound against AasS activity. However, the underlying mechanism remains poorly understood. Here we present two high-resolution cryo-EM structures of AasS liganded with C10-AMS inhibitor (2.33 Å) and C10-AMP intermediate (2.19 Å) in addition to its apo form (2.53 Å). Apart from our measurements for C10-AMS' Ki value of around 0.6 µM, structural and functional analyses explained how this inhibitor interacts with AasS enzyme. Unlike an open state of AasS, ready for C10-AMP formation, a closed conformation is trapped by the C10-AMS inhibitor. Tight binding of C10-AMS blocks fatty acyl substrate entry, and therefore inhibits AasS action. Additionally, this intermediate analog C10-AMS appears to be a mixed-type AasS inhibitor. In summary, our results provide the proof of principle that inhibiting salvage of eFA by AasS reverses the FAS II bypass. This facilitates the development of next-generation anti-bacterial therapeutics, esp. the dual therapy consisting of C10-AMS scaffold derivatives combined with certain FAS II inhibitors.


Subject(s)
Fatty Acids , Vibrio , Fatty Acids/metabolism , Fatty Acids/chemistry , Vibrio/drug effects , Bacterial Proteins/metabolism , Bacterial Proteins/chemistry , Anti-Bacterial Agents/pharmacology , Cryoelectron Microscopy , Coenzyme A Ligases/metabolism , Coenzyme A Ligases/antagonists & inhibitors , Fatty Acid Synthase, Type II/metabolism , Fatty Acid Synthase, Type II/antagonists & inhibitors
3.
Biol Direct ; 19(1): 57, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39039611

ABSTRACT

Laryngeal carcinoma (LC) is a common cancer of the respiratory tract. This study aims to investigate the role of RNA-binding motif protein 15 (RBM15) in the cisplatin (DDP) resistance of LC cells. LC-DDP-resistant cells were constructed. RBM15, lysine-specific demethylase 5B (KDM5B), lncRNA Fer-1 like family member 4 (FER1L4), lncRNA KCNQ1 overlapping transcript 1 (KCNQ1OT1), glutathione peroxidase 4 (GPX4), and Acyl-CoA synthetase long-chain family (ACSL4) was examined. Cell viability, IC50, and proliferation were assessed after RBM15 downregulation. The enrichment of insulin-like growth factor 2 mRNA-binding protein 3 (IGF2BP3) and N6-methyladenosine (m6A) on KDM5B was analyzed. KDM5B mRNA stability was measured after actinomycin D treatment. A tumor xenograft assay was conducted to verify the role of RBM15 in LC. Results showed that RBM15 was upregulated in LC and its knockdown decreased IC50, cell viability, proliferation, glutathione, and upregulated iron ion content, ROS, malondialdehyde, ACSL4, and ferroptosis. Mechanistically, RBM15 improved KDM5B stability in an IGF2BP3-dependent manner, resulting in FER1L4 downregulation and GPX4 upregulation. KDM5B increased KCNQ1OT1 and inhibited ACSL4. KDM5B/KCNQ1OT1 overexpression or FER1L4 knockdown promoted DDP resistance in LC by inhibiting ferroptosis. In conclusion, RBM15 promoted KDM5B expression, and KDM5B upregulation inhibited ferroptosis and promoted DDP resistance in LC by downregulating FER1L4 and upregulating GPX4, as well as by upregulating KCNQ1OT1 and inhibiting ACSL4. Silencing RBM15 inhibited tumor growth in vivo.


Subject(s)
Cisplatin , Drug Resistance, Neoplasm , Epigenesis, Genetic , Ferroptosis , Laryngeal Neoplasms , RNA-Binding Proteins , Ferroptosis/genetics , Cisplatin/pharmacology , Drug Resistance, Neoplasm/genetics , Humans , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Cell Line, Tumor , Mice , Animals , Laryngeal Neoplasms/genetics , Laryngeal Neoplasms/metabolism , Mice, Nude , Gene Expression Regulation, Neoplastic , Cell Proliferation/drug effects , Antineoplastic Agents/pharmacology , Coenzyme A Ligases/genetics , Coenzyme A Ligases/metabolism
4.
Biomolecules ; 14(7)2024 Jul 21.
Article in English | MEDLINE | ID: mdl-39062590

ABSTRACT

Ferroptosis, an iron-dependent form of non-apoptotic cell death, plays a pivotal role in various diseases and is gaining considerable attention in the realm of endometriosis. Considering the classical pathomechanism theories, we hypothesized that ferroptosis, potentially driven by increased iron content at ectopic sites, may contribute to the progression of endometriosis. This retrospective case-control study provides a comprehensive immunohistochemical assessment of the expression and tissue distribution of established ferroptosis markers: GPX4, ACSL4, and TfR1 in endometriosis patients. The case group consisted of 38 women with laparoscopically and histologically confirmed endometriosis and the control group consisted of 18 women with other gynecological conditions. Our study revealed a significant downregulation of GPX4 in stromal cells of endometriosis patients (M = 59.7% ± 42.4 versus 90.0% ± 17.5 in the control group, t (54) = -2.90, p = 0.005). This finding aligned with slightly, but not significantly, higher iron levels detected in the blood of endometriosis patients, using hemoglobin as an indirect predictor (Hb 12.8 (12.2-13.5) g/dL versus 12.5 (12.2-13.4) g/dL in the control group; t (54) = -0.897, p = 0.374). Interestingly, there was no concurrent upregulation of TfR1 (M = 0.7 ± 1.2 versus 0.2 ± 0.4 for EM, t (54) = 2.552, p = 0.014), responsible for iron uptake into cells. Our empirical findings provide support for the involvement of ferroptosis in the context of endometriosis. However, variances in expression patterns within stromal and epithelial cellular subsets call for further in-depth investigations.


Subject(s)
Coenzyme A Ligases , Endometriosis , Ferroptosis , Phospholipid Hydroperoxide Glutathione Peroxidase , Receptors, Transferrin , Humans , Female , Endometriosis/metabolism , Endometriosis/pathology , Receptors, Transferrin/metabolism , Receptors, Transferrin/genetics , Coenzyme A Ligases/metabolism , Coenzyme A Ligases/genetics , Adult , Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism , Phospholipid Hydroperoxide Glutathione Peroxidase/genetics , Case-Control Studies , Retrospective Studies , Antigens, CD/metabolism , Antigens, CD/genetics , Iron/metabolism , Stromal Cells/metabolism , Stromal Cells/pathology , Middle Aged , Biomarkers/metabolism
5.
FASEB J ; 38(13): e23788, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38963329

ABSTRACT

Intermittent hypoxia (IH) is an independent risk factor for metabolic dysfunction-associated fatty liver disease (MAFLD). Copper deficiency can disrupt redox homeostasis, iron, and lipid metabolism. Here, we investigated whether hepatic copper deficiency plays a role in IH-associated MAFLD and explored the underlying mechanism(s). Male C57BL/6 mice were fed a western-type diet with adequate copper (CuA) or marginally deficient copper (CuD) and were exposed separately to room air (RA) or IH. Hepatic histology, plasma biomarkers, copper-iron status, and oxidative stress were assessed. An in vitro HepG2 cell lipotoxicity model and proteomic analysis were used to elucidate the specific targets involved. We observed that there were no differences in hepatic phenotypes between CuA-fed and CuD-fed mice under RA. However, in IH exposure, CuD-fed mice showed more pronounced hepatic steatosis, liver injury, and oxidative stress than CuA-fed mice. IH induced copper accumulation in the brain and heart and exacerbated hepatic copper deficiency and secondary iron deposition. In vitro, CuD-treated cells with IH exposure showed elevated levels of lipid accumulation, oxidative stress, and ferroptosis susceptibility. Proteomic analysis identified 360 upregulated and 359 downregulated differentially expressed proteins between CuA and CuD groups under IH; these proteins were mainly enriched in citrate cycle, oxidative phosphorylation, fatty acid metabolism, the peroxisome proliferator-activated receptor (PPAR)α pathway, and ferroptosis. In IH exposure, CuD significantly upregulated the ferroptosis-promoting factor arachidonyl-CoA synthetase long chain family member (ACSL)4. ACSL4 knockdown markedly eliminated CuD-induced ferroptosis and lipid accumulation in IH exposure. In conculsion, IH can lead to reduced hepatic copper reserves and secondary iron deposition, thereby inducing ferroptosis and subsequent MAFLD progression. Insufficient dietary copper may worsen IH-associated MAFLD.


Subject(s)
Copper , Ferroptosis , Hypoxia , Mice, Inbred C57BL , Animals , Copper/metabolism , Copper/deficiency , Male , Mice , Hypoxia/metabolism , Humans , Hep G2 Cells , Liver/metabolism , Liver/pathology , Oxidative Stress , Lipid Metabolism , Fatty Liver/metabolism , Fatty Liver/pathology , Fatty Liver/etiology , Iron/metabolism , Coenzyme A Ligases/metabolism , Coenzyme A Ligases/genetics , PPAR alpha/metabolism , PPAR alpha/genetics
6.
Cell Rep ; 43(7): 114406, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-38963759

ABSTRACT

Cancer cellular heterogeneity and therapy resistance arise substantially from metabolic and transcriptional adaptations, but how these are interconnected is poorly understood. Here, we show that, in melanoma, the cancer stem cell marker aldehyde dehydrogenase 1A3 (ALDH1A3) forms an enzymatic partnership with acetyl-coenzyme A (CoA) synthetase 2 (ACSS2) in the nucleus to couple high glucose metabolic flux with acetyl-histone H3 modification of neural crest (NC) lineage and glucose metabolism genes. Importantly, we show that acetaldehyde is a metabolite source for acetyl-histone H3 modification in an ALDH1A3-dependent manner, providing a physiologic function for this highly volatile and toxic metabolite. In a zebrafish melanoma residual disease model, an ALDH1-high subpopulation emerges following BRAF inhibitor treatment, and targeting these with an ALDH1 suicide inhibitor, nifuroxazide, delays or prevents BRAF inhibitor drug-resistant relapse. Our work reveals that the ALDH1A3-ACSS2 couple directly coordinates nuclear acetaldehyde-acetyl-CoA metabolism with specific chromatin-based gene regulation and represents a potential therapeutic vulnerability in melanoma.


Subject(s)
Acetaldehyde , Melanoma , Zebrafish , Melanoma/metabolism , Melanoma/genetics , Melanoma/pathology , Melanoma/drug therapy , Acetaldehyde/metabolism , Acetaldehyde/pharmacology , Animals , Humans , Cell Line, Tumor , Aldehyde Oxidoreductases/metabolism , Aldehyde Oxidoreductases/genetics , Histones/metabolism , Coenzyme A Ligases/metabolism , Coenzyme A Ligases/genetics , Transcription, Genetic/drug effects , Neural Crest/metabolism , Neural Crest/drug effects , Gene Expression Regulation, Neoplastic/drug effects
7.
Biomed Pharmacother ; 177: 117081, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38971008

ABSTRACT

The discovery of an inhibitor for acyl-CoA synthetase long-chain family member 4 (ACSL4), a protein involved in the process of cell injury through ferroptosis, has the potential to ameliorate cell damage. In this study, we aimed to investigate the potential of berberine (BBR) as an inhibitor of ACSL4 in order to suppress endothelial ferroptosis and provide protection against atherosclerosis. An atherosclerosis model was created in ApoE-/- mice by feeding a high fat diet for 16 weeks. Additionally, a mouse model with endothelium-specific overexpression of ACSL4 was established. BBR was administered orally to assess its potential therapeutic effects on atherosclerosis. Human umbilical vein endothelial cells (HUVECs) were exposed to oxidized low density lipoprotein (ox-LDL) to simulate atherosclerotic endothelial damage in vitro. The interaction between ACSL4 and BBR has been confirmed, with BBR playing a role in inhibiting erastin-induced ferroptosis by regulating ACSL4. Additionally, BBR has been found to inhibit lipid deposition, plaque formation, and collagen deposition in the aorta, thereby delaying the progression of atherosclerosis. It also restored the abnormal expression of ferroptosis-related proteins in atherosclerotic vascular endothelial cells both in vivo and in vitro. In conclusion, BBR, acting as an ACSL4 inhibitor, can improve atherosclerosis by inhibiting ferroptosis in endothelial cells. This highlights the potential of targeted inhibition of vascular endothelial ACSL4 as a strategy for treating atherosclerosis, with BBR being a candidate for this purpose.


Subject(s)
Atherosclerosis , Berberine , Coenzyme A Ligases , Ferroptosis , Human Umbilical Vein Endothelial Cells , Mice, Inbred C57BL , Animals , Atherosclerosis/drug therapy , Atherosclerosis/pathology , Atherosclerosis/metabolism , Ferroptosis/drug effects , Coenzyme A Ligases/metabolism , Coenzyme A Ligases/antagonists & inhibitors , Humans , Human Umbilical Vein Endothelial Cells/drug effects , Human Umbilical Vein Endothelial Cells/metabolism , Berberine/pharmacology , Mice , Male , Diet, High-Fat/adverse effects , Disease Models, Animal
8.
Sci Rep ; 14(1): 15968, 2024 07 10.
Article in English | MEDLINE | ID: mdl-38987531

ABSTRACT

To analyze the mechanism of how interfering with the cytokeratin 19 (CK19) pathway via the ferroptosis pathway affects tumor biological behaviors in the process of oral squamous cell carcinoma (OSCC) development. TCGA was used to analyze the expression of CK19 in pan-cancer and head and neck squamous cell carcinoma (HNSC) and to explore the ferroptosis-related genes related to HNSC. The effect of silencing CK19 on the migration ability of HSC-4 cells was verified by wound healing and migration assay. HSC-4 cells with silencing of CK19 and tumor-bearing nude mouse model were constructed. RT-qPCR, immunofluorescence and western blot were used to analyze the expression of ferroptosis-related genes. CK19 is highly expressed in human OSCC and nude mice. The migration ability of cells in the CK19-silenced group was lower than that of the control group. In vivo and in vitro, CK19 was negatively correlated with the expression of ACSL4 and positively correlated with the expression of GPX4. Compared with the control group, GPX4 expression was down-regulated and ACSL4 expression was up-regulated in the CK19-silenced group. Silencing CK19 also increased intracellular Fe2+ content and MDA content. Silencing CK19 can affect the expression of GPX4 and ACSL4 to regulate ferroptosis and at the same time increase the content of MDA, Fe2+ and ROS levels, thereby activating the regulation of ferroptosis pathway in the development of OSCC.


Subject(s)
Coenzyme A Ligases , Ferroptosis , Gene Expression Regulation, Neoplastic , Keratin-19 , Mice, Nude , Mouth Neoplasms , Phospholipid Hydroperoxide Glutathione Peroxidase , Ferroptosis/genetics , Animals , Humans , Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism , Phospholipid Hydroperoxide Glutathione Peroxidase/genetics , Mouth Neoplasms/genetics , Mouth Neoplasms/pathology , Mouth Neoplasms/metabolism , Cell Line, Tumor , Mice , Coenzyme A Ligases/genetics , Coenzyme A Ligases/metabolism , Keratin-19/metabolism , Keratin-19/genetics , Gene Silencing , Cell Movement/genetics , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/metabolism , Carcinoma, Squamous Cell/pathology
9.
Cell Death Dis ; 15(7): 545, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39085201

ABSTRACT

Chemotherapeutic efficacy is seriously impeded by chemoresistance in more than half of hepatocellular carcinoma (HCC) patients. However, the mechanisms involved in chemotherapy-induced upregulation of chemoresistant genes are not fully understood. Here, this study unravels a novel mechanism controlling nuclear acetyl-CoA production to activate the transcription of chemoresistant genes in HCC. NAT10 is upregulated in HCC tissues and its upregulation is correlated with poor prognosis of HCC patients. NAT10 is also upregulated in chemoresistant HCC cells. Targeting NAT10 increases the cytotoxicity of chemotherapy in HCC cells and mouse xenografts. Upon chemotherapy, NAT10 translocates from the nucleolus to the nucleus to activate the transcription of CYP2C9 and PIK3R1. Additionally, nuclear acetyl-CoA is specifically upregulated by NAT10. Mechanistically, NAT10 binds with ACLY in the nucleus and acetylates ACLY at K468 to counteract the SQSTM1-mediated degradation upon chemotherapy. ACLY K468-Ac specifically accumulates in the nucleus and increases nuclear acetyl-CoA production to activate the transcription of CYP2C9 and PIK3R1 through enhancing H3K27ac. Importantly, K468 is required for nuclear localization of ACLY. Significantly, ACLY K468-Ac is upregulated in HCC tissues, and ablation of ACLY K468-Ac sensitizes HCC cells and mouse xenografts to chemotherapy. Collectively, these findings identify NAT10 as a novel chemoresistant driver and the blockage of NAT10-mediated ACLY K468-Ac possesses the potential to attenuate HCC chemoresistance.


Subject(s)
Acetyl Coenzyme A , Carcinoma, Hepatocellular , Cell Nucleus , Drug Resistance, Neoplasm , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/genetics , Liver Neoplasms/metabolism , Liver Neoplasms/drug therapy , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Acetyl Coenzyme A/metabolism , Drug Resistance, Neoplasm/genetics , Drug Resistance, Neoplasm/drug effects , Animals , Acetylation , Mice , Cell Nucleus/metabolism , Cell Line, Tumor , Mice, Nude , Coenzyme A Ligases/metabolism , Coenzyme A Ligases/genetics , Gene Expression Regulation, Neoplastic/drug effects , N-Terminal Acetyltransferases/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Mice, Inbred BALB C , Male
10.
Ecotoxicol Environ Saf ; 280: 116553, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38850699

ABSTRACT

The incidence of nonalcoholic steatohepatitis (NASH) is related with perfluorooctane sulfonate (PFOS), yet the mechanism remains ill-defined. Mounting evidence suggests that ferroptosis plays a crucial role in the initiation of NASH. In this study, we used mice and human hepatocytes L-02 to investigate the role of ferroptosis in PFOS-induced NASH and the effect and molecular mechanism of PFOS on liver ferroptosis. We found here that PFOS caused NASH in mice, and lipid accumulation and inflammatory response in the L-02 cells. PFOS induced hepatic ferroptosis in vivo and in vitro, as evidenced by the decrease in glutathione peroxidase 4 (GPX4), and the increases in cytosolic iron, acyl-CoA synthetase long-chain family member 4 (ACSL4) and lipid peroxidation. In the PFOS-treated cells, the increases in the inflammatory factors and lipid contents were reversed by ferroptosis inhibitor. PFOS-induced ferroptosis was relieved by autophagy inhibitor. The expression of mitochondrial calcium uniporter (MCU) was accelerated by PFOS, leading to subsequent mitochondrial calcium accumulation, and inhibiting autophagy reversed the increase in MCU. Inhibiting mitochondrial calcium reversed the variations in GPX4 and cytosolic iron, without influencing the change in ACSL4, induced by PFOS. MCU interacted with ACSL4 and the siRNA against MCU reversed the changes in ACSL4,GPX4 and cytosolic iron systemically. This study put forward the involvement of hepatic ferroptosis in PFOS-induced NASH and identified MCU as the mediator of the autophagy-dependent ferroptosis.


Subject(s)
Alkanesulfonic Acids , Autophagy , Calcium , Coenzyme A Ligases , Ferroptosis , Fluorocarbons , Non-alcoholic Fatty Liver Disease , Ferroptosis/drug effects , Fluorocarbons/toxicity , Animals , Alkanesulfonic Acids/toxicity , Mice , Non-alcoholic Fatty Liver Disease/chemically induced , Non-alcoholic Fatty Liver Disease/pathology , Autophagy/drug effects , Coenzyme A Ligases/metabolism , Humans , Calcium/metabolism , Calcium Channels/metabolism , Male , Mice, Inbred C57BL , Mitochondria/drug effects , Mitochondria/metabolism , Cell Line , Hepatocytes/drug effects
11.
Biomolecules ; 14(6)2024 Jun 16.
Article in English | MEDLINE | ID: mdl-38927115

ABSTRACT

Resveratrol, a phenylpropanoid compound, exhibits diverse pharmacological properties, making it a valuable candidate for health and disease management. However, the demand for resveratrol exceeds the capacity of plant extraction methods, necessitating alternative production strategies. Microbial synthesis offers several advantages over plant-based approaches and presents a promising alternative. Yarrowia lipolytica stands out among microbial hosts due to its safe nature, abundant acetyl-CoA and malonyl-CoA availability, and robust pentose phosphate pathway. This study aimed to engineer Y. lipolytica for resveratrol production. The resveratrol biosynthetic pathway was integrated into Y. lipolytica by adding genes encoding tyrosine ammonia lyase from Rhodotorula glutinis, 4-coumarate CoA ligase from Nicotiana tabacum, and stilbene synthase from Vitis vinifera. This resulted in the production of 14.3 mg/L resveratrol. A combination of endogenous and exogenous malonyl-CoA biosynthetic modules was introduced to enhance malonyl-CoA availability. This included genes encoding acetyl-CoA carboxylase 2 from Arabidopsis thaliana, malonyl-CoA synthase, and a malonate transporter protein from Bradyrhizobium diazoefficiens. These strategies increased resveratrol production to 51.8 mg/L. The further optimization of fermentation conditions and the utilization of sucrose as an effective carbon source in YP media enhanced the resveratrol concentration to 141 mg/L in flask fermentation. By combining these strategies, we achieved a titer of 400 mg/L resveratrol in a controlled fed-batch bioreactor. These findings demonstrate the efficacy of Y. lipolytica as a platform for the de novo production of resveratrol and highlight the importance of metabolic engineering, enhancing malonyl-CoA availability, and media optimization for improved resveratrol production.


Subject(s)
Metabolic Engineering , Resveratrol , Sucrose , Yarrowia , Resveratrol/metabolism , Yarrowia/genetics , Yarrowia/metabolism , Metabolic Engineering/methods , Sucrose/metabolism , Acyltransferases/genetics , Acyltransferases/metabolism , Vitis/microbiology , Vitis/genetics , Vitis/metabolism , Coenzyme A Ligases/metabolism , Coenzyme A Ligases/genetics , Malonyl Coenzyme A/metabolism , Nicotiana/genetics , Nicotiana/metabolism , Nicotiana/microbiology , Rhodotorula/genetics , Rhodotorula/metabolism , Fermentation , Arabidopsis/genetics , Arabidopsis/metabolism , Ammonia-Lyases , Bacterial Proteins
12.
Crit Rev Eukaryot Gene Expr ; 34(5): 1-13, 2024.
Article in English | MEDLINE | ID: mdl-38842200

ABSTRACT

SIAH2 function as an oncogene in various cancer. However, the roles of SIAH2 in hepatocellular carcinoma (HCC) are still unknown. This study aimed to investigate the roles of SIAH2 in HCC. Immunohistochemistry was used determine SIAH2 and ACSL4 expression in clinical samples. RT-qPCR was used to determine mRNA expression. Western blot assay was applied for determining protein expression. Ubiquitination assay was conducted for determining ubiquitination of ACSL4. Xenograft experiment was applied for determining tumor growth. Flow cytometry was applied to determine the functions of CD4+ and CD8+ T cells. SIAH2 expression was overexpressed in HCC tumors. High levels of SIAH2 predicted poor outcomes. However, SIAH2 knockdown promoted the proliferation of CD8+ T cells as well as promoted the ferroptosis of tumor cells, inhibiting tumor growth in HCC. ACSL4 is required for CD8+ T cell-mediated ferroptosis of HCC cells. However, SIAH2 induced ubiquitination of ACSL4 and inhibited its expression. SIAH2 specific inhibitor menadione promoted the immune checkpoint blockade. Taken together, SIAH2-mediated inactivation of CD8+ T cells inhibits the ferroptosis of HCC via mediating ubiquitination of ACSL4. Therefore, targeting SIAH2 may be a promising strategy for HCC.


Subject(s)
CD8-Positive T-Lymphocytes , Carcinoma, Hepatocellular , Coenzyme A Ligases , Liver Neoplasms , Ubiquitin-Protein Ligases , Humans , Liver Neoplasms/metabolism , Liver Neoplasms/genetics , Liver Neoplasms/pathology , CD8-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/immunology , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Animals , Mice , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Coenzyme A Ligases/metabolism , Coenzyme A Ligases/genetics , Nuclear Proteins/metabolism , Nuclear Proteins/genetics , Cell Line, Tumor , Ubiquitination , Male , Female , Cell Proliferation , Gene Expression Regulation, Neoplastic
13.
Nat Commun ; 15(1): 4760, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38834654

ABSTRACT

Older livers are more prone to hepatic ischaemia/reperfusion injury (HIRI), which severely limits their utilization in liver transplantation. The potential mechanism remains unclear. Here, we demonstrate older livers exhibit increased ferroptosis during HIRI. Inhibiting ferroptosis significantly attenuates older HIRI phenotypes. Mass spectrometry reveals that fat mass and obesity-associated gene (FTO) expression is downregulated in older livers, especially during HIRI. Overexpressing FTO improves older HIRI phenotypes by inhibiting ferroptosis. Mechanistically, acyl-CoA synthetase long chain family 4 (ACSL4) and transferrin receptor protein 1 (TFRC), two key positive contributors to ferroptosis, are FTO targets. For ameliorative effect, FTO requires the inhibition of Acsl4 and Tfrc mRNA stability in a m6A-dependent manner. Furthermore, we demonstrate nicotinamide mononucleotide can upregulate FTO demethylase activity, suppressing ferroptosis and decreasing older HIRI. Collectively, these findings reveal an FTO-ACSL4/TFRC regulatory pathway that contributes to the pathogenesis of older HIRI, providing insight into the clinical translation of strategies related to the demethylase activity of FTO to improve graft function after older donor liver transplantation.


Subject(s)
Alpha-Ketoglutarate-Dependent Dioxygenase FTO , Coenzyme A Ligases , Ferroptosis , Liver , Receptors, Transferrin , Reperfusion Injury , Up-Regulation , Reperfusion Injury/metabolism , Reperfusion Injury/genetics , Reperfusion Injury/pathology , Animals , Alpha-Ketoglutarate-Dependent Dioxygenase FTO/metabolism , Alpha-Ketoglutarate-Dependent Dioxygenase FTO/genetics , Ferroptosis/genetics , Liver/metabolism , Liver/pathology , Mice , Receptors, Transferrin/metabolism , Receptors, Transferrin/genetics , Male , Coenzyme A Ligases/metabolism , Coenzyme A Ligases/genetics , Mice, Inbred C57BL , Humans , Liver Transplantation , RNA Stability/genetics , Antigens, CD
14.
Sci Rep ; 14(1): 12978, 2024 06 05.
Article in English | MEDLINE | ID: mdl-38839927

ABSTRACT

Diabetic cardiomyopathy is a specific type of cardiomyopathy. In DCM, glucose uptake and utilization are impaired due to insulin deficiency or resistance, and the heart relies more heavily on fatty acid oxidation for energy, resulting in myocardial lipid toxicity-related injury. MARK4 is a member of the AMPK-related kinase family, and improves ischaemic heart failure through microtubule detyrosination. However, the role of MARK4 in cardiac regulation of metabolism is unclear. In this study, after successful establishment of a diabetic cardiomyopathy model induced by streptozotocin and a high-fat diet, MARK4 expression was found to be significantly increased in STZ-induced DCM mice. After AAV9-shMARK4 was administered through the tail vein, decreased expression of MARK4 alleviated diabetic myocardial damage, reduced oxidative stress and apoptosis, and facilitated cardiomyocyte mitochondrial fusion, and promoted myocardial lipid oxidation metabolism. In addition, through the RNA-seq analysis of differentially expressed genes, we found that MARK4 deficiency promoted lipid decomposition and oxidative metabolism by downregulating the expression of ACSL4, thus reducing myocardial lipid accumulation in the STZ-induced DCM model.


Subject(s)
Coenzyme A Ligases , Diabetic Cardiomyopathies , Lipid Metabolism , Myocardium , Animals , Male , Mice , Apoptosis , Coenzyme A Ligases/metabolism , Coenzyme A Ligases/genetics , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/complications , Diabetic Cardiomyopathies/metabolism , Diabetic Cardiomyopathies/pathology , Diabetic Cardiomyopathies/genetics , Diabetic Cardiomyopathies/etiology , Disease Models, Animal , Mice, Inbred C57BL , Myocardium/metabolism , Myocardium/pathology , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Oxidative Stress , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Streptozocin
15.
Eur J Pharmacol ; 977: 176710, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38843947

ABSTRACT

OBJECTIVE: Tetramethylpyrazine (TMP) has been demonstrated to alleviate neuronal ferroptosis following spinal cord injury (SCI), thereby promoting neural repair. However, the precise underlying mechanisms remain elusive. METHODS: The SCI model was established using a modified version of Allen's method. TMP (40, 80, 120, and 160 mg/kg) and ras-selective lethal 3 (RSL3) (5 mg/kg) were administered intraperitoneally once daily for 7 days. HE and Nissl staining were employed to examine histomorphology and neurons, respectively. Perls staining was used to identify the distribution of iron. A transmission electron microscope was used to observe the microcosmic morphology of mitochondria. Immunofluorescence staining and Western blot were used to analyze neuronal nuclear protein (NeuN) and glial fibrillary acidic protein (GFAP) surrounding injury sites. Additionally, glutathione peroxidase 4 (GPX4)/NeuN + cells and acyl-CoA synthetase long-chain family member 4 (ACSL4)/NeuN + cells were observed. RT-qPCR was conducted to examine the mRNA expression levels of GPX4 and ACSL4. ELISA were used to quantify the concentrations of GPX4, reactive oxygen species (ROS), L-glutathione (GSH), malondialdehyde (MDA), superoxide dismutase (SOD), and tissue iron. RESULTS: TMP had an inhibitory effect on the concentrations of tissue iron, ROS, GSH, MDA, and SOD. TMP improved the microcosmic morphology of mitochondria and increased GPX4 level while decreasing that of ACSL4. TMP reduced lesion sizes, enhanced neuronal survival, and inhibited glial scar formation. However, the effect of TMP can be effectively reversed by RSL3. CONCLUSION: TMP alleviates neuronal ferroptosis by regulating the GPX4/ACSL4 axis, thereby protecting the remaining neurons surrounding injury sites and reducing glial scar formation.


Subject(s)
Coenzyme A Ligases , Ferroptosis , Phospholipid Hydroperoxide Glutathione Peroxidase , Pyrazines , Recovery of Function , Spinal Cord Injuries , Ferroptosis/drug effects , Animals , Pyrazines/pharmacology , Pyrazines/therapeutic use , Spinal Cord Injuries/drug therapy , Spinal Cord Injuries/metabolism , Spinal Cord Injuries/pathology , Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism , Coenzyme A Ligases/metabolism , Coenzyme A Ligases/genetics , Recovery of Function/drug effects , Male , Disease Models, Animal , Mice , Mitochondria/drug effects , Mitochondria/metabolism , Neurons/drug effects , Neurons/pathology , Neurons/metabolism , Reactive Oxygen Species/metabolism , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use
16.
Plant Cell Rep ; 43(7): 179, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38913159

ABSTRACT

KEY MESSAGE: DzMYB2 functions as an MYB activator, while DzMYB3 acts as an MYB repressor. They bind to promoters, interact with DzbHLH1, and influence phenolic contents, revealing their roles in phenylpropanoid regulation in durian pulps. Durian fruit has a high nutritional value attributed to its enriched bioactive compounds, including phenolics, carotenoids, and vitamins. While various transcription factors (TFs) regulate phenylpropanoid biosynthesis, MYB (v-myb avian myeloblastosis viral oncogene homolog) TFs have emerged as pivotal players in regulating key genes within this pathway. This study aimed to identify additional candidate MYB TFs from the transcriptome database of the Monthong cultivar at five developmental/postharvest ripening stages. Candidate transcriptional activators were discerned among MYBs upregulated during the ripe stage based on the positive correlation observed between flavonoid biosynthetic genes and flavonoid contents in ripe durian pulps. Conversely, MYBs downregulated during the ripe stage were considered candidate repressors. This study focused on a candidate MYB activator (DzMYB2) and a candidate MYB repressor (DzMYB3) for functional characterization. LC-MS/MS analysis using Nicotiana benthamiana leaves transiently expressing DzMYB2 revealed increased phenolic compound contents compared with those in leaves expressing green fluorescence protein controls, while those transiently expressing DzMYB3 showed decreased phenolic compound contents. Furthermore, it was demonstrated that DzMYB2 controls phenylpropanoid biosynthesis in durian by regulating the promoters of various biosynthetic genes, including phenylalanine ammonia-lyase (PAL), chalcone synthase (CHS), chalcone isomerase (CHI), and dihydroflavonol reductase (DFR). Meanwhile, DzMYB3 regulates the promoters of PAL, 4-coumaroyl-CoA ligase (4CL), CHS, and CHI, resulting in the activation and repression of gene expression. Moreover, it was discovered that DzMYB2 and DzMYB3 could bind to another TF, DzbHLH1, in the regulation of flavonoid biosynthesis. These findings enhance our understanding of the pivotal role of MYB proteins in regulating the phenylpropanoid pathway in durian pulps.


Subject(s)
Flavonoids , Fruit , Gene Expression Regulation, Plant , Plant Proteins , Transcription Factors , Plant Proteins/genetics , Plant Proteins/metabolism , Fruit/genetics , Fruit/metabolism , Transcription Factors/metabolism , Transcription Factors/genetics , Flavonoids/metabolism , Flavonoids/biosynthesis , Acyltransferases/genetics , Acyltransferases/metabolism , Propanols/metabolism , Coenzyme A Ligases/metabolism , Coenzyme A Ligases/genetics , Phenols/metabolism , Phenylalanine Ammonia-Lyase/metabolism , Phenylalanine Ammonia-Lyase/genetics , Repressor Proteins/metabolism , Repressor Proteins/genetics , Alcohol Oxidoreductases/genetics , Alcohol Oxidoreductases/metabolism , Intramolecular Lyases/genetics , Intramolecular Lyases/metabolism
17.
Nat Commun ; 15(1): 5115, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38879607

ABSTRACT

Neurofibromatosis Type II (NFII) is a genetic condition caused by loss of the NF2 gene, resulting in activation of the YAP/TAZ pathway and recurrent Schwann cell tumors, as well as meningiomas and ependymomas. Unfortunately, few pharmacological options are available for NFII. Here, we undertake a genome-wide CRISPR/Cas9 screen to search for synthetic-lethal genes that, when inhibited, cause death of NF2 mutant Schwann cells but not NF2 wildtype cells. We identify ACSL3 and G6PD as two synthetic-lethal partners for NF2, both involved in lipid biogenesis and cellular redox. We find that NF2 mutant Schwann cells are more oxidized than control cells, in part due to reduced expression of genes involved in NADPH generation such as ME1. Since G6PD and ME1 redundantly generate cytosolic NADPH, lack of either one is compatible with cell viability, but not down-regulation of both. Since genetic deficiency for G6PD is tolerated in the human population, G6PD could be a good pharmacological target for NFII.


Subject(s)
CRISPR-Cas Systems , Coenzyme A Ligases , Glucosephosphate Dehydrogenase , Neurofibromin 2 , Schwann Cells , Synthetic Lethal Mutations , Schwann Cells/metabolism , Humans , Glucosephosphate Dehydrogenase/metabolism , Glucosephosphate Dehydrogenase/genetics , Neurofibromin 2/metabolism , Neurofibromin 2/genetics , Coenzyme A Ligases/metabolism , Coenzyme A Ligases/genetics , Animals , Neurofibromatosis 2/metabolism , Neurofibromatosis 2/genetics , NADP/metabolism , Mice , Oxidation-Reduction
18.
Redox Biol ; 74: 103194, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38852200

ABSTRACT

Elevated lactate levels are a significant biomarker of sepsis and are positively associated with sepsis-related mortality. Sepsis-associated lung injury (ALI) is a leading cause of poor prognosis in clinical patients. However, the underlying mechanisms of lactate's involvement in sepsis-associated ALI remain unclear. In this study, we demonstrate that lactate regulates N6-methyladenosine (m6A) modification levels by facilitating p300-mediated H3K18la binding to the METTL3 promoter site. The METTL3-mediated m6A modification is enriched in ACSL4, and its mRNA stability is regulated through a YTHDC1-dependent pathway. Furthermore, short-term lactate stimulation upregulates ACSL4, which promotes mitochondria-associated ferroptosis. Inhibition of METTL3 through knockdown or targeted inhibition effectively suppresses septic hyper-lactate-induced ferroptosis in alveolar epithelial cells and mitigates lung injury in septic mice. Our findings suggest that lactate induces ferroptosis via the GPR81/H3K18la/METTL3/ACSL4 axis in alveolar epithelial cells during sepsis-associated ALI. These results reveal a histone lactylation-driven mechanism inducing ferroptosis through METTL3-mediated m6A modification. Targeting METTL3 represents a promising therapeutic strategy for patients with sepsis-associated ALI.


Subject(s)
Coenzyme A Ligases , Ferroptosis , Methyltransferases , Sepsis , Methyltransferases/metabolism , Methyltransferases/genetics , Animals , Sepsis/metabolism , Sepsis/complications , Mice , Humans , Coenzyme A Ligases/metabolism , Coenzyme A Ligases/genetics , Adenosine/analogs & derivatives , Adenosine/metabolism , Lung Injury/metabolism , Lung Injury/etiology , Lung Injury/pathology , Lung Injury/genetics , Acute Lung Injury/metabolism , Acute Lung Injury/etiology , Acute Lung Injury/pathology , Acute Lung Injury/genetics , Male , Disease Models, Animal , Lactic Acid/metabolism
19.
Cell ; 187(13): 3303-3318.e18, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38906101

ABSTRACT

Gamete formation and subsequent offspring development often involve extended phases of suspended cellular development or even dormancy. How cells adapt to recover and resume growth remains poorly understood. Here, we visualized budding yeast cells undergoing meiosis by cryo-electron tomography (cryoET) and discovered elaborate filamentous assemblies decorating the nucleus, cytoplasm, and mitochondria. To determine filament composition, we developed a "filament identification" (FilamentID) workflow that combines multiscale cryoET/cryo-electron microscopy (cryoEM) analyses of partially lysed cells or organelles. FilamentID identified the mitochondrial filaments as being composed of the conserved aldehyde dehydrogenase Ald4ALDH2 and the nucleoplasmic/cytoplasmic filaments as consisting of acetyl-coenzyme A (CoA) synthetase Acs1ACSS2. Structural characterization further revealed the mechanism underlying polymerization and enabled us to genetically perturb filament formation. Acs1 polymerization facilitates the recovery of chronologically aged spores and, more generally, the cell cycle re-entry of starved cells. FilamentID is broadly applicable to characterize filaments of unknown identity in diverse cellular contexts.


Subject(s)
Gametogenesis , Mitochondria , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Aldehyde Dehydrogenase/metabolism , Aldehyde Dehydrogenase/chemistry , Cell Nucleus/metabolism , Cell Nucleus/ultrastructure , Coenzyme A Ligases/metabolism , Cryoelectron Microscopy , Cytoplasm/metabolism , Electron Microscope Tomography , Meiosis , Mitochondria/metabolism , Mitochondria/ultrastructure , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/ultrastructure , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/chemistry , Spores, Fungal/metabolism , Models, Molecular , Protein Structure, Quaternary
20.
Phytomedicine ; 130: 155701, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-38788392

ABSTRACT

BACKGROUND: Cerebral ischemia-reperfusion injury (CIRI) refers to brain tissue injury caused by the temporary interruption of cerebral blood flow ischemia followed by the restoration of reperfusion, which is the main cause of post-stroke brain injury. A traditional Chinese herbal preparation called Tongqiao Huoxue Decoction (TQHX) has shown promise in reducing CIRI in rats. However, the mechanism of this herbal preparation for CIRI remains unclear. PURPOSE: This study aimed to evaluate the therapeutic effect of TQHX extract on rats with CIRI and to further explore the underlying mechanisms. METHODS: The active ingredients of TQHX extract were quantified by the high-performance liquid chromatography (HPLC) condition. We conducted thorough investigations to assess the effects of TQHX on CIRI and ferroptosis using oxygen-glucose deprivation/reperfusion (OGD/R)-treated PC12 cells as an in vitro model and transient middle cerebral artery occlusion (tMCAO) animals as an in vivo model. The neurological score assessment was performed to evaluate the neuroprotective effects of TQHX extract on tMCAO rats. Using histologic methods to study the extent of cerebral infarction, blood-brain barrier, and rat brain tissue. We examined the impact of TQHX on ferroptosis-related markers of Fe2+, superoxide dismutase (SOD), reactive oxygen species (ROS), and malondialdehyde (MDA) in the brain tissue. In addition, the expression of key proteins and markers of ferroptosis, as well as key factors associated with Acyl-CoA synthetase long-chain family member 4 (ACSL4) were detected by Western blot and quantitative real-time PCR (RT-qPCR). RESULTS: TQHX extract could decrease the Longa score and extent of cerebral infarction of tMCAO rats, which exerted the function of neuroprotection. Additionally, TQHX treatment efficiently decreased levels of MDA and ROS while increasing the expression of SOD and ferroptosis-related proteins including ferritin heavy chain 1 (FTH1) and glutathione peroxidase 4 (GPX4) at the transcription and translation level. Meanwhile, TQHX provided strong protection against oxidative stress and ferritin accumulation by increasing the ubiquitination and degradation of ACSL4. The injection of OE-ACSL4 reversed the effects of TQHX on neuroprotection and ferroptosis inhibition in PC12 cells. The injection of shACSL4 reversely validate the crucial role of ACSL4 in CIRI rat treatment. CONCLUSION: This work shows that TQHX promotes the ubiquitination-mediated degradation of ACSL4, which improves oxidative stress and inhibits the beginning of ferroptosis in cells. TQHX provides a possible path for additional research in CIRI therapies, advancing translational investigations.


Subject(s)
Coenzyme A Ligases , Drugs, Chinese Herbal , Ferroptosis , Neuroprotective Agents , Reperfusion Injury , Animals , Male , Rats , Brain Ischemia/drug therapy , Coenzyme A Ligases/metabolism , Disease Models, Animal , Drugs, Chinese Herbal/pharmacology , Ferroptosis/drug effects , Infarction, Middle Cerebral Artery/drug therapy , Neuroprotective Agents/pharmacology , Oxidative Stress/drug effects , PC12 Cells , Rats, Sprague-Dawley , Reperfusion Injury/drug therapy , Ubiquitination/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL