Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.060
Filter
1.
Sci Rep ; 14(1): 15009, 2024 07 01.
Article in English | MEDLINE | ID: mdl-38951638

ABSTRACT

Ulcerative colitis (UC) is a chronic inflammatory bowel disease with intricate pathogenesis and varied presentation. Accurate diagnostic tools are imperative to detect and manage UC. This study sought to construct a robust diagnostic model using gene expression profiles and to identify key genes that differentiate UC patients from healthy controls. Gene expression profiles from eight cohorts, encompassing a total of 335 UC patients and 129 healthy controls, were analyzed. A total of 7530 gene sets were computed using the GSEA method. Subsequent batch correction, PCA plots, and intersection analysis identified crucial pathways and genes. Machine learning, incorporating 101 algorithm combinations, was employed to develop diagnostic models. Verification was done using four external cohorts, adding depth to the sample repertoire. Evaluation of immune cell infiltration was undertaken through single-sample GSEA. All statistical analyses were conducted using R (Version: 4.2.2), with significance set at a P value below 0.05. Employing the GSEA method, 7530 gene sets were computed. From this, 19 intersecting pathways were discerned to be consistently upregulated across all cohorts, which pertained to cell adhesion, development, metabolism, immune response, and protein regulation. This corresponded to 83 unique genes. Machine learning insights culminated in the LASSO regression model, which outperformed others with an average AUC of 0.942. This model's efficacy was further ratified across four external cohorts, with AUC values ranging from 0.694 to 0.873 and significant Kappa statistics indicating its predictive accuracy. The LASSO logistic regression model highlighted 13 genes, with LCN2, ASS1, and IRAK3 emerging as pivotal. Notably, LCN2 showcased significantly heightened expression in active UC patients compared to both non-active patients and healthy controls (P < 0.05). Investigations into the correlation between these genes and immune cell infiltration in UC highlighted activated dendritic cells, with statistically significant positive correlations noted for LCN2 and IRAK3 across multiple datasets. Through comprehensive gene expression analysis and machine learning, a potent LASSO-based diagnostic model for UC was developed. Genes such as LCN2, ASS1, and IRAK3 hold potential as both diagnostic markers and therapeutic targets, offering a promising direction for future UC research and clinical application.


Subject(s)
Colitis, Ulcerative , Machine Learning , Humans , Colitis, Ulcerative/genetics , Colitis, Ulcerative/diagnosis , Algorithms , Gene Expression Profiling/methods , Transcriptome , Interleukin-1 Receptor-Associated Kinases/genetics , Male , Female , Lipocalin-2/genetics , Case-Control Studies , Biomarkers , Adult
2.
Int J Behav Nutr Phys Act ; 21(1): 66, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38956566

ABSTRACT

BACKGROUND: Evidence has shown that the individual metrics in Life's Essential 8 (LE8), an updated cardiovascular health (CVH) concept proposed by the American Heart Association, play a role in the development of inflammatory bowel disease (IBD). However, epidemiological evidence on the overall LE8 on IBD risk remains limited. We aimed to assess the longitudinal associations of LE8-defined CVH and the risks of IBD and its subtypes, ulcerative colitis (UC) and Crohn's disease (CD). We also tested whether genetic susceptibility could modify these associations. METHODS: A total of 260,836 participants from the UK Biobank were included. LE8 scores were determined by 8 metrics (physical activity, diet, nicotine exposure, sleep, body mass index, blood pressure, blood glucose, and blood lipids), and were divided into three levels: low CVH (0-49), moderate CVH (50-79), and high CVH (80-100). Cox proportional hazards models were used to calculate the hazard ratios (HRs) and confidence intervals (CIs) of the risk of IBD in relation to CVH status. RESULTS: Over a median follow-up 12.3 years, we documented 1,500 IBD cases (including 1,070 UC and 502 CD). Compared to participants with low CVH, the HRs (95% CIs) of those with high CVH for IBD, UC, and CD were 0.67 (0.52, 0.83), 0.70 (0.52, 0.93), and 0.55 (0.38, 0.80), respectively. These associations were not modified by genetic susceptibility (all P for interactions > 0.05). The lowest HR (UC: 0.30, 95% CI: 0.20-0.45; CD: 0.33, 95% CI: 0.20-0.57) was observed in participants with both high CVH and low genetic risk. CONCLUSIONS: Better CVH, defined by LE8, was associated with significantly lower risks of IBD, UC, and CD, irrespective of genetic predisposition. Our results underscore the importance of adherence to LE8 guidelines for maintaining CVH as a potential strategy in the prevention of IBD.


Subject(s)
Crohn Disease , Diet , Genetic Predisposition to Disease , Inflammatory Bowel Diseases , Humans , Male , Female , Middle Aged , Risk Factors , United Kingdom , Adult , Inflammatory Bowel Diseases/genetics , Crohn Disease/genetics , Exercise , Aged , Body Mass Index , Colitis, Ulcerative/genetics , Cohort Studies , Proportional Hazards Models , Longitudinal Studies , Blood Pressure , Sleep , Blood Glucose/metabolism
3.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 40(6): 538-543, 2024 Jun.
Article in Chinese | MEDLINE | ID: mdl-38952094

ABSTRACT

Objective To investigate the expression levels of lncRNA H19 in ulcerative colitis (UC) patients and its role in UC. Methods Colonic mucosa and serum samples were collected from 25 UC patients and 25 healthy individuals at the General Hospital of Xizang Military Region. The expression levels of lncRNA H19 were detected, and the receiver operating characteristic (ROC) curve analysis was performed using serum samples. An in vitro inflammatory model was established in HT29 colorectal cells under lipopolysaccharide (LPS) stimulation, and the expression levels of lncRNA H19 were observed in HT29 cells through fluorescence quantitative PCR. HT29 cells with downregulated lncRNA H19 was constructed using lentivirus-mediated shRNA. The effect of lncRNA H19 on cell survival was analyzed through MTT assay. Cell apoptosis was detected by flow cytometry, and the protein expression levels of apoptosis and autophagy markers were analyzed through Western blot. After treatment with rapamycin, the survival of HT29 cells was observed by MTT assay. Results lncRNA H19 was highly expressed in the colonic mucosa and serum samples of UC patients with the ROC area being 0.786. Following LPS stimulation, the expression levels of lncRNA H19 was significantly increased in a time-dependent manner. Downregulation of lncRNA H19 can promote cell survival, inhibit cell apoptosis and increase autophagy level in HT29 cells. Treatment with rapamycin significantly increased the cell survival rate. Conclusion Knock-down of lncRNA H19 increases autophagy levels, inhibits LPS-induced apoptosis and promotes the survival of colon cells.


Subject(s)
Apoptosis , Autophagy , Colitis, Ulcerative , Lipopolysaccharides , RNA, Long Noncoding , Humans , RNA, Long Noncoding/genetics , Apoptosis/drug effects , Apoptosis/genetics , Autophagy/drug effects , Autophagy/genetics , Lipopolysaccharides/pharmacology , Colitis, Ulcerative/genetics , Colitis, Ulcerative/metabolism , HT29 Cells , Male , Female , Middle Aged , Adult , Gene Knockdown Techniques
4.
Zhongguo Yi Xue Ke Xue Yuan Xue Bao ; 46(3): 334-340, 2024 Jun.
Article in Chinese | MEDLINE | ID: mdl-38953257

ABSTRACT

Objective To explore the relationship between the expression levels of microRNA-155 (miR-155) and suppressor of cytokine signaling 1 (SOCS1) in the colonic mucosal tissue of patients with ulcerative colitis (UC) and the severity of the disease.Methods A total of 130 UC patients admitted to the Second Affiliated Hospital of Hebei North University from September 2021 to June 2023 were selected.According to the modified Mayo score system,the patients were assigned into an active stage group (n=85) and a remission stage group (n=45).According to the modified Truelove and Witts classification criteria,the UC patients at the active stage were assigned into a mild group (n=35),a moderate group (n=30),and a severe group (n=20).A total of 90 healthy individuals who underwent colonoscopy for physical examination or those who had normal colonoscopy results after single polypectomy and excluded other diseases were selected as the control group.The colonic mucosal tissues of UC patients with obvious lesions and the colonic mucosal tissue 20 cm away from the anus of the control group were collected.The levels of miR-155 and SOCS1 mRNA in tissues were determined by fluorescence quantitative PCR,and the expression of SOCS1 protein in tissues was determined by immunohistochemistry.The correlations of the levels of miR-155 and SOCS1 mRNA in the colonic mucosal tissue with the modified Mayo score of UC patients were analyzed.The values of the levels of miR-155 and SOCS1 mRNA in predicting the occurrence of severe illness in the UC patients at the active stage were evaluated.Results Compared with the control group and the remission stage group,the active stage group showed up-regulated expression level of miR-155,down-regulated level of SOCS1 mRNA,and decreased positive rate of SOCS1 protein in the colonic mucosal tissue (all P<0.001).The expression level of miR-155 and modified Mayo score in colonic mucosal tissues of UC patients at the active stage increased,while the mRNA level of SOCS1 was down-regulated as the disease evolved from being mild to severe (all P<0.001).The modified Mayo score was positively correlated with the miR-155 level and negative correlated with the mRNA level of SOCS1 in colonic mucosal tissues of UC patients (all P<0.001).The high miR-155 level (OR=2.762,95%CI=1.284-5.944,P=0.009),low mRNA level of SOCS1 (OR=2.617,95%CI=1.302-5.258,P=0.007),and modified Mayo score≥12 points (OR=3.232,95%CI=1.450-7.204,P=0.004) were all risk factors for severe disease in the UC patients at the active stage.The area under curve of miR-155 combined with SOCS1 mRNA in predicting severe illness in the UC patients at the active stage was 0.920.Conclusions The expression levels of miR-155 and SOCS1 mRNA were correlated with the disease severity in the UC patients at the active stage.The combination of the two indicators demonstrates good performance in predicting the occurrence of severe illness in UC patients at the active stage.


Subject(s)
Colitis, Ulcerative , Intestinal Mucosa , MicroRNAs , Severity of Illness Index , Suppressor of Cytokine Signaling 1 Protein , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Colitis, Ulcerative/metabolism , Colitis, Ulcerative/genetics , Colitis, Ulcerative/pathology , Suppressor of Cytokine Signaling 1 Protein/genetics , Suppressor of Cytokine Signaling 1 Protein/metabolism , Intestinal Mucosa/metabolism , Intestinal Mucosa/pathology , Colon/metabolism , Colon/pathology , Female , Male , Middle Aged , Adult
5.
PLoS One ; 19(6): e0305220, 2024.
Article in English | MEDLINE | ID: mdl-38848323

ABSTRACT

OBJECTIVE: This study aimed to use Mendelian randomization (MR) to investigate the potential causal association between inflammatory bowel disease (IBD) and autoimmune hepatitis (AIH). METHODS: Two-sample MR was performed to estimate the causal effect of IBD on AIH. The primary analysis employed the inverse variance weighted (IVW) method in univariable MR analysis, supplemented by additional methods including MR-Egger, weighted median, simple mode, and weighted mode. The p values were adjusted by FDR p-value adjustment. In the replication analysis, the primary IVW analysis was repeated and then pooled by meta-analysis. Sensitivity analyses were performed using Cochran's Q test, MR-Egger intercept test, MR-PRESSO, leave-one-out, and funnel plot analysis to evaluate the robustness of the MR findings. Additionally, multivariable MR (MVMR) was employed to estimate the direct causal effect of IBD on the risk of AIH. RESULTS: In univariable MR analysis, a significant positive causal association was observed between IBD (both Crohn's disease (CD) or ulcerative colitis (UC)) and the risk of AIH (for CD and AIH, the IVW odds ratio (OR) = 1.10, 95% confidence interval (CI) = 1.00-1.16, P = 0.045, FDR P = 0.045; for UC and AIH, the IVW OR = 1.07, 95% CI = 1.00-1.13, P = 0.038, FDR P = 0.076). Furthermore, no significant positive correlation between IBD and the risk of AIH (OR = 1.13, 95% CI = 0.94-1.35, P = 0.194). Sensitivity analysis revealed no pleiotropic bias. MVMR analysis further confirmed the direct causal effect of CD or UC on the risk of AIH after adjusting for the common risk factors (cigarettes per day and osteoporosis). In the replication analysis, the positive causal association between UC and the risk of AIH remain significant (the IVW odds ratio (OR) = 1.32, 95% CI = 1.18-1.48, P = 2.90E-06). While no significant positive association was observed between CD or IBD and the risk of AIH in the replication analysis, a suggestive positive association between the identified risk factors (UC, CD, and IBD) and the risk of AIH was detected in the meta-analysis (OR = 1.09, 95% CI = 1.05-1.13, P<0.0001). CONCLUSION: This MR study revealed a positive impact of the identified risk factors (CD, UC and IBD) on the risk of AIH within the European population.


Subject(s)
Hepatitis, Autoimmune , Inflammatory Bowel Diseases , Mendelian Randomization Analysis , Humans , Hepatitis, Autoimmune/genetics , Hepatitis, Autoimmune/epidemiology , Inflammatory Bowel Diseases/genetics , Inflammatory Bowel Diseases/epidemiology , Risk Factors , Crohn Disease/genetics , Crohn Disease/epidemiology , Colitis, Ulcerative/genetics , Colitis, Ulcerative/epidemiology , Genetic Predisposition to Disease , Odds Ratio , Polymorphism, Single Nucleotide
6.
BMC Med Genomics ; 17(1): 159, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38867275

ABSTRACT

BACKGROUND: Association between glucose and inflammatory bowel disease (IBD) was found in previous observational studies and in cohort studies. However, it is not clear whether these associations reflect causality. Thus, this study investigated whether there is such a causal relation between elevated glucose and IBD, Crohn's disease (CD) and ulcerative colitis (UC). METHODS: We performed a two-sample Mendelian Randomization (MR) with the independent genetic instruments identified from the largest available genome-wide association study (GWAS) for IBD (5,673 cases; 213,119 controls) and its main subtypes, CD and UC. Summarized data for glucose which included 200,622 cases and glycemic traits including HbA1c and type 2 diabetes(T2DM) were obtained from different GWAS studies. Primary and secondary analyses were conducted by preferentially using the radial inverse-variance weighted (IVW) approach. A number of other meta-analysis approach and sensitivity analyses were carried out to assess the robustness of the results. RESULTS: We did not find a causal effect of genetically predicted glucose on IBD as a whole (OR 0.858; 95% CI 0.649-1.135; P = 0.286). In subtype analyses glucose was also suggestively not associated with Crohn's disease (OR 0.22; 95% CI 0.04-1.00; P = 0.05) and ulcerative colitis (OR 0.940; 95% CI 0.628-1.407; P = 0.762). In the other direction, IBD and its subtypes were not related to glucose and glycemic traits. CONCLUSIONS: This MR study is not providing any evidence for a causal relationship between genetically predicted elevated glucose and IBD as well as it's subtypes UC and CD. Regarding the other direction, no causal associations could be found. Future studies with robust genetic instruments are needed to confirm this conclusion.


Subject(s)
Genome-Wide Association Study , Inflammatory Bowel Diseases , Mendelian Randomization Analysis , Humans , Inflammatory Bowel Diseases/genetics , Blood Glucose , Polymorphism, Single Nucleotide , Crohn Disease/genetics , Colitis, Ulcerative/genetics , Diabetes Mellitus, Type 2/genetics , Genetic Predisposition to Disease
7.
Sci Rep ; 14(1): 13102, 2024 06 07.
Article in English | MEDLINE | ID: mdl-38849409

ABSTRACT

Ulcerative colitis (UC) is a chronic and recurrent inflammatory disease that affects the colon and rectum. The response to treatment varies among individuals with UC. Therefore, the aim of this study was to identify and explore potential biomarkers for different subtypes of UC and examine their association with immune cell infiltration. We obtained UC RNA sequencing data from the GEO database, which included the training set GSE92415 and the validation set GSE87473 and GSE72514. UC patients were classified based on GLS and its associated genes using consensus clustering analysis. We identified differentially expressed genes (DEGs) in different UC subtypes through a differential expression analysis of the training cohort. Machine learning algorithms, including Weighted Gene Co-Expression Network Analysis (WGCNA), Least Absolute Shrinkage and Selection Operator (LASSO), and Support Vector Machine Recursive Feature Elimination (SVM-RFE), were utilized to identify marker genes for UC. The CIBERSORT algorithm was used to determine the abundance of various immune cells in UC and their correlation with UC signature genes. Finally, we validated the expression of GLS through in vivo and ex vivo experiments. The expression of GLS was found to be elevated in patients with UC compared to normal patients. GLS and its related genes were able to classify UC patients into two subtypes, C1 and C2. The C1 subtype, as compared to the C2 subtype, showed a higher Mayo score and poorer treatment response. A total of 18 DEGs were identified in both subtypes, including 7 up-regulated and 11 down-regulated genes. Four UC signature genes (CWH43, HEPACAM2, IL24, and PCK1) were identified and their diagnostic value was validated in a separate cohort (AUC > 0.85). Furthermore, we found that UC signature biomarkers were linked to the immune cell infiltration. CWH43, HEPACAM2, IL24, and PCK1 may serve as potential biomarkers for diagnosing different subtypes of UC, which could contribute to the development of targeted molecular therapy and immunotherapy for UC.


Subject(s)
Colitis, Ulcerative , Gene Expression Profiling , Humans , Colitis, Ulcerative/genetics , Prognosis , Transcriptome , Biomarkers , Machine Learning , Gene Regulatory Networks , Male , Cluster Analysis , Support Vector Machine , Female
8.
Medicine (Baltimore) ; 103(25): e38551, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38905376

ABSTRACT

This research investigates the causal relationships among gut microbiota, inflammatory proteins, and inflammatory bowel disease (IBD), including crohn disease (CD) and ulcerative colitis (UC), and identifies the role of inflammatory proteins as potential mediators. Our study analyzed gut microbiome data from 13,266 samples collected by the MiBioGen alliance, along with inflammatory protein data from recent research by Zhao et al, and genetic data on CD and UC from the International Inflammatory Bowel Disease Genetics Consortium (IIBDGC). We used Mendelian randomization (MR) to explore the associations, complemented by replication, meta-analysis, and multivariable MR techniques for enhanced accuracy and robustness. Our analysis employed several statistical methods, including inverse-variance weighting, MR-Egger, and the weighted median method, ensuring comprehensive and precise evaluation. After MR analysis, replication and meta-analysis, we revealed significant associations between 11 types of gut microbiota and 17 inflammatory proteins were associated with CD and UC. Mediator MR analysis and multivariable MR analysis showed that in CD, the CD40L receptor mediated the causal effect of Defluviitaleaceae UCG-011 on CD (mediation ratio 8.3%), and the Hepatocyte growth factor mediated the causal effect of Odoribacter on CD (mediation ratio 18%). In UC, the C-C motif chemokine 4 mediated the causal effect of Ruminococcus2 on UC (mediation ratio 4%). This research demonstrates the interactions between specific gut microbiota, inflammatory proteins, and CD and UC. Furthermore, the CD40L receptor may mediate the relationship between Defluviitaleaceae UCG-011 and CD; the Hepatocyte growth factor may mediate the relationship between Odoribacter and CD; and the C-C motif chemokine 4 may mediate the relationship between Ruminococcus2 and UC. The identified associations and mediation effects offer insights into potential therapeutic approaches targeting the gut microbiome for managing CD and UC.


Subject(s)
Gastrointestinal Microbiome , Mendelian Randomization Analysis , Humans , Gastrointestinal Microbiome/genetics , Crohn Disease/microbiology , Crohn Disease/genetics , Colitis, Ulcerative/microbiology , Colitis, Ulcerative/genetics , Inflammatory Bowel Diseases/microbiology , Inflammatory Bowel Diseases/genetics
9.
Int J Mol Sci ; 25(11)2024 May 23.
Article in English | MEDLINE | ID: mdl-38891888

ABSTRACT

Ulcerative colitis (UC), an inflammatory bowel disease (IBD), may increase the risk of colorectal cancer (CRC) by activating chronic proinflammatory pathways. The goal of this study was to find serum prediction biomarkers in UC to CRC development by combining low-density miRNA microarray and biocomputational approaches. The UC and CRC miRNA expression profiles were compared by low-density miRNA microarray, finding five upregulated miRNAs specific to UC progression to CRC (hsa-let-7d-5p, hsa-miR-16-5p, hsa-miR-145-5p, hsa-miR-223-5p, and hsa-miR-331-3p). The circRNA/miRNA/mRNA competitive endogenous RNA (ceRNA) network analysis showed that the candidate miRNAs were connected to well-known colitis-associated CRC ACVR2A, SOCS1, IGF2BP1, FAM126A, and CCDC85C mRNAs, and circ-SHPRH circRNA. SST and SCARA5 genes regulated by hsa-let-7d-5p, hsa-miR-145-5p, and hsa-miR-331-3p were linked to a poor survival prognosis in a CRC patient dataset from The Cancer Genome Atlas (TCGA). Lastly, our mRNA and miRNA candidates were validated by comparing their expression to differentially expressed mRNAs and miRNAs from colitis-associated CRC tissue databases. A high level of hsa-miR-331-3p and a parallel reduction in SOCS1 mRNA were found in tissue and serum. We propose hsa-miR-331-3p and possibly hsa-let-7d-5p as novel serum biomarkers for predicting UC progression to CRC. More clinical sample analysis is required for further validation.


Subject(s)
Biomarkers, Tumor , Colitis, Ulcerative , Colorectal Neoplasms , Disease Progression , Gene Expression Profiling , MicroRNAs , Humans , MicroRNAs/genetics , Colitis, Ulcerative/genetics , Colitis, Ulcerative/pathology , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Biomarkers, Tumor/genetics , Computational Biology/methods , Male , Female , Middle Aged , Gene Regulatory Networks , Gene Expression Regulation, Neoplastic , Adult
10.
Asian Pac J Cancer Prev ; 25(6): 2003-2010, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38918662

ABSTRACT

BACKGROUND: Inflammatory bowel diseases (IBD), Crohn's disease (CD), and ulcerative colitis (UC) are diseases that result from the combined effects of a predisposing genetic background and several environmental factors, including smoking. Some genes can influence these diseases through genetic inheritance, and their regulation is explained by gene polymorphism. However, Toll-like receptor (TLR) genes have been identified as susceptibility genes for CD and UC. METHODS: A case-control study was performed on a Turkish population composed of 105 healthy controls and  79 CD, 77 UC patients genotyped by Allele-specific PCR and PCR-RFLP for TLR9 (T-1486C) and TLR 2 (-196 to -174del) gene. Genotype and allele frequencies of TLR9 (T-1486C) and TLR 2 (-196 to -174del) gene polymorphisms compared to allele frequencies in CD and UC patients. RESULTS: No statistically significant findings were found between the CD, UC patients, and the control group in terms of both genotype distributions and allele frequencies for TLR 9 (T-1486C; rs187084) and TLR 2 (-196 to -174del; rs111200466) gene polymorphisms in a Turkish population (P > 0.05). CONCLUSION: No association was found between the TLR2 (rs111200466) and TLR 9 (rs187084) gene polymorphisms among IBD patients and the control groups in the Turkish population.


Subject(s)
Colitis, Ulcerative , Crohn Disease , Genetic Predisposition to Disease , Genotype , Inflammatory Bowel Diseases , Toll-Like Receptor 2 , Toll-Like Receptor 9 , Humans , Toll-Like Receptor 2/genetics , Case-Control Studies , Male , Female , Toll-Like Receptor 9/genetics , Adult , Crohn Disease/genetics , Inflammatory Bowel Diseases/genetics , Colitis, Ulcerative/genetics , Turkey , Gene Frequency , Middle Aged , Polymorphism, Single Nucleotide , Prognosis , Follow-Up Studies , Young Adult
11.
Biomolecules ; 14(6)2024 May 29.
Article in English | MEDLINE | ID: mdl-38927037

ABSTRACT

Ulcerative colitis (UC) is an autoimmune disease in which the immune system attacks the colon, leading to ulcer development, loss of colon function, and bloody diarrhea. The human gut ecosystem consists of almost 2000 different species of bacteria, forming a bioreactor fueled by dietary micronutrients to produce bioreactive compounds, which are absorbed by our body and signal to distant organs. Studies have shown that the Western diet, with fewer short-chain fatty acids (SCFAs), can alter the gut microbiome composition and cause the host's epigenetic reprogramming. Additionally, overproduction of H2S from the gut microbiome due to changes in diet patterns can further activate pro-inflammatory signaling pathways in UC. This review discusses how the Western diet affects the microbiome's function and alters the host's physiological homeostasis and susceptibility to UC. This article also covers the epidemiology, prognosis, pathophysiology, and current treatment strategies for UC, and how they are linked to colorectal cancer.


Subject(s)
Colitis, Ulcerative , Colorectal Neoplasms , Diet, Western , Epigenesis, Genetic , Gastrointestinal Microbiome , Humans , Colitis, Ulcerative/microbiology , Colitis, Ulcerative/metabolism , Colitis, Ulcerative/genetics , Colorectal Neoplasms/microbiology , Colorectal Neoplasms/metabolism , Diet, Western/adverse effects , Animals
12.
BMC Gastroenterol ; 24(1): 202, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38886669

ABSTRACT

BACKGROUND: B3GNT7, a glycosyltransferase of significant importance that is highly expressed in intestinal epithelial cells, plays a pivotal role in intestinal physiological processes. This study elucidates novel insights into the potential role and underlying mechanisms of B3GNT7 in ulcerative colitis (UC). METHODS: An experimental colitis model was induced using DSS in mice to investigate B3GNT7 expression in the colon via transcriptomics and immunohistochemistry. Bioinformatics analysis was employed to delineate the biological functions of B3GNT7. Additionally, the correlation between the transcription levels of B3GNT7 in colonic tissues from patients with UC, sourced from the IBDMDB database, and the severity of colonic inflammation was analyzed to elucidate potential mechanisms. RESULTS: The DSS-induced colitis model was successfully established, and transcriptomic analysis identified a marked downregulation of B3GNT7 expression in the colonic tissues compared to the controls. Functional enrichment analysis indicated B3GNT7's predominant role in mucin O-glycosylation. Protein interaction analysis revealed that B3GNT7 predominantly interacts with members of the mucin MUC family, including MUC2, MUC3, and MUC6. In patients with UC, B3GNT7 transcription levels were significantly reduced, particularly in those with moderate to severe disease activity. The expression level of B3GNT7 exhibited a negative correlation with the endoscopic severity of UC. Gene set enrichment analysis (GSEA) further demonstrated significant enrichment of B3GNT7 in the mucin O-glycosylation synthesis pathway. CONCLUSION: The downregulation of B3GNT7 expression in the colonic tissues of UC patients may contribute to the compromised mucin barrier function and the exacerbation of colitis.


Subject(s)
Colitis, Ulcerative , Disease Models, Animal , Mucins , Animals , Humans , Male , Mice , Colitis, Ulcerative/metabolism , Colitis, Ulcerative/genetics , Colitis, Ulcerative/pathology , Colon/metabolism , Colon/pathology , Dextran Sulfate , Down-Regulation , Glycosylation , Intestinal Mucosa/metabolism , Mice, Inbred C57BL , Mucins/metabolism , Mucins/genetics , N-Acetylglucosaminyltransferases/metabolism , N-Acetylglucosaminyltransferases/genetics
13.
Genes (Basel) ; 15(6)2024 May 25.
Article in English | MEDLINE | ID: mdl-38927620

ABSTRACT

The incidence of ulcerative colitis (UC) has increased globally. As a complex disease, the genetic predisposition for UC could be estimated by the polygenic risk score (PRS), which aggregates the effects of a large number of genetic variants in a single quantity and shows promise in identifying individuals at higher lifetime risk of UC. Here, based on a cohort of 2869 UC cases and 2900 controls with genotype array datasets, we used PRSice-2 to calculate PRS, and systematically analyzed factors that could affect the power of PRS, including GWAS summary statistics, population stratification, and impact of variants. After leveraging a stepwise condition analysis, we eventually established the best PRS model, achieving an AUC of 0.713. Meanwhile, samples in the top 20% of the PRS distribution had a risk of UC more than ten times higher than samples in the lowest 20% (OR = 10.435, 95% CI 8.571-12.703). Our analyses demonstrated that including population-enriched, more disease-associated SNPs and using GWAS summary statistics from similar ethnic background can improve the power of PRS. Strictly following the principle of focusing on one population in all aspects of generating PRS can be a cost-effective way to apply genotype-array-derived PRS to practical risk estimation.


Subject(s)
Colitis, Ulcerative , Genetic Predisposition to Disease , Genome-Wide Association Study , Multifactorial Inheritance , Polymorphism, Single Nucleotide , White People , Humans , Colitis, Ulcerative/genetics , Multifactorial Inheritance/genetics , Genome-Wide Association Study/methods , White People/genetics , Female , Male , Risk Factors , Case-Control Studies , Genotype
14.
Sci Rep ; 14(1): 12683, 2024 06 03.
Article in English | MEDLINE | ID: mdl-38831059

ABSTRACT

Ulcerative colitis (UC) is characterized by an abnormal immune response, and the pathogenesis lacks clear understanding. The cGAS-STING pathway is an innate immune signaling pathway that plays a significant role in various pathophysiological processes. However, the role of the cGAS-STING pathway in UC remains largely unclear. In this study, we obtained transcriptome sequencing data from multiple publicly available databases. cGAS-STING related genes were obtained through literature search, and differentially expressed genes (DEGs) were analyzed using R package limma. Hub genes were identified through protein-protein interaction (PPI) network analysis and module construction. The ConsensuClusterPlus package was utilized to identify molecular subtypes based on hub genes. The therapeutic response, immune microenvironment, and biological pathways of subtypes were further investigated. A total of 18 DEGs were found in UC patients. We further identified IFI16, MB21D1 (CGAS), TMEM173 (STING) and TBK1 as the hub genes. These genes are highly expressed in UC. IFI16 exhibited the highest diagnostic value and predictive value for response to anti-TNF therapy. The expression level of IFI16 was higher in non-responders to anti-TNF therapy. Furthermore, a cluster analysis based on genes related to the cGAS-STING pathway revealed that patients with higher gene expression exhibited elevated immune burden and inflammation levels. This study is a pioneering analysis of cGAS-STING pathway-related genes in UC. These findings provide new insights for the diagnosis of UC and the prediction of therapeutic response.


Subject(s)
Colitis, Ulcerative , Membrane Proteins , Nucleotidyltransferases , Signal Transduction , Humans , Nucleotidyltransferases/genetics , Nucleotidyltransferases/metabolism , Colitis, Ulcerative/genetics , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/immunology , Membrane Proteins/genetics , Membrane Proteins/metabolism , Signal Transduction/genetics , Protein Interaction Maps/genetics , Gene Expression Profiling , Transcriptome
15.
Biomed Pharmacother ; 176: 116868, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38850647

ABSTRACT

Inflammatory bowel disease (IBD) is a chronic relapsing disease of the gastrointestinal (GI) system that includes two groups, Crohn's disease (CD) and ulcerative colitis (UC). To cope with these two classes of IBD, the investigation of pathogenic mechanisms and the discovery of new diagnostic and therapeutic approaches are crucial. Long non-coding RNAs (lncRNAs) which are non-coding RNAs with a length of longer than 200 nucleotides have indicated significant association with the pathology of IBD and strong potential to be used as accurate biomarkers in diagnosing and predicting responses to the IBD treatment. In the current review, we aim to investigate the role of lncRNAs in the pathology and development of IBD. We first describe recent advances in research on dysregulated lncRNAs in the pathogenesis of IBD from the perspective of epithelial barrier function, intestinal immunity, mitochondrial function, and intestinal autophagy. Then, we highlight the possible translational role of lncRNAs as therapeutic targets, diagnostic biomarkers, and predictors of therapeutic response in colon tissues and plasma samples. Finally, we discuss the potential of extracellular vesicles and their lncRNA cargo in the pathophysiology, diagnosis, and treatment of IBD.


Subject(s)
Biomarkers , Extracellular Vesicles , Inflammatory Bowel Diseases , RNA, Long Noncoding , Humans , RNA, Long Noncoding/genetics , Biomarkers/metabolism , Biomarkers/blood , Extracellular Vesicles/metabolism , Extracellular Vesicles/genetics , Inflammatory Bowel Diseases/genetics , Inflammatory Bowel Diseases/diagnosis , Inflammatory Bowel Diseases/metabolism , Inflammatory Bowel Diseases/therapy , Animals , Colitis, Ulcerative/genetics , Colitis, Ulcerative/diagnosis
16.
Commun Biol ; 7(1): 731, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38879692

ABSTRACT

Ulcerative colitis (UC) is a significant inflammatory bowel disease caused by an abnormal immune response to gut microbes. However, there are still gaps in our understanding of how immune and metabolic changes specifically contribute to this disease. Our research aims to address this gap by examining mouse colons after inducing ulcerative colitis-like symptoms. Employing single-cell RNA-seq and 16 s rRNA amplicon sequencing to analyze distinct cell clusters and microbiomes in the mouse colon at different time points after induction with dextran sodium sulfate. We observe a significant reduction in epithelial populations during acute colitis, indicating tissue damage, with a partial recovery observed in chronic inflammation. Analyses of cell-cell interactions demonstrate shifts in networking patterns among different cell types during disease progression. Notably, macrophage phenotypes exhibit diversity, with a pronounced polarization towards the pro-inflammatory M1 phenotype in chronic conditions, suggesting the role of macrophage heterogeneity in disease severity. Increased expression of Nampt and NOX2 complex subunits in chronic UC macrophages contributes to the inflammatory processes. The chronic UC microbiome exhibits reduced taxonomic diversity compared to healthy conditions and acute UC. The study also highlights the role of T cell differentiation in the context of dysbiosis and its implications in colitis progression, emphasizing the need for targeted interventions to modulate the inflammatory response and immune balance in colitis.


Subject(s)
Colitis, Ulcerative , Dextran Sulfate , Gastrointestinal Microbiome , Macrophages , Single-Cell Analysis , Animals , Colitis, Ulcerative/microbiology , Colitis, Ulcerative/immunology , Colitis, Ulcerative/genetics , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/pathology , Macrophages/immunology , Macrophages/microbiology , Macrophages/metabolism , Dextran Sulfate/toxicity , Dextran Sulfate/adverse effects , Mice , RNA-Seq , Mice, Inbred C57BL , Disease Models, Animal , DNA Barcoding, Taxonomic , RNA, Ribosomal, 16S/genetics , Male , Single-Cell Gene Expression Analysis
17.
J Transl Med ; 22(1): 589, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38915068

ABSTRACT

BACKGROUND: Predictive markers for fecal microbiota transplantation (FMT) outcomes in patients with active ulcerative colitis (UC) are poorly defined. We aimed to investigate changes in gut microbiota pre- and post-FMT and to assess the potential value in determining the total copy number of fecal bacterial siderophore genes in predicting FMT responsiveness. METHODS: Patients with active UC (Mayo score ≥ 3) who had undergone two FMT procedures were enrolled. Fecal samples were collected before and 8 weeks after each FMT session. Patients were classified into clinical response and non-response groups, based on their Mayo scores. The fecal microbiota profile was accessed using metagenomic sequencing, and the total siderophore genes copy number via quantitative real-time polymerase chain reaction. Additionally, we examined the association between the total siderophore genes copy number and FMT efficacy. RESULTS: Seventy patients with UC had undergone FMT. The clinical response and remission rates were 50% and 10% after the first FMT procedure, increasing to 72.41% and 27.59% after the second FMT. The cumulative clinical response and clinical remission rates were 72.86% and 25.71%. Compared with baseline, the response group showed a significant increase in Faecalibacterium, and decrease in Enterobacteriaceae, consisted with the changes of the total bacterial siderophore genes copy number after the second FMT (1889.14 vs. 98.73 copies/ng, P < 0.01). Virulence factor analysis showed an enriched iron uptake system, especially bacterial siderophores, in the pre-FMT response group, with a greater contribution from Escherichia coli. The total baseline copy number was significantly higher in the response group than non-response group (1889.14 vs. 94.86 copies/ng, P < 0.01). A total baseline copy number cutoff value of 755.88 copies/ng showed 94.7% specificity and 72.5% sensitivity in predicting FMT responsiveness. CONCLUSIONS: A significant increase in Faecalibacterium, and decrease in Enterobacteriaceae and the total fecal siderophore genes copy number were observed in responders after FMT. The siderophore genes and its encoding bacteria may be of predictive value for the clinical responsiveness of FMT to active ulcerative colitis.


Subject(s)
Colitis, Ulcerative , Fecal Microbiota Transplantation , Feces , Gastrointestinal Microbiome , Siderophores , Humans , Colitis, Ulcerative/therapy , Colitis, Ulcerative/microbiology , Colitis, Ulcerative/genetics , Male , Female , Feces/microbiology , Adult , Middle Aged , Gastrointestinal Microbiome/genetics , Siderophores/metabolism , Treatment Outcome , Bacteria/genetics , Genes, Bacterial , Gene Dosage , ROC Curve
18.
Medicine (Baltimore) ; 103(23): e38317, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38847662

ABSTRACT

Accumulating evidence has indicated an increased risk of acute pancreatitis in individuals with inflammatory bowel disease (IBD); however, the establishment of a clear and direct causal connection between IBD and acute pancreatitis remains uncertain. Utilizing genetic data from publicly accessible genome-wide association studies (GWAS), we conducted a 2-sample MR analysis to identify the associations between IBD, ulcerative colitis (UC), Crohn disease (CD), and acute pancreatitis risk. Rigorous quality control steps ensured the selection of eligible single nucleotide polymorphisms (SNPs) with strong associations to IBD. The primary estimation used the inverse-variance weighted method. We also assessed heterogeneity, potential pleiotropy, and conducted sensitivity analyses. The direction of causality was confirmed using the Steiger test. The MR analysis showed that IBD increased the risk of acute pancreatitis (IVW: OR = 1.032, 95% CI: 1.006-1.06, P = .015). Among the subgroup of IBD, CD (IVW: OR = 1.034, 95% CI: 1.008-1.06, P = .007) indicates a significant increase in the risk of acute pancreatitis compared to UC (IVW: OR = 1.02, 95% CI: 0.99-1.051, P = .189). The MR analysis assessing the association between CD and acute pancreatitis showed no evidence of heterogeneity or horizontal pleiotropy. Likewise, the leave-one-out (LOO) method indicated no significant influence of any individual SNP on the overall findings. In addition, the Steiger direction test revealed that CD was the cause for increased risk of acute pancreatitis, but not vice versa. In summary, this research pioneers in proposing a causal relationship between CD and acute pancreatitis among the European population.


Subject(s)
Colitis, Ulcerative , Crohn Disease , Genome-Wide Association Study , Mendelian Randomization Analysis , Pancreatitis , Polymorphism, Single Nucleotide , Humans , Colitis, Ulcerative/genetics , Colitis, Ulcerative/epidemiology , Colitis, Ulcerative/complications , Crohn Disease/genetics , Crohn Disease/epidemiology , Pancreatitis/genetics , Pancreatitis/epidemiology , Pancreatitis/etiology , Genetic Predisposition to Disease , Risk Factors , Acute Disease
19.
Medicine (Baltimore) ; 103(23): e38392, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38847661

ABSTRACT

There is a correlation between IBD and breast cancer according to previous observational studies. However, so far there is no evidence to support if there is a causal relationship between these 2 diseases. We acquired comprehensive Genome-Wide Association Study (GWAS) summary data on IBD (including ulcerative colitis [UC] and Crohn disease [CD]) as well as breast cancer of completely European descent from the IEU GWAS database. The estimation of bidirectional causality between IBD (including UC and CD) and breast cancer was achieved through the utilization of 2-sample Mendelian randomization (MR). The MR results were also assessed for any potential bias caused by heterogeneity and pleiotropy through sensitivity analyses. Our study found a bidirectional causal effect between IBD and breast cancer. Genetic susceptibility to IBD was associated with an increased risk of breast cancer (OR = 1.053, 95% CI: 1.016-1.090, P = .004). Similarly, the presence of breast cancer may increase the risk of IBD (OR = 1.111, 95% CI: 1.035-1.194, P = .004). Moreover, the bidirectional causal effect between IBD and breast cancer can be confirmed by another GWAS of IBD. Subtype analysis showed that CD was associated with breast cancer (OR = 1.050, 95% CI: 1.020-1.080, P < .001), but not UC and breast cancer. There was a suggestive association between breast cancer and UC (OR = 1.106, 95% CI: 1.011-1.209, P = .028), but not with CD. This study supports a bidirectional causal effect between IBD and breast cancer. There appear to be considerable differences in the specific associations of UC and CD with AD. Understanding that IBD including its specific subtypes and breast cancer constitute common risk factors can contribute to the clinical management of both diseases.


Subject(s)
Breast Neoplasms , Genetic Predisposition to Disease , Genome-Wide Association Study , Mendelian Randomization Analysis , Humans , Mendelian Randomization Analysis/methods , Breast Neoplasms/genetics , Breast Neoplasms/epidemiology , Female , Crohn Disease/genetics , Crohn Disease/epidemiology , Inflammatory Bowel Diseases/genetics , Colitis, Ulcerative/genetics , Colitis, Ulcerative/epidemiology , Risk Factors , Polymorphism, Single Nucleotide
20.
Asia Pac J Clin Nutr ; 33(2): 237-246, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38794983

ABSTRACT

BACKGROUND AND OBJECTIVES: This study aims to examine the causal relationship between dietary factors and ulcerative colitis (UC). METHODS AND STUDY DESIGN: The analysis utilized data from genome-wide association studies (GWAS). Dried fruit, vegetables, processed meat, fresh fruit, and cereal intake were examined as exposure factors. UC was considered the outcome. Two-sample Mendelian randomization (TSMR) analysis was performed using methods. Heterogeneity and horizontal pleiotropy assessments were conducted to ensure the robustness of our findings. Additionally, we applied False Discovery Rate (FDR) corrections for multiple tests. RESULTS: The analysis revealed a significant inverse causal relationship between dried fruit intake and UC risk (odds ratio [OR]: 0.488, 95% confidence interval [CI]: 0.261 to 0.915, p = 0.025). No significant association was observed between vegetable intake (OR: 1.742, 95% CI: 0.561 to 5.415, p = 0.337), processed meat intake (OR: 1.136, 95% CI: 0.552 to 2.339, p = 0.729), fresh fruit intake (OR: 0.977, 95% CI: 0.465 to 2.054, p = 0.952), cereal intake (OR: 1.195, 95% CI: 0.669 to 2.134, p = 0.547). The low heterogeneity observed across analyses and the confirmation of stability through leave-one-out analysis reinforce the reliability of these results. Moreover, after adjusting for multiple tests, none of the dietary factors reached a p-value below the conventional significance threshold of 0.05. CONCLUSIONS: This study provides evidence of a potential association between dried fruit intake and a reduced risk of UC. Further MR studies incorporating larger GWAS datasets are needed to confirm these findings.


Subject(s)
Colitis, Ulcerative , Diet , Fruit , Genome-Wide Association Study , Mendelian Randomization Analysis , Colitis, Ulcerative/genetics , Humans , Mendelian Randomization Analysis/methods , Diet/statistics & numerical data , Diet/methods , Vegetables , Risk Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...