Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 476
Filter
1.
Microbiome ; 12(1): 180, 2024 Sep 27.
Article in English | MEDLINE | ID: mdl-39334498

ABSTRACT

BACKGROUND: Colorectal cancer (CRC) risk is strongly affected by dietary habits with red and processed meat increasing risk, and foods rich in dietary fibres considered protective. Dietary habits also shape gut microbiota, but the role of the combination between diet, the gut microbiota, and the metabolite profile on CRC risk is still missing an unequivocal characterisation. METHODS: To investigate how gut microbiota affects diet-associated CRC risk, we fed Apc-mutated PIRC rats and azoxymethane (AOM)-induced rats the following diets: a high-risk red/processed meat-based diet (MBD), a normalised risk diet (MBD with α-tocopherol, MBDT), a low-risk pesco-vegetarian diet (PVD), and control diet. We then conducted faecal microbiota transplantation (FMT) from PIRC rats to germ-free rats treated with AOM and fed a standard diet for 3 months. We analysed multiple tumour markers and assessed the variations in the faecal microbiota using 16S rRNA gene sequencing together with targeted- and untargeted-metabolomics analyses. RESULTS: In both animal models, the PVD group exhibited significantly lower colon tumorigenesis than the MBD ones, consistent with various CRC biomarkers. Faecal microbiota and its metabolites also revealed significant diet-dependent profiles. Intriguingly, when faeces from PIRC rats fed these diets were transplanted into germ-free rats, those transplanted with MBD faeces developed a higher number of preneoplastic lesions together with distinctive diet-related bacterial and metabolic profiles. PVD determines a selection of nine taxonomic markers mainly belonging to Lachnospiraceae and Prevotellaceae families exclusively associated with at least two different animal models, and within these, four taxonomic markers were shared across all the three animal models. An inverse correlation between nonconjugated bile acids and bacterial genera mainly belonging to the Lachnospiraceae and Prevotellaceae families (representative of the PVD group) was present, suggesting a potential mechanism of action for the protective effect of these genera against CRC. CONCLUSIONS: These results highlight the protective effects of PVD while reaffirming the carcinogenic properties of MBD diets. In germ-free rats, FMT induced changes reminiscent of dietary effects, including heightened preneoplastic lesions in MBD rats and the transmission of specific diet-related bacterial and metabolic profiles. Importantly, to the best of our knowledge, this is the first study showing that diet-associated cancer risk can be transferred with faeces, establishing gut microbiota as a determinant of diet-associated CRC risk. Therefore, this study marks the pioneering demonstration of faecal transfer as a means of conveying diet-related cancer risk, firmly establishing the gut microbiota as a pivotal factor in diet-associated CRC susceptibility. Video Abstract.


Subject(s)
Colonic Neoplasms , Diet, Vegetarian , Fecal Microbiota Transplantation , Feces , Gastrointestinal Microbiome , RNA, Ribosomal, 16S , Animals , Rats , Colonic Neoplasms/microbiology , Colonic Neoplasms/etiology , Diet, Vegetarian/adverse effects , Feces/microbiology , RNA, Ribosomal, 16S/genetics , Male , Bacteria/classification , Bacteria/isolation & purification , Bacteria/genetics , Bacteria/metabolism , Diet/adverse effects , Azoxymethane , Meat/adverse effects , Meat/microbiology , Colorectal Neoplasms/microbiology , Colorectal Neoplasms/etiology , Disease Models, Animal , Humans
2.
Toxins (Basel) ; 16(9)2024 Sep 18.
Article in English | MEDLINE | ID: mdl-39330861

ABSTRACT

The human colonic commensal enterotoxigenic Bacteroides fragilis (ETBF) is associated with chronic colitis and colon cancer. ETBF colonization induces colitis via the Bacteroides fragilis toxin (BFT). BFT secreted by ETBF cause colon inflammation via E-cadherin cleavage/NF-κB signaling. ETBF promotes colon tumorigenesis via interleukin 17A (IL-17A)/CXCL-dependent inflammation, but its bioactive therapeutics in ETBF-promoted tumorigenesis remain unexplored. In the current study, we investigated the caffeic acid phenethyl ester (CAPE) in the murine model of ETBF colitis and tumorigenesis. In this study, we observed that CAPE treatment mitigated inflammation induced by ETBF in mice. Additionally, our findings indicate that CAPE treatment offers protective effects against ETBF-enhanced colon tumorigenesis in a mouse model of colitis-associated colon cancer induced by azoxymethane (AOM) and dextran sulfate sodium. Notably, the decrease in colon tumorigenesis following CAPE administration correlates with a reduction in the expression of IL-17A and CXCL1 in the gastrointestinal tract. The molecular mechanism for CAPE-induced protection against ETBF-mediated tumorigenesis is mediated by IL-17A/CXCL1, and by NF-κB activity in intestinal epithelial cells. Our findings indicate that CAPE may serve as a preventive agent against the development of ETBF-induced colitis and colorectal cancer (CRC).


Subject(s)
Bacteroides fragilis , Caffeic Acids , Colitis , Phenylethyl Alcohol , Animals , Caffeic Acids/pharmacology , Phenylethyl Alcohol/analogs & derivatives , Phenylethyl Alcohol/pharmacology , Bacteroides fragilis/drug effects , Colitis/chemically induced , Colitis/drug therapy , Colitis/microbiology , Mice, Inbred C57BL , Interleukin-17/metabolism , Mice , Carcinogenesis/drug effects , Chemokine CXCL1/metabolism , Colonic Neoplasms/drug therapy , Colonic Neoplasms/chemically induced , Colonic Neoplasms/prevention & control , Colonic Neoplasms/pathology , Colonic Neoplasms/microbiology , Male , Colon/drug effects , Colon/pathology , Colon/microbiology , Colon/metabolism , Bacterial Toxins/toxicity , Disease Models, Animal , Azoxymethane/toxicity , Dextran Sulfate , Metalloendopeptidases/metabolism
3.
Medicina (Kaunas) ; 60(9)2024 Sep 18.
Article in English | MEDLINE | ID: mdl-39336556

ABSTRACT

The gastrointestinal and respiratory systems are closely linked in different ways, including from the embryological, anatomical, cellular, and physiological angles. The highest number (and various types) of microorganisms live in the large intestine/colon, and constitute the normal microbiota in healthy people. Adverse alterations of the microbiota or dysbiosis can lead to chronic inflammation. If this detrimental condition persists, a sequence of pathological events can occur, such as inflammatory bowel disease, dysplasia or premalignant changes, and finally, cancer. One of the most commonly identified bacteria in both inflammatory bowel disease and colon cancer is Escherichia coli. On the other hand, patients with inflammatory bowel disease are at risk of several other diseases-both intestinal (such as malnutrition and intestinal obstruction, besides cancer) and extraintestinal (such as arthritis, bronchiectasis, and cancer risk). Cancers of the lung and colon are the two most common malignancies occurring worldwide (except for female breast cancer). Like the bacterial role in colon cancer, many studies have shown a link between chronic Chlamydia pneumoniae infection and lung cancer. However, in colon cancer, genotoxic colibactin-producing E. coli belonging to the B2 phylogroup may promote tumorigenesis. Furthermore, E. coli is believed to play an important role in the dissemination of cancer cells from the primary colonic site. Currently, seven enteric pathogenic E. coli subtypes have been described. Conversely, three Chlamydiae can cause infections in humans (C. trachomatis may increase the risk of cervical and ovarian cancers). Nonetheless, striking genomic plasticity and genetic modifications allow E. coli to constantly adjust to the surrounding environment. Consequently, E. coli becomes resistant to antibiotics and difficult to manage. To solve this problem, scientists are thinking of utilizing suitable lytic bacteriophages (viruses that infect and kill bacteria). Several bacteriophages of E. coli and Chlamydia species are being evaluated for this purpose.


Subject(s)
Escherichia coli , Humans , Gastrointestinal Microbiome/physiology , Colonic Neoplasms/microbiology , Lung Neoplasms/microbiology , Inflammatory Bowel Diseases/microbiology , Inflammatory Bowel Diseases/complications , Dysbiosis/complications
4.
Am J Chin Med ; 52(5): 1527-1554, 2024.
Article in English | MEDLINE | ID: mdl-39164214

ABSTRACT

Astragaloside IV (AS-IV), a natural triterpenoid isolated from Astragalus membranaceus, has been used traditionally in Chinese medicine. Previous studies have highlighted its benefits against carcinoma, but its interaction with the gut microbiota and effects on adenomatous polyps are not well understood. This present study investigates the effects of AS-IV on colonic adenomatous polyp (CAP) development in high-fat-diet (HFD) fed [Formula: see text] mice. [Formula: see text] mice were fed an HFD with or without AS-IV or Naringin for 8 weeks. The study assessed CAP proliferation and employed 16S DNA-sequencing and untargeted metabolomics to explore correlations between microbiome and metabolome in CAP development. AS-IV was more effective than Naringin in reducing CAP development, inhibiting colonic proinflammatory cytokines (IL-1ß, IL-6, and TNF-α), tumor associated biomarkers (c-Myc, Cyclin D1), and Wnt/ß-catenin pathway proteins (Wnt3a, ß-catenin). AS-IV also inhibited the proliferative capabilities of human colon cancer cells (HT29, HCT116, and SW620). Multiomics analysis revealed AS-IV increased the abundance of beneficial genera such as Bifidobacterium pseudolongum and significantly modulated serum levels of certain metabolites including linoleate and 2-trans,6-trans-farnesal, which were significantly correlated with the number of CAP. Finally, the anti-adenoma efficacy of AS-IV alone was significantly suppressed post pseudoaseptic intervention in HFD-fed [Formula: see text] mice but could be reinstated following a combined with Bifidobacterium pseudolongum transplant. AS-IV attenuates CAP development in HFD-fed [Formula: see text] mice by regulating gut microbiota and metabolomics, impacting the Wnt3a/ß-catenin signaling pathway. This suggests a potential new strategy for the prevention of colorectal cancer, emphasizing the role of gut microbiota in AS-IV's antitumor effects.


Subject(s)
Adenomatous Polyps , Bifidobacterium , Gastrointestinal Microbiome , Metabolome , Saponins , Triterpenes , Animals , Triterpenes/pharmacology , Triterpenes/isolation & purification , Triterpenes/administration & dosage , Saponins/pharmacology , Saponins/isolation & purification , Gastrointestinal Microbiome/drug effects , Humans , Metabolome/drug effects , Adenomatous Polyps/prevention & control , Male , Mice , Mice, Inbred C57BL , Colonic Neoplasms/prevention & control , Colonic Neoplasms/microbiology , Colonic Neoplasms/etiology , Wnt Signaling Pathway/drug effects , Cell Proliferation/drug effects , Diet, High-Fat/adverse effects , Colonic Polyps/microbiology , Cytokines/metabolism , Cytokines/blood , Disease Models, Animal , Phytotherapy
5.
Res Vet Sci ; 176: 105341, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38963992

ABSTRACT

Recently, an increased number of reports have described pathogens of animal origin that cause a variety of infections and a rise in their transmission to humans. Streptococcus gallolyticus, a member of the Streptococcus bovis/Streptococcus equinus complex (SBSEC), is one of these pathogens and infects a wide range of hosts from mammals to poultry and has a broad functionality ranging from pathogenicity to food fermentation. As S. gallolyticus causes complications including bacteremia, infective endocarditis, and colorectal malignancy in humans, it is important to investigate its occurrence in various hosts, including geese, to prevent potential zoonotic transmissions. This study aimed to investigate the presence of S. gallolyticus in the droppings of clinically healthy and diarrheic geese, which were raised intensively and semi-intensively, by the in vitro culture method, characterize the isolates recovered by PCR and sequence-based molecular methods and determine their antibiotic susceptibility by the disk diffusion and gradient test methods. For this purpose, 150 samples of fresh goose droppings were used. Culture positivity for S. gallolyticus was determined as 8% (12/150). PCR analysis identified 54.55% (n = 6) of the isolates as S. gallolyticus subsp. gallolyticus and 45.45% (n = 5) as S. gallolyticus subsp. pasteurianus. Following the 16S rRNA sequence and ERIC-PCR analyses, S. gallolyticus subspecies exhibited identical cluster and band profiles that could be easily distinguished from each other and were clonally identified. High rates of susceptibility to florfenicol, penicillin, rifampicin, and vancomycin were detected among the isolates, regardless of the subspecies diversity. Both subspecies showed high levels of resistance to bacitracin, clindamycin, doxycycline, tetracycline, trimethoprim-sulfamethoxazole, and erythromycin and multiple MDR profiles, indicating their potential to become superbugs. This first report from Türkiye demonstrates the occurrence of the S. gallolyticus subspecies in geese. In view of the recent increase of geese production and the consumption of goose meat in Türkiye, the occurrence of S. gallolyticus in geese should not be ignored to prevent zoonotic transmission.


Subject(s)
Disease Reservoirs , Geese , Poultry Diseases , Streptococcal Infections , Streptococcus gallolyticus , Animals , Geese/microbiology , Streptococcus gallolyticus/genetics , Streptococcal Infections/veterinary , Streptococcal Infections/microbiology , Streptococcal Infections/transmission , Poultry Diseases/microbiology , Poultry Diseases/transmission , Disease Reservoirs/microbiology , Disease Reservoirs/veterinary , Colonic Neoplasms/microbiology , Colonic Neoplasms/veterinary , Humans , Feces/microbiology , Anti-Bacterial Agents/pharmacology
6.
Gut Microbes ; 16(1): 2380061, 2024.
Article in English | MEDLINE | ID: mdl-39078050

ABSTRACT

Cancer immunotherapy has been regarded as a promising strategy for cancer therapy by blocking immune checkpoints and evoking immunity to fight cancer, but its efficacy seems to be heterogeneous among patients. Manipulating the gut microbiota is a potential strategy for enhancing the efficacy of immunotherapy. Here, we report that MS-20, also known as "Symbiota®", a postbiotic that comprises abundant microbial metabolites generated from a soybean-based medium fermented with multiple strains of probiotics and yeast, inhibited colon and lung cancer growth in combination with an anti-programmed cell death 1 (PD1) antibody in xenograft mouse models. Mechanistically, MS-20 remodeled the immunological tumor microenvironment by increasing effector CD8+ T cells and downregulating PD1 expression, which were mediated by the gut microbiota. Fecal microbiota transplantation (FMT) from mice receiving MS-20 treatment to recipient mice increased CD8+ T-cell infiltration into the tumor microenvironment and significantly improved antitumor activity when combined with anti-PD1 therapy. Notably, the abundance of Ruminococcus bromii, which increased following MS-20 treatment, was positively associated with a reduced tumor burden and CD8+ T-cell infiltration in vivo. Furthermore, an ex vivo study revealed that MS-20 could alter the composition of the microbiota in cancer patients, resulting in distinct metabolic pathways associated with favorable responses to immunotherapy. Overall, MS-20 could act as a promising adjuvant agent for enhancing the efficacy of immune checkpoint-mediated antitumor therapy.


Subject(s)
CD8-Positive T-Lymphocytes , Gastrointestinal Microbiome , Programmed Cell Death 1 Receptor , Tumor Microenvironment , Animals , Mice , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Programmed Cell Death 1 Receptor/immunology , Programmed Cell Death 1 Receptor/metabolism , Humans , Tumor Microenvironment/immunology , CD8-Positive T-Lymphocytes/immunology , Fecal Microbiota Transplantation , Cell Line, Tumor , Probiotics/administration & dosage , Probiotics/pharmacology , Immunotherapy , Female , Colonic Neoplasms/immunology , Colonic Neoplasms/therapy , Colonic Neoplasms/drug therapy , Colonic Neoplasms/microbiology , Immune Checkpoint Inhibitors/pharmacology , Lung Neoplasms/immunology , Lung Neoplasms/drug therapy , Lung Neoplasms/therapy , Mice, Inbred BALB C , Xenograft Model Antitumor Assays
7.
BMC Gastroenterol ; 24(1): 237, 2024 Jul 29.
Article in English | MEDLINE | ID: mdl-39075373

ABSTRACT

BACKGROUND: The research aims to explore the characteristics of intestinal flora, nutritional status and immune function in patients with different types of obese colon cancer. METHODS: A retrospective analysis is conducted on 64 cases of obese colon cancer diagnosed from June 2018 to January 2020. According to the histological staging of the cancer, they are classified into adenocarcinoma, adenosquamous carcinoma and undifferentiated carcinoma, with corresponding cases of 24, 22 and 18, respectively. The intestinal flora (Bifidobacterium, Lactobacillus, Enterococcus faecalis, Escherichia coli, and yeast), nutritional status (Hb, Alb, PA, TFN, and PNI), immune function (IgG, IgM, IgA, CD4+, CD8+, and CD4+/CD8+) are analyzed in the different groups of patients. Survival curves are evaluated by Kaplan-Meier method and log-rank test for tumour death, local recurrence, and distant metastasis. RESULTS: There were no statistically significant differences in intestinal flora (Bifidobacterium, Lactobacillus, Enterococcus faecalis, Escherichia coli, and yeast), nutritional status (Hb, Alb, PA, TFN, and PNI) and immune function (IgG, IgM, IgA, CD4+, CD8+, and CD4+/CD8+) between different groups. There was a significant correlation between intestinal flora, nutritional status and immune function for all three. The survival curves of tumour death, local recurrence and distant metastasis in different groups of obese colon cancer patients were statistically significant. The tumor mortality rate, local recurrence, and distant metastasis rate in adenocarcinoma were 78.65%, 54.25% and 48.26% respectively. CONCLUSION: There are differences in intestinal flora, nutritional status and immune function among different types of obese colon cancer patients, but adenocarcinoma has the least benefit in intestinal flora, poor nutritional status, and weakest immune function.


Subject(s)
Colonic Neoplasms , Gastrointestinal Microbiome , Nutritional Status , Obesity , Humans , Gastrointestinal Microbiome/immunology , Male , Female , Middle Aged , Retrospective Studies , Colonic Neoplasms/immunology , Colonic Neoplasms/microbiology , Colonic Neoplasms/pathology , Obesity/complications , Obesity/immunology , Aged , Adenocarcinoma/immunology , Adenocarcinoma/microbiology , Adenocarcinoma/pathology , Adult
8.
Cancer Res Commun ; 4(7): 1777-1792, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38934090

ABSTRACT

Escherichia coli that harbor the polyketide synthase (pks) genomic island produce colibactin and are associated with sporadic colorectal cancer development. Given the considerable prevalence of pks+ bacteria in healthy individuals, we sought to identify strategies to limit the growth and expansion of pks+ E. coli. We found that culture supernatants of the probiotic strain E. coli Nissle 1917 were able to inhibit the growth of the murine pathogenic strain pks+ E. coli NC101 (EcNC101). We performed a nontargeted analysis of the metabolome in supernatants from several E. coli strains and identified putrescine as a potential postbiotic capable of suppressing EcNC101 growth in vitro. The effect of putrescine supplementation was then evaluated in the azoxymethane/dextran sulfate sodium mouse model of colorectal cancer in mice colonized with EcNC101. Putrescine supplementation inhibited the growth of pks+ E. coli, reduced the number and size of colonic tumors, and downmodulated the release of inflammatory cytokines in the colonic lumen. Additionally, putrescine supplementation led to shifts in the composition and function of gut microbiota, characterized by an increase in the Firmicutes/Bacteroidetes ratio and enhanced acetate production. The effect of putrescine was further confirmed in vitro using a pks+ E. coli strain isolated from a patient with colorectal cancer. These results suggest that probiotic-derived metabolites can be used as an alternative to live bacteria in individuals at risk of developing colorectal cancer due to the presence of pks+ bacteria in their colon. SIGNIFICANCE: Putrescine supplementation inhibits the growth of cancer-promoting bacteria in the gut, lowers inflammation, and reduces colon cancer development. The consumption of healthy foods rich in putrescine may be a potential prophylactic approach for individuals at risk of developing colorectal cancer due to the presence of pks+ bacteria in their colon.


Subject(s)
Escherichia coli , Gastrointestinal Microbiome , Polyketide Synthases , Putrescine , Putrescine/pharmacology , Putrescine/metabolism , Animals , Escherichia coli/drug effects , Mice , Gastrointestinal Microbiome/drug effects , Polyketide Synthases/metabolism , Polyketide Synthases/genetics , Colonic Neoplasms/microbiology , Colonic Neoplasms/pathology , Humans , Probiotics/pharmacology , Probiotics/administration & dosage , Probiotics/therapeutic use , Colorectal Neoplasms/microbiology , Colorectal Neoplasms/pathology , Colorectal Neoplasms/metabolism , Dietary Supplements , Polyketides/pharmacology , Polyketides/metabolism , Disease Models, Animal , Genomic Islands , Colon/microbiology , Colon/pathology , Colon/metabolism , Colon/drug effects , Azoxymethane , Peptides
9.
World J Gastroenterol ; 30(21): 2817-2826, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38899326

ABSTRACT

BACKGROUND: The association between the intestinal microbiota and psychiatric disorders is becoming increasingly apparent. The gut microbiota contributes to colorectal carcinogenesis (CRC), as demonstrated with colibactin-producing Escherichia coli (CoPEC). AIM: To evaluate the association between CoPEC prevalence and anxiety- and depressive-like behaviors with both preclinical and clinical approaches. METHODS: Patients followed after a CRC surgery and for whom the prevalence of CoPEC has been investigated underwent a psychiatric interview. Results were compared according to the CoPEC colonization. In parallel C57BL6/J wild type mice and mice with a CRC susceptibility were chronically infected with a CoPEC strain. Their behavior was assessed using the Elevated Plus Maze test, the Forced Swimming Test and the Behavior recognition system PhenoTyper®. RESULTS: In a limited cohort, all patients with CoPEC colonization presented with psychiatric disorders several years before cancer diagnosis, whereas only one patient (17%) without CoPEC did. This result was confirmed in C57BL6/J wild-type mice and in a CRC susceptibility mouse model (adenomatous polyposis colimultiple intestinal neoplasia/+). Mice exhibited a significant increase in anxiety- and depressive-like behaviors after chronic infection with a CoPEC strain. CONCLUSION: This finding provides the first evidence that CoPEC infection can induce microbiota-gut-brain axis disturbances in addition to its procarcinogenic properties.


Subject(s)
Anxiety , Depression , Disease Models, Animal , Escherichia coli Infections , Gastrointestinal Microbiome , Mice, Inbred C57BL , Peptides , Polyketides , Animals , Humans , Male , Polyketides/metabolism , Depression/psychology , Depression/microbiology , Anxiety/psychology , Anxiety/microbiology , Anxiety/etiology , Mice , Female , Aged , Middle Aged , Escherichia coli Infections/psychology , Escherichia coli Infections/microbiology , Peptides/metabolism , Escherichia coli/isolation & purification , Colonic Neoplasms/psychology , Colonic Neoplasms/microbiology , Prevalence , Brain-Gut Axis
10.
Microb Pathog ; 193: 106726, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38848931

ABSTRACT

Gut bacterial dysbiosis has been linked to several gastrointestinal diseases, including deadly colorectal cancer (CRC), a leading cause of mortality in cancer patients. However, perturbation in gut bacteriome during colon cancer (CC, devoid of colorectal malignancy) remains poorly explored. Here, 16S rRNA gene amplicon sequencing was carried out for fecal DNA samples targeted to hypervariable V3-V4 region by employing MiSeq platform to explore the gut bacterial community shift in CC patients. While alpha diversity indices predicted high species richness and diversity, beta diversity showed marked gut bacterial compositional dissimilarity in CC versus healthy controls (HC, n = 10 each). We observed a significant (p < 0.05, Wilcoxon Rank-Sum test) emergence of low-abundant anaerobic taxa, including Parvimonas and Peptostreptococcus, in addition to Subdoligranulum, Coprococcus, Holdemanella, Solobacterium, Bilophila, Blautia, Dorea, Moryella and several unidentified taxa, mainly affiliated to Firmicutes, in CC patients. In addition, we also traced the emergence of putative probiotic taxon Slackia, belonging to Actinomycetota, in CC patients. The emergence of anaerobic Firmicutes in CC is accompanied by a significant (p < 0.05) decline in the Klebsiella, as determined through linear discriminant analysis effect size (LEfSe) and heat tree analyses. Shifts in core microbiome and variation in network correlation were also witnessed. Taken together, this study highlighted a significant and consistent emergence of rare anaerobic Firmicutes suggesting possible anaerobiosis driving gut microbial community shift, which could be exploited in designing diagnostic and therapeutic tools targeted to CC.


Subject(s)
Colonic Neoplasms , Dysbiosis , Feces , Firmicutes , Gastrointestinal Microbiome , Klebsiella , RNA, Ribosomal, 16S , Humans , Gastrointestinal Microbiome/genetics , RNA, Ribosomal, 16S/genetics , Colonic Neoplasms/microbiology , Klebsiella/genetics , Klebsiella/isolation & purification , Klebsiella/classification , Feces/microbiology , Firmicutes/genetics , Firmicutes/isolation & purification , Firmicutes/classification , Dysbiosis/microbiology , Male , Female , DNA, Bacterial/genetics , Middle Aged , Aged , Phylogeny , Anaerobiosis
11.
Pharmacol Res Perspect ; 12(4): e1226, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38886975

ABSTRACT

Although classically recognized as a neurotransmitter, gamma aminobutyric acid (GABA) has also been identified in colonic tumors. Moreover, the gut microbiome represents another potential source of GABA. Both GABAA and GABAB receptors have been implicated in contributing to the effects of GABA in colorectal cancer, with both pro- and anti-tumorigenic functions identified. However, their subunit composition is often overlooked. Studies to date have not addressed whether the GABA-producing potential of the microbiome changes over the course of colon tumor development or whether receptor subunit expression patterns are altered in colon cancer. Therefore, we investigated the clusters of orthologous group frequencies of glutamate decarboxylase (GAD) in feces from two murine models of colon cancer and found that the frequency of microbial GAD was significantly decreased early in the tumorigenic process. We also determined that microbial-derived GABA inhibited proliferation of colon cancer cells in vitro and that this effect of GABA on SW480 cells involved both GABAA and GABAB receptors. GABA also inhibited prostaglandin E2 (PGE2)-induced proliferation and interleukin-6 (IL-6) expression in these cells. Gene expression correlations were assessed using the "Cancer Exploration" suite of the TIMER2.0 web tool and identified that GABA receptor subunits were differentially expressed in human colon cancer. Moreover, GABAA receptor subunits were predominantly positively associated with PGE2 synthase, cyclooxygenase-2 and IL-6. Collectively, these data demonstrate decreased potential of the microbiome to produce GABA during tumorigenesis, a novel anti-tumorigenic pathway for GABA, and that GABA receptor subunit expression adds a further layer of complexity to GABAergic signaling in colon cancer.


Subject(s)
Cell Proliferation , Colonic Neoplasms , Gastrointestinal Microbiome , Receptors, GABA-A , Receptors, GABA-B , Signal Transduction , gamma-Aminobutyric Acid , Animals , Colonic Neoplasms/metabolism , Colonic Neoplasms/microbiology , Colonic Neoplasms/pathology , gamma-Aminobutyric Acid/metabolism , Humans , Mice , Cell Line, Tumor , Receptors, GABA-A/metabolism , Receptors, GABA-A/genetics , Receptors, GABA-B/metabolism , Dinoprostone/metabolism , Glutamate Decarboxylase/metabolism , Interleukin-6/metabolism , Cyclooxygenase 2/metabolism , Cyclooxygenase 2/genetics , Carcinogenesis , Feces/microbiology , Receptors, GABA/metabolism , Receptors, GABA/genetics , Male , Mice, Inbred C57BL , Female
12.
World J Microbiol Biotechnol ; 40(7): 204, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38755413

ABSTRACT

Globally colorectal cancer ranks as the third most widespread disease and the third leading cause of cancer-associated mortality. Immunotherapy treatments like PD-L1 blockade have been used to inhibit the PD-L1 legend, which boosts the activity of cytotoxic T lymphocytes. Recently, studies suggest that some probiotics could potentially enhance the effectiveness of immunotherapy treatments for cancer patients. We found that in Caco-2 and HT-29 cells, the live Leuconostoc mesenteroides treatment resulted an increase in the PD-L1 expression and this treatment stimulated interferon-gamma (IFN-γ) production in Jurkat T-cells. Due to the well-established ability of IFN-γ to enhance PD-L1 expression, the combination of IFN-γ and L. mesenteroides was used in colon cancer cell lines and a resulting remarkable increase of over tenfold in PD-L1 expression was obtained. Interestingly, when L. mesenteroides and IFN-γ are present, the blockage of PD-L1 using PD-L1 antibodies not only improved the viability of Jurkat T-cells but also significantly boosted the levels of IFN-γ and IL-2, the T-cells activation marker cytokines. In addition to upregulating PD-L1, L. mesenteroides also activated Toll-like receptors (TLRs) and NOD-like receptors (NODs) pathways, specifically through TLR2 and NOD2, while also exerting a suppressive effect on autophagy in colon cancer cell lines. In conclusion, our findings demonstrate a significant upregulation of PD-L1 expression in colon cancer cells upon co-culturing with L. mesenteroides. Moreover, the presence of PD-L1 antibodies during co-culturing activates Jurkat T cells. The observed enhancement in PD-L1 expression may be attributed to the inhibition of the Autophagy pathway or activation of the hippo pathway. KEY POINTS: Co-culturing L. mesenteroides increases PD-L1 gene and protein transaction in colon cancer. L. mesenteroides existing enhances T cells viability and activity. GPCR41/42 is a possible link between L. mesenteroides, YAP-1 and PD-L1.


Subject(s)
B7-H1 Antigen , Colonic Neoplasms , Interferon-gamma , Leuconostoc mesenteroides , T-Lymphocytes , Humans , B7-H1 Antigen/metabolism , B7-H1 Antigen/genetics , Caco-2 Cells/microbiology , Cell Line, Tumor , Colonic Neoplasms/immunology , Colonic Neoplasms/microbiology , HT29 Cells/microbiology , Interferon-gamma/metabolism , Interleukin-2/metabolism , Jurkat Cells , Leuconostoc mesenteroides/metabolism , Leuconostoc mesenteroides/genetics , Lymphocyte Activation , Nod2 Signaling Adaptor Protein/metabolism , Nod2 Signaling Adaptor Protein/genetics , Probiotics/pharmacology , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , T-Lymphocytes/microbiology , Toll-Like Receptor 2/metabolism , Toll-Like Receptor 2/genetics , Up-Regulation
13.
Cardiovasc Res ; 120(6): 612-622, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38400709

ABSTRACT

AIMS: Heart failure (HF) and cancer are the leading causes of death worldwide. Epidemiological studies revealed that HF patients are prone to develop cancer. Preclinical studies provided some insights into this connection, but the exact mechanisms remain elusive. In colorectal cancer (CRC), gut microbial dysbiosis is linked to cancer progression and recent studies have shown that HF patients display microbial dysbiosis. This current study focussed on the effects of HF-induced microbial dysbiosis on colonic tumour formation. METHODS AND RESULTS: C57BL/6J mice were subjected to myocardial infarction (MI), with sham surgery as control. After six weeks faeces were collected, processed for 16 s rRNA sequencing, and pooled for faecal microbiota transplantation. CRC tumour growth was provoked in germ-free mice by treating them with Azoxymethane/Dextran sodium sulphate. The CRC mice were transplanted with faeces from MI or sham mice. MI-induced HF resulted in microbial dysbiosis, characterized by a decreased α-diversity and microbial alterations on the genus level, several of which have been associated with CRC. We then performed faecal microbiota transplantation with faeces from HF mice in CRC mice, which resulted in a higher endoscopic disease score and an increase in the number of tumours in CRC mice. CONCLUSION: We demonstrated that MI-induced HF contributes to colonic tumour formation by altering the gut microbiota composition, providing a mechanistic explanation for the observed association between HF and increased risk for cancer. Targeting the microbiome may present as a tool to mitigate HF-associated co-morbidities, especially cancer.


Subject(s)
Colon , Disease Models, Animal , Dysbiosis , Fecal Microbiota Transplantation , Gastrointestinal Microbiome , Heart Failure , Mice, Inbred C57BL , Myocardial Infarction , Animals , Myocardial Infarction/pathology , Myocardial Infarction/microbiology , Heart Failure/microbiology , Heart Failure/pathology , Heart Failure/etiology , Male , Colon/microbiology , Colon/pathology , Ribotyping , Colonic Neoplasms/pathology , Colonic Neoplasms/microbiology , Bacteria/genetics , Feces/microbiology , Host-Pathogen Interactions
14.
World J Microbiol Biotechnol ; 39(12): 333, 2023 Oct 06.
Article in English | MEDLINE | ID: mdl-37801157

ABSTRACT

pks+ Escherichia coli (E. coli) triggers genomic instability in normal colon cells which leads to colorectal cancer (CRC) tumorigenesis. Previously, we reported a significant presentation of pks+ E. coli strains in CRC patients' biopsies as compared to healthy cohorts. In this work, using an in vitro infection model, we further explored the ability of these strains in modulating cell cycle arrest and activation of apoptotic mediators in both primary colon epithelial cells (PCE) and CRC cells (HCT-116). Sixteen strains, of which eight tumours and the matching non-malignant tissues, respectively, from eight pks+ E. coli CRC patients were subjected to BrDU staining and cell cycle analysis via flow cytometry, while a subset of these strains underwent analysis of apoptotic mediators including caspase proteins, cellular reactive oxygen species (cROS) and mitochondrial membrane potential (MMP) via spectrophotometry as well as proinflammatory cytokines via flow cytometry. Data revealed that all strains exerted S-phase cell cycle blockade in both cells and G2/M phase in PCE cells only. Moreover, more significant upregulation of Caspase 9, cROS, proinflammatory cytokines and prominent downregulation of MMP were detected in HCT-116 cells indicating the potential role of pks related bacterial toxin as anticancer agent as compared to PCE cells which undergo cellular senescence leading to cell death without apparent upregulation of apoptotic mediators. These findings suggest the existence of discrepancies underlying the mechanism of action of pks+ E. coli on both cancer and normal cell lines. This work propounds the rationale to further understand the mechanism underlying pks+ E. coli-mediated CRC tumorigenesis and cancer killing.


Subject(s)
Colonic Neoplasms , Escherichia coli , Humans , Escherichia coli/genetics , Colonic Neoplasms/microbiology , Colonic Neoplasms/pathology , Cell Cycle Checkpoints , Cell Line , Apoptosis , Carcinogenesis , Cytokines , Cell Line, Tumor , Cell Cycle
15.
Cell Host Microbe ; 31(3): 418-432.e8, 2023 03 08.
Article in English | MEDLINE | ID: mdl-36893736

ABSTRACT

The intestinal microbiota plays an important role in colorectal cancer (CRC) progression. However, the effect of tissue-resident commensal bacteria on CRC immune surveillance remains poorly understood. Here, we analyzed the intratissue bacteria from CRC patient colon tissues. We found that the commensal bacteria belonging to the Lachnospiraceae family, including Ruminococcus gnavus (Rg), Blautia producta (Bp), and Dorea formicigenerans (Df), were enriched in normal tissues, while Fusobacterium nucleatum (Fn) and Peptostreptococcus anaerobius (Pa) were abundant in tumor tissues. Tissue-resident Rg and Bp reduced colon tumor growth and promoted the activation of CD8+ T cells in immunocompetent mice. Mechanistically, intratissue Rg and Bp degraded lyso-glycerophospholipids that inhibited CD8+ T cell activity and maintained the immune surveillance function of CD8+ T cells. Lyso-glycerophospholipids alone promoted tumor growth that was abrogated with Rg and Bp injection. Collectively, intratissue Lachnospiraceae family bacteria facilitate the immune surveillance function of CD8+ T cells and control colorectal cancer progression.


Subject(s)
Colonic Neoplasms , Colorectal Neoplasms , Animals , Mice , Colorectal Neoplasms/microbiology , CD8-Positive T-Lymphocytes , Carcinogenesis , Colonic Neoplasms/microbiology , Fusobacterium nucleatum
16.
Microbiol Spectr ; 10(3): e0105522, 2022 06 29.
Article in English | MEDLINE | ID: mdl-35587635

ABSTRACT

Enterotoxigenic Bacteroides fragilis (ETBF) is consistently found at higher frequency in individuals with sporadic and hereditary colorectal cancer (CRC) and induces tumorigenesis in several mouse models of CRC. However, whether specific mutations induced by ETBF lead to colon tumor formation has not been investigated. To determine if ETBF-induced mutations impact the Apc gene, and other tumor suppressors or proto-oncogenes, we performed whole-exome sequencing and whole-genome sequencing on tumors isolated after ETBF and sham colonization of Apcmin/+ and Apcmin/+Msh2fl/flVC mice, as well as whole-genome sequencing of organoids cocultured with ETBF. Our results indicate that ETBF-induced tumor formation results from loss of heterozygosity (LOH) of Apc, unless the mismatch repair system is disrupted, in which case, tumor formation results from new acquisition of protein-truncating mutations in Apc. In contrast to polyketide synthase-positive Escherichia coli (pks+ E. coli), ETBF does not produce a unique mutational signature; instead, ETBF-induced tumors arise from errors in DNA mismatch repair and homologous recombination DNA damage repair, established pathways of tumor formation in the colon, and the same genetic mechanism accounting for sham tumors in these mouse models. Our analysis informs how this procarcinogenic bacterium may promote tumor formation in individuals with inherited predispositions to CRC, such as Lynch syndrome or familial adenomatous polyposis (FAP). IMPORTANCE Many studies have shown that microbiome composition in both the mucosa and the stool differs in individuals with sporadic and hereditary colorectal cancer (CRC). Both human and mouse models have established a strong association between particular microbes and colon tumor induction. However, the genetic mechanisms underlying putative microbe-induced colon tumor formation are not well established. In this paper, we applied whole-exome sequencing and whole-genome sequencing to investigate the impact of ETBF-induced genetic changes on tumor formation. Additionally, we performed whole-genome sequencing of human colon organoids exposed to ETBF to validate the mutational patterns seen in our mouse models and begin to understand their relevance in human colon epithelial cells. The results of this study highlight the importance of ETBF colonization in the development of sporadic CRC and in individuals with hereditary tumor conditions, such as Lynch syndrome and familial adenomatous polyposis (FAP).


Subject(s)
Adenomatous Polyposis Coli , Bacterial Infections , Colonic Neoplasms , Colorectal Neoplasms, Hereditary Nonpolyposis , Colorectal Neoplasms , Adenomatous Polyposis Coli/genetics , Adenomatous Polyposis Coli/pathology , Animals , Bacterial Infections/pathology , Bacteroides fragilis/genetics , Bacteroides fragilis/metabolism , Colon/microbiology , Colonic Neoplasms/genetics , Colonic Neoplasms/microbiology , Colonic Neoplasms/pathology , Colorectal Neoplasms/microbiology , Colorectal Neoplasms, Hereditary Nonpolyposis/genetics , Colorectal Neoplasms, Hereditary Nonpolyposis/pathology , Disease Models, Animal , Escherichia coli/genetics , Genes, APC , Mice , Mutation
17.
Sci Rep ; 12(1): 1432, 2022 01 26.
Article in English | MEDLINE | ID: mdl-35082322

ABSTRACT

Faecal (FM) and colon mucosal associated microbiota (MAM) were studied in a model of colorectal cancer (CRC), the Apc-mutated Pirc rats, and in age-paired wt F344 rats. Principal Coordinates Analysis indicated that samples' distribution was driven by age, with samples of young rats (1 month old; without tumours) separated from older ones (11-month-old; bearing tumours). Diversity analysis showed significant differences between FM and MAM in older Pirc rats, and between MAM of both Pirc and wt rats and the tumour microbiota, enriched in Enterococcus, Escherichia/Shigella, Proteus and Bifidobacteriaceae. In young animals, Pirc FM was enriched in the genus Delftia, while wt FM was enriched in Lactobacillus and Streptococcus. Some CRC biomarkers and faecal short chain fatty acids (SCFAs) were also measured. Colon proliferation and DClK1 expression, a pro-survival mucosal marker, were higher in Pirc than in wt rats, while the mucin MUC2, was lower in Pirc rats. Branched SCFAs were higher in Pirc than in wt animals. By Spearman analysis CRC biomarkers correlated with FM (in both young and old rats) and with MAM (in young rats), suggesting a specific relationship between the gut microbiota profile and these functional mucosal parameters deserving further investigation.


Subject(s)
Biomarkers, Tumor/genetics , Carcinogenesis/genetics , Colon/microbiology , Colonic Neoplasms/genetics , Doublecortin-Like Kinases/genetics , Mucin-2/genetics , Age Factors , Animals , Bifidobacterium/growth & development , Bifidobacterium/isolation & purification , Biomarkers, Tumor/metabolism , Carcinogenesis/metabolism , Carcinogenesis/pathology , Colon/metabolism , Colonic Neoplasms/metabolism , Colonic Neoplasms/microbiology , Colonic Neoplasms/pathology , Disease Models, Animal , Doublecortin-Like Kinases/metabolism , Enterococcus/growth & development , Enterococcus/isolation & purification , Escherichia/growth & development , Escherichia/isolation & purification , Fatty Acids, Volatile/metabolism , Feces/microbiology , Gene Expression Regulation , Lactobacillus/growth & development , Lactobacillus/isolation & purification , Male , Mucin-2/metabolism , Principal Component Analysis , Proteus/growth & development , Proteus/isolation & purification , Rats , Rats, Inbred F344 , Shigella/growth & development , Shigella/isolation & purification , Streptococcus/growth & development , Streptococcus/isolation & purification
18.
Gut ; 71(3): 457-466, 2022 03.
Article in English | MEDLINE | ID: mdl-34253574

ABSTRACT

OBJECTIVE: In this study, we determined whether Helicobacter pylori (H. pylori) infection dampens the efficacy of cancer immunotherapies. DESIGN: Using mouse models, we evaluated whether immune checkpoint inhibitors or vaccine-based immunotherapies are effective in reducing tumour volumes of H. pylori-infected mice. In humans, we evaluated the correlation between H. pylori seropositivity and the efficacy of the programmed cell death protein 1 (PD-1) blockade therapy in patients with non-small-cell lung cancer (NSCLC). RESULTS: In mice engrafted with MC38 colon adenocarcinoma or B16-OVA melanoma cells, the tumour volumes of non-infected mice undergoing anticytotoxic T-lymphocyte-associated protein 4 and/or programmed death ligand 1 or anti-cancer vaccine treatments were significantly smaller than those of infected mice. We observed a decreased number and activation status of tumour-specific CD8+ T cells in the tumours of infected mice treated with cancer immunotherapies independent of the gut microbiome composition. Additionally, by performing an in vitro co-culture assay, we observed that dendritic cells of infected mice promote lower tumour-specific CD8+ T cell proliferation. We performed retrospective human clinical studies in two independent cohorts. In the Dijon cohort, H. pylori seropositivity was found to be associated with a decreased NSCLC patient survival on anti-PD-1 therapy. The survival median for H. pylori seropositive patients was 6.7 months compared with 15.4 months for seronegative patients (p=0.001). Additionally, in the Montreal cohort, H. pylori seropositivity was found to be associated with an apparent decrease of NSCLC patient progression-free survival on anti-PD-1 therapy. CONCLUSION: Our study unveils for the first time that the stomach microbiota affects the response to cancer immunotherapies and that H. pylori serology would be a powerful tool to personalize cancer immunotherapy treatment.


Subject(s)
Adenocarcinoma/drug therapy , Carcinoma, Non-Small-Cell Lung/drug therapy , Colonic Neoplasms/drug therapy , Helicobacter Infections/complications , Immune Checkpoint Inhibitors/therapeutic use , Lung Neoplasms/drug therapy , Adenocarcinoma/microbiology , Adenocarcinoma/pathology , Animals , Cancer Vaccines/therapeutic use , Carcinoma, Non-Small-Cell Lung/microbiology , Carcinoma, Non-Small-Cell Lung/pathology , Colonic Neoplasms/microbiology , Colonic Neoplasms/pathology , Disease Models, Animal , Female , Helicobacter pylori , Humans , Lung Neoplasms/microbiology , Lung Neoplasms/pathology , Male , Mice , Mice, Inbred C57BL , Retrospective Studies
19.
Cell Rep ; 37(6): 109989, 2021 11 09.
Article in English | MEDLINE | ID: mdl-34758302

ABSTRACT

Mutations in mitochondrial genes impairing energy production cause mitochondrial diseases (MDs), and clinical studies have shown that MD patients are prone to bacterial infections. However, the relationship between mitochondrial (dys)function and infection remains largely unexplored, especially in epithelial cells, the first barrier to many pathogens. Here, we generate an epithelial cell model for one of the most common mitochondrial diseases, Leigh syndrome, by deleting surfeit locus protein 1 (SURF1), an assembly factor for respiratory chain complex IV. We use this genetic model and a complementary, nutrient-based approach to modulate mitochondrial respiration rates and show that impaired mitochondrial respiration favors entry of the human pathogen Listeria monocytogenes, a well-established bacterial infection model. Reversely, enhanced mitochondrial energy metabolism decreases infection efficiency. We further demonstrate that endocytic recycling is reduced in mitochondrial respiration-dependent cells, dampening L. monocytogenes infection by slowing the recycling of its host cell receptor c-Met, highlighting a previously undescribed role of mitochondrial respiration during infection.


Subject(s)
Colonic Neoplasms/microbiology , Listeria monocytogenes/physiology , Listeriosis/prevention & control , Membrane Proteins/metabolism , Mitochondria/physiology , Mitochondrial Proteins/metabolism , Proto-Oncogene Proteins c-met/metabolism , Respiration , Colonic Neoplasms/metabolism , Colonic Neoplasms/pathology , Energy Metabolism , HCT116 Cells , Humans , Listeriosis/microbiology , Membrane Proteins/genetics , Mitochondrial Proteins/genetics , Proto-Oncogene Proteins c-met/genetics
20.
Sci Rep ; 11(1): 20263, 2021 10 12.
Article in English | MEDLINE | ID: mdl-34642332

ABSTRACT

Recent evidence suggests that Fusobacterium nucleatum (Fn) is associated with the development and progression of colorectal cancer. We aimed to delineate the clinical implications of Fn in metastatic colon cancer. We performed quantitative polymerase chain reaction (qPCR) using DNA samples from synchronous metastatic colon cancer patients with either formalin-fixed paraffin-embedded (FFPE) archival primary site tumor samples or fresh colon tissues. Progression-free survival (PFS)1 and PFS2 were defined as PFS of first- and second-line palliative settings. qPCR for Fn was successfully performed using 112 samples (FFPE, n = 61; fresh tissue, n = 51). Forty-one and 68 patients had right-sided and left-sided colon cancer, respectively. Patients with Fn enriched right-sided colon cancers had shorter PFS1 (9.7 vs. 11.2 months) than the other subgroups (HR 3.54, 95% confidence interval [CI] 1.05-11.99; P = 0.04). Fn positive right-sided colon was also associated with shorter PFS2 (3.7 vs. 6.7 months; HR 2.34, 95% CI 0.69-7.91; P = 0.04). In the univariate analysis, PFS1 was affected by differentiation and Fn positive right-sided colon cancer. The multivariate analysis showed that differentiation (HR 2.68, 95% CI 1.40-5.14, P = 0.01) and Fn positive right-sided colon (HR 0.40, 95% CI 0.18-0.88, P = 0.02) were associated with PFS1. Fn enrichment in right sided colon was not associated with overall survival (OS). Fn enrichment has significantly worse prognosis in terms of PFS1 and PFS2 in patients with right-sided metastatic colon cancers.


Subject(s)
Colonic Neoplasms/microbiology , DNA, Bacterial/genetics , Fusobacterium Infections/diagnosis , Fusobacterium nucleatum/isolation & purification , Neoplasms, Multiple Primary/microbiology , Colonic Neoplasms/pathology , DNA, Ribosomal/genetics , Female , Fusobacterium nucleatum/genetics , Humans , Kaplan-Meier Estimate , Male , Neoplasm Metastasis , Prognosis , Progression-Free Survival , RNA, Ribosomal, 16S/genetics
SELECTION OF CITATIONS
SEARCH DETAIL