Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 15.969
1.
Cancer Immunol Immunother ; 73(8): 156, 2024 Jun 04.
Article En | MEDLINE | ID: mdl-38834869

BACKGROUND: Ubiquitin-specific proteases family is crucial to host immunity against pathogens. However, the correlations between USP21 and immunosurveillance and immunotherapy for colorectal cancer (CRC) have not been reported. METHODS: The differential expression of USP21 between CRC tissues and normal tissues was analyzed using multiple public databases. Validation was carried out in clinical samples through qRT-PCR and IHC. The correlation between USP21 and the prognosis, as well as clinical pathological characteristics of CRC patients, was investigated. Moreover, cell models were established to assess the influence of USP21 on CRC growth and progression, employing CCK-8 assays, colony formation assays, and wound-healing assays. Subsequently, gene set variation analysis (GSVA) was used to explore the potential biological functions of USP21 in CRC. The study also examined the impact of USP21 on cytokine levels and immune cell infiltration in the tumor microenvironment (TME). Finally, the effect of USP21 on the response to immunotherapy and chemotherapy in CRC was analyzed. RESULTS: The expression of USP21 was significantly upregulated in CRC. High USP21 is correlated with poor prognosis in CRC patients and facilitates the proliferation and migration capacities of CRC cells. GSVA indicated an association between low USP21 and immune activation. Moreover, low USP21 was linked to an immune-activated TME, characterized by high immune cell infiltration. Importantly, CRC with low USP21 exhibited higher tumor mutational burden, high PD-L1 expression, and better responsiveness to immunotherapy and chemotherapeutic drugs. CONCLUSION: This study revealed the role of USP21 in TME, response to therapy, and clinical prognosis in CRC, which provided novel insights for the therapeutic application in CRC.


Colorectal Neoplasms , Tumor Microenvironment , Ubiquitin Thiolesterase , Humans , Colorectal Neoplasms/pathology , Colorectal Neoplasms/genetics , Colorectal Neoplasms/therapy , Colorectal Neoplasms/immunology , Colorectal Neoplasms/metabolism , Tumor Microenvironment/immunology , Prognosis , Ubiquitin Thiolesterase/genetics , Ubiquitin Thiolesterase/metabolism , Male , Female , Cell Proliferation , Biomarkers, Tumor/metabolism , Gene Expression Regulation, Neoplastic , Middle Aged , Immunotherapy/methods
2.
Zhonghua Bing Li Xue Za Zhi ; 53(6): 592-597, 2024 Jun 08.
Article Zh | MEDLINE | ID: mdl-38825905

Objective: To investigate the expression of DARS2 and its clinical significance in colorectal cancer. Methods: In this study, bioinformatics tools, especially gene expression profile interactive analysis 2 (GEPIA2), were used to conduct an in-depth analysis of DARS2 expression in colorectal cancer tissues. Immunohistochemical staining was carried out in 108 colorectal cancer specimens and 30 normal colorectal tissues obtained from the First Affiliated Hospital of Nanchang University, Nanchang, China. Colorectal cancer cell lines (HCT116 and SW480) were transfected with small interfering RNA (siRNA) and DARS2 overexpression plasmid to examine the effects of DARS2 knockdown and overexpression on cell function. To assess the effects on cell function, CCK8 and transwell migration assays were used to assess proliferation and cell motility, respectively. Additionally, protein immunoblotting was employed to scrutinize the expression of proteins associated with the epithelial-mesenchymal transition of colorectal cancer cells. Results: DARS2 exhibited a pronounced upregulation in expression within colorectal cancer tissues compared to their normal epithelial counterparts. Furthermore, DARS2 expression was higher in colorectal cancer of stage Ⅲ-Ⅳ than those of stage Ⅰ-Ⅱ, exhibiting a significant correlation with N staging, M staging, and pathological staging (P<0.05). Kaplan-Meier analyses showed a decreased overall survival rate in colorectal cancer with DARS2 expression compared to those without DARS2 expression (P<0.05). In the siRNA transfection group, there was a significant reduction in cell proliferation and migration (P<0.01 and P<0.05, respectively). Conversely, the transfection of DARS2 overexpression plasmids substantially increased both cell proliferation and migration (P<0.05). Additionally, immunoblotting revealed that DARS2 knockdown led to an upregulation of E-cadherin expression and a downregulation of N-cadherin and vimentin expression. In contrast, DARS2 overexpression resulted in increased N-cadherin and vimentin expression, coupled with reduction in E-cadherin expression. Conclusions: There is a strong association between DARS2 expression and colorectal cancer progression. Silencing DARS2 inhibits cell proliferation and migration, exerting a discernible influence on the epithelial-mesenchymal transition process.


Cell Movement , Cell Proliferation , Colorectal Neoplasms , Epithelial-Mesenchymal Transition , RNA, Small Interfering , Humans , Colorectal Neoplasms/pathology , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/genetics , RNA, Small Interfering/genetics , Cell Line, Tumor , Vimentin/metabolism , Vimentin/genetics , Cadherins/metabolism , Cadherins/genetics , Survival Rate , HCT116 Cells , Neoplasm Staging , Up-Regulation , Gene Expression Regulation, Neoplastic , Clinical Relevance
4.
Cell Metab ; 36(6): 1320-1334.e9, 2024 Jun 04.
Article En | MEDLINE | ID: mdl-38838643

Circadian homeostasis in mammals is a key intrinsic mechanism for responding to the external environment. However, the interplay between circadian rhythms and the tumor microenvironment (TME) and its influence on metastasis are still unclear. Here, in patients with colorectal cancer (CRC), disturbances of circadian rhythm and the accumulation of monocytes and granulocytes were closely related to metastasis. Moreover, dysregulation of circadian rhythm promoted lung metastasis of CRC by inducing the accumulation of myeloid-derived suppressor cells (MDSCs) and dysfunctional CD8+ T cells in the lungs of mice. Also, gut microbiota and its derived metabolite taurocholic acid (TCA) contributed to lung metastasis of CRC by triggering the accumulation of MDSCs in mice. Mechanistically, TCA promoted glycolysis of MDSCs epigenetically by enhancing mono-methylation of H3K4 of target genes and inhibited CHIP-mediated ubiquitination of PDL1. Our study links the biological clock with MDSCs in the TME through gut microbiota/metabolites in controlling the metastatic spread of CRC, uncovering a systemic mechanism for cancer metastasis.


Circadian Clocks , Gastrointestinal Microbiome , Myeloid-Derived Suppressor Cells , Animals , Mice , Myeloid-Derived Suppressor Cells/metabolism , Humans , Neoplasm Metastasis , Colorectal Neoplasms/pathology , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/microbiology , Mice, Inbred C57BL , Male , Tumor Microenvironment , Lung Neoplasms/pathology , Lung Neoplasms/secondary , Lung Neoplasms/metabolism , Female , Mice, Inbred BALB C , Cell Line, Tumor
5.
Proc Natl Acad Sci U S A ; 121(24): e2404668121, 2024 Jun 11.
Article En | MEDLINE | ID: mdl-38833473

Developing anticancer drugs with low side effects is an ongoing challenge. Immunogenic cell death (ICD) has received extensive attention as a potential synergistic modality for cancer immunotherapy. However, only a limited set of drugs or treatment modalities can trigger an ICD response and none of them have cytotoxic selectivity. This provides an incentive to explore strategies that might provide more effective ICD inducers free of adverse side effects. Here, we report a metal-based complex (Cu-1) that disrupts cellular redox homeostasis and effectively stimulates an antitumor immune response with high cytotoxic specificity. Upon entering tumor cells, this Cu(II) complex enhances the production of intracellular radical oxidative species while concurrently depleting glutathione (GSH). As the result of heightening cellular oxidative stress, Cu-1 gives rise to a relatively high cytotoxicity to cancer cells, whereas normal cells with low levels of GSH are relatively unaffected. The present Cu(II) complex initiates a potent ferroptosis-dependent ICD response and effectively inhibits in vivo tumor growth in an animal model (c57BL/6 mice challenged with colorectal cancer). This study presents a strategy to develop metal-based drugs that could synergistically potentiate cytotoxic selectivity and promote apoptosis-independent ICD responses through perturbations in redox homeostasis.


Copper , Glutathione , Homeostasis , Oxidation-Reduction , Animals , Mice , Humans , Glutathione/metabolism , Mice, Inbred C57BL , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Oxidative Stress/drug effects , Drug Synergism , Immunogenic Cell Death/drug effects , Coordination Complexes/pharmacology , Coordination Complexes/chemistry , Ferroptosis/drug effects , Reactive Oxygen Species/metabolism , Colorectal Neoplasms/immunology , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/pathology , Colorectal Neoplasms/metabolism
6.
Cell Mol Biol (Noisy-le-grand) ; 70(6): 187-191, 2024 Jun 05.
Article En | MEDLINE | ID: mdl-38836661

In this study, we investigated the role of LINC00520 in colorectal cancer (CRC) progression. We analyzed LINC00520 expression in 15 pairs of CRC tissues and adjacent tissues using qRT-PCR, revealing significantly elevated levels in CRC tissues and cell lines. Lentivirus-mediated up/down-regulation of LINC00520 in CRC cell lines demonstrated that increased LINC00520 expression enhanced cell invasiveness, as confirmed by transwell and wound healing assays. Bioinformatics analysis identified a regulatory axis involving LINC00520, microRNA-195-3p, and NAT2. Luciferase assays confirmed direct binding between LINC00520 and microRNA-195-3p, as well as microRNA-195-3p and NAT2. Overexpression of NAT2 reversed the inhibitory effects on invasion and migration induced by LINC00520 silencing. This suggests that LINC00520, highly expressed in CRC tissues, may modulate tumor biological functions through the microRNA-195-3p/NAT2 axis. Our findings provide insights into the mechanism underlying CRC progression, highlighting the potential of LINC00520 as a therapeutic target.


Arylamine N-Acetyltransferase , Cell Movement , Colorectal Neoplasms , Disease Progression , Gene Expression Regulation, Neoplastic , MicroRNAs , RNA, Long Noncoding , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Colorectal Neoplasms/metabolism , Cell Line, Tumor , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Arylamine N-Acetyltransferase/genetics , Arylamine N-Acetyltransferase/metabolism , Cell Movement/genetics , Neoplasm Invasiveness/genetics , Cell Proliferation/genetics
7.
Cell Mol Biol (Noisy-le-grand) ; 70(6): 14-20, 2024 Jun 05.
Article En | MEDLINE | ID: mdl-38836687

Colorectal cancer (CRC) poses a significant global health challenge with high morbidity and mortality rates. This study investigates the role of LY6G6D, a member of the LY6/uPAR superfamily, in CRC. Employing a bioinformatic approach, we analyzed LY6G6D expression across different cancer types, compared it with known oncogenes in CRC, explored the involved genomic alterations, and assessed associated clinicopathological characteristics. LY6G6D exhibited aberrant expression, particularly elevated in CRC adenocarcinoma and highly specific to tumor tissues when compared with other oncogenes, despite its comparatively low frequency of genomic alteration. Subsequently, tumor immune infiltration analysis revealed distinct associations, primarily indicating a negative correlation, suggesting immune down-regulation. Survival analysis in context of LY6G6D was conducted with Kaplan-Meier (KM) curves, indicating a 10% risk of disease recurrence in the case of elevated expression. Additionally, we constructed a 3D protein model of LY6G6D through ab-inito approach. The protein model was validated, followed by conservation analysis and active site identification. Active site identification of LY6G6D's final predicted model revealed some similar sites that were estimated to be conserved. Target-guided drug molecules were collected and molecular docking was executed, proposing Cardigin (Digitoxin) and Manzamine A as potential therapeutic candidates. In conclusion, LY6G6D emerges as a significant biomarker for diagnostic and therapeutic applications in CRC, highlighting its multifaceted role in tumorigenesis. The proposed drugs present avenues for further investigations.


Biomarkers, Tumor , Colorectal Neoplasms , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Colorectal Neoplasms/metabolism , Humans , Biomarkers, Tumor/metabolism , Biomarkers, Tumor/genetics , Gene Expression Regulation, Neoplastic , Molecular Docking Simulation , Antigens, Ly/metabolism , Antigens, Ly/genetics , GPI-Linked Proteins/metabolism , GPI-Linked Proteins/genetics
8.
Mol Biomed ; 5(1): 21, 2024 Jun 07.
Article En | MEDLINE | ID: mdl-38844562

Colorectal carcinoma (CRC) stands as a pressing global health issue, marked by the unbridled proliferation of immature cells influenced by multifaceted internal and external factors. Numerous studies have explored the intricate mechanisms of tumorigenesis in CRC, with a primary emphasis on signaling pathways, particularly those associated with growth factors and chemokines. However, the sheer diversity of molecular targets introduces complexity into the selection of targeted therapies, posing a significant challenge in achieving treatment precision. The quest for an effective CRC treatment is further complicated by the absence of pathological insights into the mutations or alterations occurring in tumor cells. This study reveals the transfer of signaling from the cell membrane to the nucleus, unveiling recent advancements in this crucial cellular process. By shedding light on this novel dimension, the research enhances our understanding of the molecular intricacies underlying CRC, providing a potential avenue for breakthroughs in targeted therapeutic strategies. In addition, the study comprehensively outlines the potential immune responses incited by the aberrant activation of signaling pathways, with a specific focus on immune cells, cytokines, and their collective impact on the dynamic landscape of drug development. This research not only contributes significantly to advancing CRC treatment and molecular medicine but also lays the groundwork for future breakthroughs and clinical trials, fostering optimism for improved outcomes and refined approaches in combating colorectal carcinoma.


Colorectal Neoplasms , Molecular Targeted Therapy , Signal Transduction , Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/therapy , Colorectal Neoplasms/immunology , Humans , Signal Transduction/drug effects , Molecular Targeted Therapy/methods , Animals , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/pharmacology
9.
Sci Rep ; 14(1): 13037, 2024 06 06.
Article En | MEDLINE | ID: mdl-38844605

The proteasome-associated deubiquitinase USP14 is a potential drug target. Using an inducible USP14 knockout system in colon cancer cells, we found that USP14 depletion impedes cellular proliferation, induces cell cycle arrest, and leads to a senescence-like phenotype. Transcriptomic analysis revealed altered gene expression related to cell division and cellular differentiation. USP14 knockout cells also exhibited changes in morphology, actin distribution, and expression of actin cytoskeletal components. Increased ubiquitin turnover was observed, offset by upregulation of polyubiquitin genes UBB and UBC. Pharmacological inhibition of USP14 with IU1 increased ubiquitin turnover but did not affect cellular growth or morphology. BioGRID data identified USP14 interactors linked to actin cytoskeleton remodeling, DNA damage repair, mRNA splicing, and translation. In conclusion, USP14 loss in colon cancer cells induces a transient quiescent cancer phenotype not replicated by pharmacologic inhibition of its deubiquitinating activity.


Cell Proliferation , Cellular Senescence , Colorectal Neoplasms , Ubiquitin Thiolesterase , Humans , Cellular Senescence/genetics , Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , Ubiquitin Thiolesterase/metabolism , Ubiquitin Thiolesterase/genetics , Cell Line, Tumor , Phenotype , Proteasome Endopeptidase Complex/metabolism , Cell Cycle Checkpoints/genetics , Gene Expression Regulation, Neoplastic , Ubiquitin/metabolism
10.
Sci Rep ; 14(1): 13063, 2024 06 06.
Article En | MEDLINE | ID: mdl-38844824

Colorectal cancer (CRC) is a prevalent global health issue, with 5-fluorouracil (5-FU) being a commonly used chemotherapeutic agent for its treatment. However, the efficacy of 5-FU is often hindered by drug tolerance. Sodium butyrate (NaB), a derivative of intestinal flora, has demonstrated anti-cancer properties both in vitro and in vivo through pro-apoptotic effects and has shown promise in improving outcomes when used in conjunction with traditional chemotherapy agents. This study seeks to evaluate the impact and potential mechanisms of NaB in combination with 5-FU on CRC. We employed a comprehensive set of assays, including CCK-8, EdU staining, Hoechst 33258 staining, flow cytometry, ROS assay, MMP assay, immunofluorescence, and mitophagy assay, to detect the effect of NaB on the biological function of CRC cells in vitro. Western blotting and immunohistochemistry were used to verify the above experimental results. The xenograft tumor model was established to evaluate the in vivo anti-CRC activity of NaB. Subsequently, 16S rRNA gene sequencing was used to analyze the intestinal flora. The findings of our study demonstrate that sodium butyrate (NaB) exerts inhibitory effects on tumor cell proliferation and promotes tumor cell apoptosis in vitro, while also impeding tumor progression in vivo through the enhancement of the mitophagy pathway. Furthermore, the combined treatment of NaB and 5-fluorouracil (5-FU) yielded superior therapeutic outcomes compared to monotherapy with either agent. Moreover, this combination therapy resulted in the specific enrichment of Bacteroides, LigiLactobacillus, butyric acid-producing bacteria, and acetic acid-producing bacteria in the intestinal microbiota. The improvement in the intestinal microbiota contributed to enhanced therapeutic outcomes and reduced the adverse effects of 5-FU. Taken together, these findings indicate that NaB, a histone acetylation inhibitor synthesized through intestinal flora fermentation, has the potential to significantly enhance the therapeutic efficacy of 5-FU in CRC treatment and improve the prognosis of CRC patients.


Butyric Acid , Cell Proliferation , Colorectal Neoplasms , Fluorouracil , Gastrointestinal Microbiome , Signal Transduction , Ubiquitin-Protein Ligases , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , Butyric Acid/pharmacology , Fluorouracil/pharmacology , Fluorouracil/therapeutic use , Humans , Gastrointestinal Microbiome/drug effects , Animals , Mice , Signal Transduction/drug effects , Cell Proliferation/drug effects , Ubiquitin-Protein Ligases/metabolism , Apoptosis/drug effects , Xenograft Model Antitumor Assays , Cell Line, Tumor , Mice, Nude , Drug Synergism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use
11.
J Transl Med ; 22(1): 544, 2024 Jun 06.
Article En | MEDLINE | ID: mdl-38844980

BACKGROUND: Several studies have demonstrated a strong correlation between impaired Succinate dehydrogenase (SDH) function and the advancement of tumors. As a subunit of SDH, succinate dehydrogenase complex subunit C (SDHC) has been revealed to play tumor suppressive roles in several cancers, while its specific role in colorectal cancer (CRC) still needs further investigation. METHODS: Online database were utilized to investigate the expression of SDHC in colorectal cancer and to assess its correlation with patient prognosis. Cell metastasis was assessed using transwell and wound healing assays, while tumor metastasis was studied in a nude mice model in vivo. Drug screening and RNA sequencing were carried out to reveal the tumor suppressor mechanism of SDHC. Triglycerides, neutral lipids and fatty acid oxidation were measured using the Triglyceride Assay Kit, BODIPY 493/503 and Colorimetric Fatty Acid Oxidation Rate Assay Kit, respectively. The expression levels of enzymes involved in fatty acid metabolism and the PI3K/AKT signaling pathway were determined by quantitative real-time PCR and western blot. RESULTS: Downregulation of SDHC was found to be closely associated with a poor prognosis in CRC. SDHC knockdown promoted CRC metastasis both in vitro and in vivo. Through drug screening and Gene set enrichment analysis, it was discovered that SDHC downregulation was positively associated with the fatty acid metabolism pathways significantly. The effects of SDHC silencing on metastasis were reversed when fatty acid synthesis was blocked. Subsequent experiments revealed that SDHC silencing activated the PI3K/AKT signaling axis, leading to lipid accumulation by upregulating the expression of aldehyde dehydrogenase 3 family member A2 (ALDH3A2) and reduction of fatty acid oxidation rate by suppressing the expression of acyl-coenzyme A oxidase 1 (ACOX1) and carnitine palmitoyltransferase 1A (CPT1A). CONCLUSIONS: SDHC deficiency could potentially enhance CRC metastasis by modulating the PI3K/AKT pathways and reprogramming lipid metabolism.


Colorectal Neoplasms , Fatty Acids , Mice, Nude , Neoplasm Metastasis , Proto-Oncogene Proteins c-akt , Colorectal Neoplasms/pathology , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/genetics , Humans , Fatty Acids/metabolism , Animals , Proto-Oncogene Proteins c-akt/metabolism , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Phosphatidylinositol 3-Kinases/metabolism , Prognosis , Signal Transduction , Male , Female , Down-Regulation/genetics , Gene Knockdown Techniques , Mice , Lipid Metabolism/genetics , Mice, Inbred BALB C
12.
Eur J Med Res ; 29(1): 310, 2024 Jun 06.
Article En | MEDLINE | ID: mdl-38840262

KDM6A (lysine demethylase 6A) has been reported to undergo inactivating mutations in colorectal cancer, but its function in the progression of colorectal cancer has not been evaluated using animal models of colorectal cancer. In this study, we found that knocking out KDM6A expression in mouse intestinal epithelium increased the length of villus and crypt, promoting the development of AOM (azoxymethane)/DSS (dextran sulfate sodium salt)-induced colorectal cancer. On the other hand, knocking down KDM6A expression promoted the growth of colorectal cancer cells. In molecular mechanism studies, we found that KDM6A interacts with HIF-1α; knocking down KDM6A promotes the binding of HIF-1α to the LDHA promoter, thereby promoting LDHA expression and lactate production, enhancing glycolysis. Knocking down LDHA reversed the malignant phenotype caused by KDM6A expression loss. In summary, this study using animal models revealed that KDM6A loss promotes the progression of colorectal cancer through reprogramming the metabolism of the colorectal cancer cells, suggesting that restoring the function of KDM6A is likely to be one of the strategies for colorectal cancer treatment.


Colorectal Neoplasms , Disease Progression , Glycolysis , Histone Demethylases , Colorectal Neoplasms/pathology , Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , Animals , Mice , Humans , Histone Demethylases/metabolism , Histone Demethylases/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Gene Expression Regulation, Neoplastic , Cell Proliferation/genetics
13.
Oncol Res ; 32(6): 1047-1061, 2024.
Article En | MEDLINE | ID: mdl-38827317

Background: Colorectal cancer (CRC) is one of the most frequently diagnosed cancers. In many cases, the poor prognosis of advanced CRC is associated with resistance to treatment with chemotherapeutic drugs such as 5-Fluorouracil (5-FU). The epithelial-to-mesenchymal transition (EMT) and dysregulation in protein methylation are two mechanisms associated with chemoresistance in many cancers. This study looked into the effect of 5-FU dose escalation on EMT and protein methylation in CRC. Materials and Methods: HCT-116, Caco-2, and DLD-1 CRC cell lines were exposed to dose escalation treatment of 5-FU. The motility and invasive potentials of the cells before and after treatment with 5-FU were investigated through wound healing and invasion assays. This was followed by a Western blot which analyzed the protein expressions of the epithelial marker E-cadherin, mesenchymal marker vimentin, and the EMT transcription factor (EMT-TF), the snail family transcriptional repressor 1 (Snail) in the parental and desensitized cells. Western blotting was also conducted to study the protein expressions of the protein methyltransferases (PMTs), Euchromatic histone lysine methyltransferase 2 (EHMT2/G9A), protein arginine methyltransferase (PRMT5), and SET domain containing 7/9 (SETD7/9) along with the global lysine and arginine methylation profiles. Results: The dose escalation method generated 5-FU desensitized CRC cells with distinct morphological features and increased tolerance to high doses of 5-FU. The 5-FU desensitized cells experienced a decrease in migration and invasion when compared to the parental cells. This was reflected in the observed reduction in E-cadherin, vimentin, and Snail in the desensitized cell lines. Additionally, the protein expressions of EHMT2/G9A, PRMT5, and SETD7/9 also decreased in the desensitized cells and global protein lysine and arginine methylation became dysregulated with 5-FU treatment. Conclusion: This study showed that continuous, dose-escalation treatment of 5-FU in CRC cells generated 5-FU desensitized cancer cells that seemed to be less aggressive than parental cells.


Cell Movement , Colorectal Neoplasms , Epithelial-Mesenchymal Transition , Fluorouracil , Humans , Fluorouracil/pharmacology , Fluorouracil/administration & dosage , Epithelial-Mesenchymal Transition/drug effects , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/pathology , Colorectal Neoplasms/metabolism , Cell Movement/drug effects , Cell Line, Tumor , Antimetabolites, Antineoplastic/pharmacology , Drug Resistance, Neoplasm , Dose-Response Relationship, Drug , Methyltransferases/metabolism , Methyltransferases/genetics , Gene Expression Regulation, Neoplastic/drug effects , Methylation , Protein-Arginine N-Methyltransferases/metabolism , Protein-Arginine N-Methyltransferases/genetics
14.
Sci Rep ; 14(1): 10539, 2024 05 08.
Article En | MEDLINE | ID: mdl-38719941

Abnormal angiogenesis leads to tumor progression and metastasis in colorectal cancer (CRC). This study aimed to elucidate the association between angiogenesis-related genes, including VEGF-A, ANGPT-1, and ANGPT-2 with both metastatic and microsatellite alterations at selected tetranucleotide repeats (EMAST) subtypes of CRC. We conducted a thorough assessment of the ANGPT-1, ANGPT-2, and VEGF-A gene expression utilizing publicly available RNA sequencing and microarray datasets. Then, the experimental validation was performed in 122 CRC patients, considering their disease metastasis and EMAST+/- profile by using reverse transcription polymerase chain reaction (RT-PCR). Subsequently, a competing endogenous RNA (ceRNA) network associated with these angiogenesis-related genes was constructed and analyzed. The expression level of VEGF-A and ANGPT-2 genes were significantly higher in tumor tissues as compared with normal adjacent tissues (P-value < 0.001). Nevertheless, ANGPT-1 had a significantly lower expression in tumor samples than in normal colon tissue (P-value < 0.01). We identified a significantly increased VEGF-A (P-value = 0.002) and decreased ANGPT-1 (P-value = 0.04) expression in EMAST+ colorectal tumors. Regarding metastasis, a significantly increased VEGF-A and ANGPT-2 expression (P-value = 0.001) and decreased ANGPT-1 expression (P-value < 0.05) were established in metastatic CRC patients. Remarkably, co-expression analysis also showed a strong correlation between ANGPT-2 and VEGF-A gene expressions. The ceRNA network was constructed by ANGPT-1, ANGPT-2, VEGF-A, and experimentally validated miRNAs (hsa-miR-190a-3p, hsa-miR-374c-5p, hsa-miR-452-5p, and hsa-miR-889-3p), lncRNAs (AFAP1-AS1, KCNQ1OT1 and MALAT1), and TFs (Sp1, E2F1, and STAT3). Network analysis revealed that colorectal cancer is amongst the 82 significant pathways. We demonstrated a significant differential expression of VEGF-A and ANGPT-1 in colorectal cancer patients exhibiting the EMAST+ phenotype. This finding provides novel insights into the molecular pathogenesis of colorectal cancer, specifically in EMAST subtypes. Yet, the generalization of in silico findings to EMAST+ colorectal cancer warrants future experimental investigations. In the end, this study proposes that the EMAST biomarker could serve as an additional perspective on CMS4 biology which is well-defined by activated angiogenesis and worse overall survival.


Angiopoietin-1 , Angiopoietin-2 , Colorectal Neoplasms , Gene Expression Regulation, Neoplastic , Neovascularization, Pathologic , Vascular Endothelial Growth Factor A , Humans , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Colorectal Neoplasms/metabolism , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor A/metabolism , Neovascularization, Pathologic/genetics , Neovascularization, Pathologic/pathology , Angiopoietin-1/genetics , Angiopoietin-1/metabolism , Angiopoietin-2/genetics , Angiopoietin-2/metabolism , Male , Female , Middle Aged , Neoplasm Metastasis , Aged , Microsatellite Repeats/genetics , Gene Expression Profiling , Gene Regulatory Networks , Angiogenesis
15.
Commun Biol ; 7(1): 551, 2024 May 08.
Article En | MEDLINE | ID: mdl-38720110

Fusobacterium nucleatum, a gram-negative oral bacterium, has been consistently validated as a strong contributor to the progression of several types of cancer, including colorectal (CRC) and pancreatic cancer. While previous in vitro studies have shown that intracellular F. nucleatum enhances malignant phenotypes such as cell migration, the dependence of this regulation on features of the tumor microenvironment (TME) such as oxygen levels are wholly uncharacterized. Here we examine the influence of hypoxia in facilitating F. nucleatum invasion and its effects on host responses focusing on changes in the global epigenome and transcriptome. Using a multiomic approach, we analyze epigenomic alterations of H3K27ac and global transcriptomic alterations sustained within a hypoxia and normoxia conditioned CRC cell line HCT116 at 24 h following initial infection with F. nucleatum. Our findings reveal that intracellular F. nucleatum activates signaling pathways and biological processes in host cells similar to those induced upon hypoxia conditioning in the absence of infection. Furthermore, we show that a hypoxic TME favors F. nucleatum invasion and persistence and therefore infection under hypoxia may amplify malignant transformation by exacerbating the effects induced by hypoxia alone. These results motivate future studies to investigate host-microbe interactions in tumor tissue relevant conditions that more accurately define parameters for targeted cancer therapies.


Colorectal Neoplasms , Epigenome , Fusobacterium Infections , Fusobacterium nucleatum , Oxygen , Transcriptome , Humans , Fusobacterium nucleatum/genetics , Fusobacterium nucleatum/physiology , Fusobacterium nucleatum/pathogenicity , Colorectal Neoplasms/genetics , Colorectal Neoplasms/microbiology , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , HCT116 Cells , Fusobacterium Infections/genetics , Fusobacterium Infections/microbiology , Fusobacterium Infections/metabolism , Oxygen/metabolism , Tumor Microenvironment/genetics , Gene Expression Regulation, Neoplastic
16.
Int J Biol Sci ; 20(7): 2388-2402, 2024.
Article En | MEDLINE | ID: mdl-38725844

Metastasis is the leading cause of death in colorectal cancer (CRC) patients. By mediating intercellular communication, exosomes exhibit considerable value in regulating tumor metastasis. Long non-coding RNAs (lncRNAs) are abundant in exosomes and participate in regulating tumor progression. However, it is poorly understood how the cancer-secreted exosomal lncRNAs affect CRC proliferation and metastasis. Here, by analyzing the public databases we identified a lncRNA SNHG3 and demonstrated that SNHG3 was delivered through CRC cells-derived exosomes to promote metastasis in CRC. Mechanistically, exosomal SNHG3 was internalized by CRC cells and afterward upregulated the expression of ß-catenin by facilitating the intranuclear transport of hnRNPC. Consequently, the RNA stability of ß-catenin was enhanced which led to the activation of EMT and metastasis of CRC cells. Our findings expand the oncogenic mechanisms of exosomal SNHG3 and identify it as a diagnostic marker for CRC.


Colorectal Neoplasms , Exosomes , RNA, Long Noncoding , beta Catenin , Humans , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , Colorectal Neoplasms/genetics , RNA, Long Noncoding/metabolism , RNA, Long Noncoding/genetics , beta Catenin/metabolism , Exosomes/metabolism , Cell Line, Tumor , RNA Stability/genetics , Gene Expression Regulation, Neoplastic , Neoplasm Metastasis , Animals , Mice , Cell Proliferation/genetics , Mice, Nude
17.
Int J Biol Sci ; 20(7): 2748-2762, 2024.
Article En | MEDLINE | ID: mdl-38725859

Abnormal nuclear enlargement is a diagnostic and physical hallmark of malignant tumors. Large nuclei are positively associated with an increased risk of developing metastasis; however, a large nucleus is inevitably more resistant to cell migration due to its size. The present study demonstrated that the nuclear size of primary colorectal cancer (CRC) cells at an advanced stage was larger than cells at an early stage. In addition, the nuclei of CRC liver metastases were larger than those of the corresponding primary CRC tissues. CRC cells were sorted into large-nucleated cells (LNCs) and small-nucleated cells (SNCs). Purified LNCs exhibited greater constricted migratory and metastatic capacity than SNCs in vitro and in vivo. Mechanistically, ErbB4 was highly expressed in LNCs, which phosphorylated lamin A/C at serine 22 via the ErbB4-Akt1 signaling pathway. Furthermore, the level of phosphorylated lamin A/C was a negative determinant of nuclear stiffness. Taken together, CRC LNCs possessed greater constricted migratory and metastatic potential than SNCs due to ErbB4-Akt1-mediated lamin A/C phosphorylation and nuclear softening. These results may provide a potential treatment strategy for tumor metastasis by targeting nuclear stiffness in patients with cancer, particularly CRC.


Colorectal Neoplasms , Lamin Type A , Proto-Oncogene Proteins c-akt , Receptor, ErbB-4 , Signal Transduction , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , Humans , Receptor, ErbB-4/metabolism , Receptor, ErbB-4/genetics , Proto-Oncogene Proteins c-akt/metabolism , Lamin Type A/metabolism , Animals , Cell Line, Tumor , Mice , Cell Nucleus/metabolism , Cell Movement , Male , Female , Phosphorylation , Neoplasm Metastasis , Mice, Nude
18.
Biol Direct ; 19(1): 36, 2024 May 07.
Article En | MEDLINE | ID: mdl-38715141

Epidermal growth factor receptor (EGFR)-targeted therapy is an important treatment for RAS wild-type metastatic colorectal cancer (mCRC), but the resistance mechanism remains unclear. Here, the differential expression of circRNAs between Cetuximab sensitive and resistant cell lines was analyzed using whole-transcriptome sequencing. We identified that the expression of circHIF1A was significantly higher in LIM1215-R than in LIM1215. When treated with Cetuximab, downregulation of circHIF1A level weakened the proliferation and clonal formation ability of LIM1215-R, caused more cells to enter G0-G1 phase, and significantly reduced the basal respiration, ATP production, and maximal respiration, as well as the glycolytic capacity and glycolytic reserve. The response rate and prognosis of circHIF1A-positive patients were inferior to those of negative patients. Mechanistically, circHIF1A can upregulate the level of hypoxia-inducible factor 1 A (HIF1A) by competitively binding to miR-361-5p, inducing the overexpression of enzymes such as glucose transporter 1 (GLUT1) and lactate dehydrogenase A (LDHA). In a xenograft model, inhibition of circHIF1A expression increased the sensitivity to Cetuximab treatment. In conclusion, circHIF1A can promote HIF1α-mediated glycometabolism alteration to induce Cetuximab resistance in CRC. It has the potential to become a screening indicator for the Cetuximab beneficial population in mCRC and a new therapeutic target for enhancing treatment efficacy.


Cetuximab , Colorectal Neoplasms , Drug Resistance, Neoplasm , Hypoxia-Inducible Factor 1, alpha Subunit , Cetuximab/pharmacology , Humans , Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/drug therapy , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Cell Line, Tumor , Mice , Animals , RNA, Circular/genetics , RNA, Circular/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Gene Expression Regulation, Neoplastic , Mice, Nude , Antineoplastic Agents, Immunological/pharmacology , Glycolysis , Cell Proliferation/drug effects
19.
BMC Cancer ; 24(1): 644, 2024 May 27.
Article En | MEDLINE | ID: mdl-38802800

BACKGROUND: Understanding the metabolic changes in colorectal cancer (CRC) and exploring potential diagnostic biomarkers is crucial for elucidating its pathogenesis and reducing mortality. Cancer cells are typically derived from cancer tissues and can be easily obtained and cultured. Systematic studies on CRC cells at different stages are still lacking. Additionally, there is a need to validate our previous findings from human serum. METHODS: Ultrahigh-performance liquid chromatography tandem high-resolution mass spectrometry (UHPLC-HRMS)-based metabolomics and lipidomics were employed to comprehensively measure metabolites and lipids in CRC cells at four different stages and serum samples from normal control (NR) and CRC subjects. Univariate and multivariate statistical analyses were applied to select the differential metabolites and lipids between groups. Biomarkers with good diagnostic efficacy for CRC that existed in both cells and serum were screened by the receiver operating characteristic curve (ROC) analysis. Furthermore, potential biomarkers were validated using metabolite standards. RESULTS: Metabolite and lipid profiles differed significantly among CRC cells at stages A, B, C, and D. Dysregulation of glycerophospholipid (GPL), fatty acid (FA), and amino acid (AA) metabolism played a crucial role in the CRC progression, particularly GPL metabolism dominated by phosphatidylcholine (PC). A total of 46 differential metabolites and 29 differential lipids common to the four stages of CRC cells were discovered. Eight metabolites showed the same trends in CRC cells and serum from CRC patients compared to the control groups. Among them, palmitoylcarnitine and sphingosine could serve as potential biomarkers with the values of area under the curve (AUC) more than 0.80 in the serum and cells. Their panel exhibited excellent performance in discriminating CRC cells at different stages from normal cells (AUC = 1.00). CONCLUSIONS: To our knowledge, this is the first research to attempt to validate the results of metabolism studies of serum from CRC patients using cell models. The metabolic disorders of PC, FA, and AA were closely related to the tumorigenesis of CRC, with PC being the more critical factor. The panel composed of palmitoylcarnitine and sphingosine may act as a potential biomarker for the diagnosis of CRC, aiding in its prevention.


Biomarkers, Tumor , Colorectal Neoplasms , Metabolomics , Humans , Colorectal Neoplasms/blood , Colorectal Neoplasms/diagnosis , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , Biomarkers, Tumor/blood , Biomarkers, Tumor/metabolism , Metabolomics/methods , Chromatography, High Pressure Liquid/methods , Lipidomics/methods , Male , Female , Middle Aged , ROC Curve , Metabolome , Tandem Mass Spectrometry/methods , Neoplasm Staging , Aged , Fatty Acids/metabolism , Fatty Acids/blood , Multiomics
20.
Cell Commun Signal ; 22(1): 295, 2024 May 27.
Article En | MEDLINE | ID: mdl-38802814

BACKGROUND: Colorectal cancer (CRC) commonly exhibits tolerance to cisplatin treatment, but the underlying mechanisms remain unclear. Within the tumor microenvironment, macrophages play a role in resisting the cytotoxic effects of chemotherapy by engaging in efferocytosis to clear apoptotic cells induced by chemotherapeutic agents. The involvement of extracellular vesicles (EVs), an intercellular communicator within the tumor microenvironment, in regulating the efferocytosis for the promotion of drug resistance has not been thoroughly investigated. METHODS: We constructed GFP fluorescent-expressing CRC cell lines (including GFP-CT26 and GFP-MC38) to detect macrophage efferocytosis through flow cytometric analysis. We isolated and purified CRC-secreted EVs using a multi-step ultracentrifugation method and identified them through electron microscopy and nanoflow cytometry. Proteomic analysis was conducted to identify the protein molecules carried by CRC-EVs. MFGE8 knockout CRC cell lines were constructed using CRISPR-Cas9, and their effects were validated through in vitro and in vivo experiments using Western blotting, immunofluorescence, and flow cytometric analysis, confirming that these EVs activate the macrophage αvß3-Src-FAK-STAT3 signaling pathway, thereby promoting efferocytosis. RESULTS: In this study, we found that CRC-derived EVs (CRC-EVs) enhanced macrophage efferocytosis of cisplatin-induced apoptotic CRC cells. Analysis of The Cancer Genome Atlas (TCGA) database revealed a high expression of the efferocytosis-associated gene MFGE8 in CRC patients, suggesting a poorer prognosis. Additionally, mass spectrometry-based proteomic analysis identified a high abundance of MFGE8 protein in CRC-EVs. Utilizing CRISPR-Cas9 gene edition system, we generated MFGE8-knockout CRC cells, demonstrating that their EVs fail to upregulate macrophage efferocytosis in vitro and in vivo. Furthermore, we demonstrated that MFGE8 in CRC-EVs stimulated macrophage efferocytosis by increasing the expression of αvß3 on the cell surface, thereby activating the intracellular Src-FAK-STAT3 signaling pathway. CONCLUSIONS: Therefore, this study highlighted a mechanism in CRC-EVs carrying MFGE8 activated the macrophage efferocytosis. This activation promoted the clearance of cisplatin-induced apoptotic CRC cells, contributing to CRC resistance against cisplatin. These findings provide novel insights into the potential synergistic application of chemotherapy drugs, EVs inhibitors, and efferocytosis antagonists for CRC treatment.


Colorectal Neoplasms , Extracellular Vesicles , Macrophages , Phagocytosis , Extracellular Vesicles/metabolism , Extracellular Vesicles/genetics , Colorectal Neoplasms/pathology , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/genetics , Macrophages/metabolism , Humans , Animals , Cell Line, Tumor , Mice , STAT3 Transcription Factor/metabolism , STAT3 Transcription Factor/genetics , Signal Transduction , Cisplatin/pharmacology , Integrin alphaVbeta3/metabolism , Integrin alphaVbeta3/genetics , Efferocytosis
...