Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 283
Filter
1.
Front Immunol ; 15: 1402571, 2024.
Article in English | MEDLINE | ID: mdl-39267761

ABSTRACT

Background: Respiratory failure can be a severe complication after polytrauma. Extensive systemic inflammation due to surgical interventions, as well as exacerbated post-traumatic immune responses influence the occurrence and progression of respiratory failure. This study investigated the effect of different surgical treatment modalities as well as combined inhibition of the complement component C5 and the toll-like receptor molecule CD14 (C5/CD14 inhibition) on the pulmonary microRNA (miRNA) signature after polytrauma, using a translational porcine polytrauma model. Methods: After induction of general anesthesia, animals were subjected to polytrauma, consisting of blunt chest trauma, bilateral femur fractures, hemorrhagic shock, and liver laceration. One sham group (n=6) and three treatment groups were defined; Early Total Care (ETC, n=8), Damage Control Orthopedics (DCO, n=8), and ETC + C5/CD14 inhibition (n=4). Animals were medically and operatively stabilized, and treated in an ICU setting for 72 h. Lung tissue was sampled, miRNAs were isolated, transcribed, and pooled for qPCR array analyses, followed by validation in the individual animal population. Lastly, mRNA target prediction was performed followed by functional enrichment analyses. Results: The miRNA arrays identified six significantly deregulated miRNAs in lung tissue. In the DCO group, miR-129, miR-192, miR-194, miR-382, and miR-503 were significantly upregulated compared to the ETC group. The miRNA expression profiles in the ETC + C5/CD14 inhibition group approximated those of the DCO group. Bioinformatic analysis revealed mRNA targets and signaling pathways related to alveolar edema, pulmonary fibrosis, inflammation response, and leukocytes recruitment. Collectively, the DCO group, as well as the ETC + C5/CD14 inhibition group, revealed more anti-inflammatory and regenerative miRNA expression profiles. Conclusion: This study showed that reduced surgical invasiveness and combining ETC with C5/CD14 inhibition can contribute to the reduction of pulmonary complications.


Subject(s)
Complement C5 , Lipopolysaccharide Receptors , MicroRNAs , Multiple Trauma , Animals , MicroRNAs/genetics , Lipopolysaccharide Receptors/metabolism , Lipopolysaccharide Receptors/genetics , Multiple Trauma/immunology , Multiple Trauma/genetics , Swine , Complement C5/genetics , Complement C5/antagonists & inhibitors , Complement C5/metabolism , Lung/metabolism , Lung/immunology , Lung/pathology , Disease Models, Animal , Gene Expression Profiling , Gene Expression Regulation , Inflammation/immunology , Inflammation/metabolism , Inflammation/genetics
2.
Drug Discov Today ; 29(9): 104134, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39111540

ABSTRACT

Eculizumab is an orphan drug with indications for extremely rare autoimmune disorders. It is primarily prescribed for use in patients with paroxysmal nocturnal hemoglobinuria and atypical hemolytic uremic syndrome; but is also highly effective in the treatment of myasthenia gravis, among others. By binding to the C5 protein in the complement system, eculizumab effectively inhibits cellular hemolysis and autoimmune reactions. Despite this effective treatment, some patients reported no improvement in symptoms. Genetic sequencing revealed three distinct C5 mutations in the non-responders and these polymorphisms appeared to be most prevalent among Japanese, Korean and African populations. Here, we present an overview of the current and potential future applications of eculizumab, as well as the disadvantages of eculizumab treatment in patients with C5 polymorphisms.


Subject(s)
Antibodies, Monoclonal, Humanized , Complement C5 , Polymorphism, Genetic , Humans , Antibodies, Monoclonal, Humanized/adverse effects , Antibodies, Monoclonal, Humanized/therapeutic use , Complement C5/genetics , Autoimmune Diseases/drug therapy , Autoimmune Diseases/genetics , Animals , Hemoglobinuria, Paroxysmal/drug therapy , Hemoglobinuria, Paroxysmal/genetics
3.
Eur J Immunol ; 54(4): e2350659, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38314895

ABSTRACT

Like rheumatoid arthritis (RA) in humans, collagen-induced arthritis (CIA) in mice is associated with not only MHC class II genetic polymorphism but also, to some extent, with other loci including genes encoding Fc gamma receptors (FCGRs) and complement C5. In this study, we used a cartilage antibody-induced arthritis (CAIA) model in which arthritis develops within a 12-h timeframe, to determine the relative importance of FCGRs and C5 (Hc). In CAIA, inhibiting or deleting FCGR3 substantially hindered arthritis development, underscoring the crucial role of this receptor. Blocking FCGR3 also reduced the levels of FCGR4, and vice versa. When employing an IgG1 arthritogenic cocktail that exclusively interacts with FCGR2B and FCGR3, joint inflammation was promptly initiated in Fcgr2b-- mice but not in Fcgr3-- mice, suggesting that FCGR3 is sufficient for CAIA development. Regarding complement activation, Fcgr2b++.Hc** mice with C5 mutated were fully resistant to CAIA, whereas Fcgr2b--.Hc** mice developed arthritis rapidly. We conclude that FCGR3 is essential and sufficient for CAIA development, particularly when induced by IgG1 antibodies. The human ortholog of mouse FCGR3, FCGR2A, may be associated with RA pathogenesis. FCGR2B deficiency allows for rapid arthritis progression and overrides the resistance conferred by C5 deficiency.


Subject(s)
Arthritis, Experimental , Arthritis, Rheumatoid , Animals , Mice , Cartilage/pathology , Complement C5/genetics , Immunoglobulin G , Receptors, IgG/genetics
4.
Immunol Invest ; 53(2): 281-293, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38117213

ABSTRACT

OBJECTIVE: To investigate the association between loci rs3761847 and rs10818488 of tumor necrosis factor receptor-associated factor 1/complement C5 (TRAF1/C5) gene and the susceptibility to IgAV. METHODS: 100 blood samples of children with IgAV and 100 blood samples of healthy children were collected from the Third Xiangya Hospital of Central South University from June 2017 to June 2019. The target gene fragment was amplified by polymerase chain reaction (PCR), and the single nucleic acid gene polymorphism of the gene loci was detected by PCR sequencing based typing technique. The association between gene polymorphism of each locus and susceptibility to IgAV was analyzed. RESULTS: There were significant differences in both genotype (P < .05) and allele frequencies (P < .05) of rs3761847 of TRAF1/C5 gene between the IgAV group and the control group.Besides, the risks of developing IgAV in children with the TT genotype was 0.495 times and in children with the C allele was 1.627 times of that in children with other genotypes and alleles, respectively (P < .05). For IgAV patients, renal involvement risk in children with CC genotype was 5.859 times of that in children with other genotypes (P < .05). There were no significant differences in genotype (P > .05) and allele frequencies (P > .05) of rs10818488 of TRAF1/C5 gene between the IgAV group and the control group. IgAV patients with TT genotype had a 3.2 times higher risk of renal involvement than those with other genotypes (P < .05). CONCLUSIONS: There is an association between locus rs3761847 of TRAF1/C5 gene single nucleotide polymorphisms and susceptibility to IgAV. The T allele at locus rs3761847 of TRAF1/C5 gene may be a protective factor for IgAV. The C allele at locus rs3761847 and the T allele at locus rs10818488 of TRAF1/C5 gene may be associated with kidney injury in IgAV.


Subject(s)
IgA Vasculitis , Child , Humans , TNF Receptor-Associated Factor 1/genetics , Genetic Predisposition to Disease , Genotype , Polymorphism, Single Nucleotide , Gene Frequency , Complement C5/genetics , China , Case-Control Studies
5.
J Biol Chem ; 299(8): 104956, 2023 08.
Article in English | MEDLINE | ID: mdl-37356719

ABSTRACT

The human complement system plays a crucial role in immune defense. However, its erroneous activation contributes to many serious inflammatory diseases. Since most unwanted complement effector functions result from C5 cleavage into C5a and C5b, development of C5 inhibitors, such as clinically approved monoclonal antibody eculizumab, are of great interest. Here, we developed and characterized two anti-C5 nanobodies, UNbC5-1 and UNbC5-2. Using surface plasmon resonance, we determined a binding affinity of 119.9 pM for UNbC5-1 and 7.7 pM for UNbC5-2. Competition experiments determined that the two nanobodies recognize distinct epitopes on C5. Both nanobodies efficiently interfered with C5 cleavage in a human serum environment, as they prevented red blood cell lysis via membrane attack complexes (C5b-9) and the formation of chemoattractant C5a. The cryo-EM structure of UNbC5-1 and UNbC5-2 in complex with C5 (3.6 Å resolution) revealed that the binding interfaces of UNbC5-1 and UNbC5-2 overlap with known complement inhibitors eculizumab and RaCI3, respectively. UNbC5-1 binds to the MG7 domain of C5, facilitated by a hydrophobic core and polar interactions, and UNbC5-2 interacts with the C5d domain mostly by salt bridges and hydrogen bonds. Interestingly, UNbC5-1 potently binds and inhibits C5 R885H, a genetic variant of C5 that is not recognized by eculizumab. Altogether, we identified and characterized two different, high affinity nanobodies against human C5. Both nanobodies could serve as diagnostic and/or research tools to detect C5 or inhibit C5 cleavage. Furthermore, the residues targeted by UNbC5-1 hold important information for therapeutic inhibition of different polymorphic variants of C5.


Subject(s)
Antibodies, Monoclonal , Complement C5 , Single-Domain Antibodies , Humans , Complement Activation , Complement C5/antagonists & inhibitors , Complement C5/genetics , Complement Membrane Attack Complex , Complement System Proteins/metabolism
6.
Front Immunol ; 13: 978152, 2022.
Article in English | MEDLINE | ID: mdl-36211424

ABSTRACT

Invasive aspergillosis (IA) is a life-threatening fungal infection for immunocompromised hosts. It is, therefore, necessary to understand the immune pathways that control this infection. Although the primary infection site is the lungs, aspergillosis can disseminate to other organs through unknown mechanisms. Herein we have examined the in vivo role of various complement pathways as well as the complement receptors C3aR and C5aR1 during experimental systemic infection by Aspergillus fumigatus, the main species responsible for IA. We show that C3 knockout (C3-/-) mice are highly susceptible to systemic infection of A. fumigatus. Intriguingly, C4-/- and factor B (FB)-/- mice showed susceptibility similar to the wild-type mice, suggesting that either the complement pathways display functional redundancy during infection (i.e., one pathway compensates for the loss of the other), or complement is activated non-canonically by A. fumigatus protease. Our in vitro study substantiates the presence of C3 and C5 cleaving proteases in A. fumigatus. Examination of the importance of the terminal complement pathway employing C5-/- and C5aR1-/- mice reveals that it plays a vital role in the conidial clearance. This, in part, is due to the increased conidial uptake by phagocytes. Together, our data suggest that the complement deficiency enhances the susceptibility to systemic infection by A. fumigatus.


Subject(s)
Aspergillosis , Aspergillus fumigatus , Animals , Complement C5/genetics , Complement C5/metabolism , Complement Factor B/genetics , Lung , Mice , Spores, Fungal
7.
Chemosphere ; 308(Pt 3): 136424, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36116629

ABSTRACT

Bisphenol AF (BPAF) is one of the substitutes for bisphenol A (BPA), which has endocrine-disrupting, reproductive and neurological toxicity. BPAF has frequently been detected in the aquatic environment, which has been a long-term threat to the health of aquatic organisms. In this study, female marine medaka (Oryzias melastigma) were exposed to 6.7 µg/L, 73.4 µg/L, and 367.0 µg/L BPAF for 120 d. The effects of BPAF on behavior, growth, liver and ovarian histology, gene transcriptional profiles, and reproduction of marine medaka were determined. The results showed that with the increase of BPAF concentration, the swimming speed of female marine medaka showed an increasing trend and then decreasing trend. BPAF (367.0 µg/L) significantly increased body weight and condition factors in females. BPAF (73.4 µg/L and 367.0 µg/L) significantly delayed oocyte maturation. Exposure to 367.0 µg/L BPAF showed an increasing trend in the transcript levels of lipid synthesis and transport-related genes such as fatty acid synthase (fasn), sterol regulatory element binding protein (srebf), diacylglycerol acyltransferase (dgat), solute carrier family 27 member 4 (slc27a4), fatty acid-binding protein (fabp), and peroxisome proliferator-activated receptor gamma (pparγ) in the liver. In addition, 6.7 µg/L BPAF significantly down-regulated the expression levels of antioxidant-related genes [superoxide dismutase (sod), glutathione peroxidase (gpx), and catalase (cat)], and complement system-related genes [complement component 5 (c5), complement component 7a (c7a), mannan-binding lectin serine peptidase 1 (masp1), and tumor necrosis factor (tnf)] were significantly up-regulated in the 73.4 and 367.0 µg/L groups, which implies the effect of BPAF on the immune system in the liver. In the hypothalamic-pituitary-ovarian axis (HPG) results, the transcription levels of estrogen receptor α (erα), estrogen receptor ß (erß), androgen receptor (arα), gonadotropin-releasing hormone 2 (gnrh2), cytochrome P450 19b (cyp19b), aromatase (cyp19a), and luteinizing hormone receptor (lhr) in the brain and ovary, and vitellogenin (vtg) and choriogenin (chg) in the liver of 367.0 µg/L BPAF group showed a downward trend. In addition, exposure to 367.0 µg/L BPAF for 120 d inhibited the spawning behavior of marine medaka. Our results showed that long-term BPAF treatment influenced growth (body weight and condition factors), lipid metabolism, and ovarian maturation, and significantly altered the immune response and the transcriptional expression levels of HPG axis-related genes.


Subject(s)
Mannose-Binding Lectin , Oryzias , Water Pollutants, Chemical , Animals , Antioxidants/metabolism , Aromatase/metabolism , Benzhydryl Compounds , Body Weight , Catalase/metabolism , Complement C5/genetics , Complement C5/metabolism , Diacylglycerol O-Acyltransferase/genetics , Diacylglycerol O-Acyltransferase/metabolism , Estrogen Receptor alpha/metabolism , Estrogen Receptor beta/metabolism , Fatty Acid Synthases/genetics , Fatty Acid Synthases/metabolism , Fatty Acid-Binding Proteins/genetics , Female , Fluorocarbons , Gene Expression , Glutathione Peroxidase/metabolism , Gonadotropin-Releasing Hormone/metabolism , Lipids , Mannose-Binding Lectin/genetics , Mannose-Binding Lectin/metabolism , Oryzias/physiology , PPAR gamma/metabolism , Peptide Hydrolases/genetics , Peptide Hydrolases/metabolism , Receptors, Androgen/metabolism , Receptors, LH/genetics , Serine/genetics , Serine/metabolism , Sterol Regulatory Element Binding Proteins/genetics , Sterol Regulatory Element Binding Proteins/metabolism , Superoxide Dismutase/metabolism , Tumor Necrosis Factors/genetics , Tumor Necrosis Factors/metabolism , Vitellogenins/metabolism , Water Pollutants, Chemical/metabolism , Water Pollutants, Chemical/toxicity
9.
Genes (Basel) ; 13(2)2022 01 25.
Article in English | MEDLINE | ID: mdl-35205259

ABSTRACT

Asthma is a complex and heterogeneous disease, caused by the interaction between genetic and environmental factors with a predominant allergic background in children. The role of specific genes in asthmatic bronchial reactivity is still not clear, probably because of the many common pathways shared with other allergic disorders. This study is focused on 11 SNPs possibly related to asthma that were previously identified in a GWAS study. The genetic variability of these SNPs has been analysed in a population of 773 Italian healthy controls, and the presence of an association between the polymorphisms and the asthma onset was evaluated performing genotyping analysis on 108 children affected with asthma compared with the controls. Moreover, a pool of 171 patients with only allergic rhinoconjunctivitis has been included in the case-control analysis. The comparison of allele frequencies in asthmatic patients versus healthy controls identified two SNPs-rs1162394 (p = 0.019) and rs25681 (p = 0.044)-associated with the asthmatic condition, which were not differentially distributed in the rhinoconjunctivitis group. The rs25681 SNP, together with three other SNPs, also resulted in not being homogenously distributed in the Italian population. The significantly higher frequency of the rs25681 and rs1162394 SNPs (located, respectively, in the C5 and SRGAP3 genes) in the asthmatic population suggests an involvement of these genes in the asthmatic context, playing a role in increasing the inflammatory condition that may influence asthma onset and clinical course.


Subject(s)
Asthma , Complement C5 , GTPase-Activating Proteins , Genetic Predisposition to Disease , Asthma/epidemiology , Asthma/genetics , Child , Complement C5/genetics , GTPase-Activating Proteins/genetics , Gene Frequency , Genotype , Humans , Italy , Polymorphism, Single Nucleotide
10.
Cancer Immunol Res ; 9(12): 1383-1399, 2021 12.
Article in English | MEDLINE | ID: mdl-34667108

ABSTRACT

Glioblastoma (GBM), the most common malignant primary brain cancer in adults, nearly always becomes resistant to current treatments, including the chemotherapeutic temozolomide (TMZ). The long noncoding RNA (lncRNA) TMZ-associated lncRNA in GBM recurrence (lnc-TALC) promotes GBM resistance to TMZ. Exosomes can release biochemical cargo into the tumor microenvironment (TME) or transfer their contents, including lncRNAs, to other cells as a form of intercellular communication. In this study, we found that lnc-TALC could be incorporated into exosomes and transmitted to tumor-associated macrophages (TAM) and could promote M2 polarization of the microglia. This M2 polarization correlated with secretion of the complement components C5/C5a, which occurred downstream of lnc-TALC binding to ENO1 to promote the phosphorylation of p38 MAPK. In addition, C5 promoted the repair of TMZ-induced DNA damage, leading to chemotherapy resistance, and C5a-targeted immunotherapy showed improved efficacy that limited lnc-TALC-mediated TMZ resistance. Our results reveal that exosome-transmitted lnc-TALC could remodel the GBM microenvironment and reduce tumor sensitivity to TMZ chemotherapy, indicating that the lnc-TALC-mediated cross-talk between GBM cells and microglia could attenuate chemotherapy efficacy and pointing to potential combination therapy strategies to overcome TMZ resistance in GBM.See related Spotlight by Zhao and Xie, p. 1372.


Subject(s)
Complement C5/genetics , Drug Resistance, Neoplasm/drug effects , Exosomes/genetics , Glioblastoma/drug therapy , Glioblastoma/genetics , Microglia/metabolism , RNA, Long Noncoding/genetics , Animals , Cell Line, Tumor , Disease Models, Animal , Humans , Mice , Transfection , Xenograft Model Antitumor Assays
11.
Blood ; 138(21): 2129-2137, 2021 11 25.
Article in English | MEDLINE | ID: mdl-34339498

ABSTRACT

The role of complement in the pathogenesis of venous thromboembolism (VTE) is unclear. We wanted to investigate (1) whether plasma complement component C5 (C5) levels are influenced by genetic variants or chronic inflammation and (2) the association between plasma C5 and risk of future VTE in a nested case-control study of 415 patients with VTE and 848 age- and sex-matched controls derived from the Tromsø Study. Plasma C5 levels were measured at inclusion. Odds ratios (ORs) with 95% confidence intervals (95% CIs) for provoked and unprovoked VTE across tertiles of C5 concentrations were estimated by logistic regression. Adjustment for C-reactive protein (CRP) served as a proxy for general inflammation. Whole-exome sequencing and protein quantitative trait loci analyses were performed to assess genetic influence on C5 concentrations. There was no association between genome-wide or C5-related gene variants and C5 levels. The association between plasma C5 levels and VTE risk displayed a threshold effect, where subjects with C5 levels above the lowest tertile had increased risk of VTE. Subjects in tertile 3 (highest C5 levels) had an age- and sex-adjusted OR of 1.45 (95% CI, 1.07-1.96) compared with tertile 1 (lowest). These statistics were more pronounced for unprovoked VTE (OR, 1.70; 95% CI, 1.11-2.60). Adjustments for body mass index and CRP had minor impact on risk estimates. The OR increased substantially with shorter time between blood sampling and VTE event. In conclusion, plasma C5 was associated with risk of future VTE. C5 levels were not genetically regulated and were only slightly influenced by chronic inflammation.


Subject(s)
Complement C5/analysis , Venous Thromboembolism/blood , Aged , Case-Control Studies , Chronic Disease , Complement C5/genetics , Female , Genetic Variation , Humans , Inflammation/blood , Inflammation/genetics , Inflammation/pathology , Male , Middle Aged , Recurrence , Risk Factors , Venous Thromboembolism/genetics , Venous Thromboembolism/pathology
12.
Sci Rep ; 11(1): 10416, 2021 05 17.
Article in English | MEDLINE | ID: mdl-34001980

ABSTRACT

The complement system plays a role in the formation of sub-retinal pigment epithelial (RPE) deposits in early stages of age-related macular degeneration (AMD). But the specific mechanisms that connect complement activation and deposit formation in AMD patients are unknown, which limits the development of efficient therapies to reduce or stop disease progression. We have previously demonstrated that C3 blockage prevents the formation of sub-RPE deposits in a mouse model of EFEMP1-associated macular degeneration. In this study, we have used double mutant Efemp1R345W/R345W:C5-/- mice to investigate the role of C5 in the formation of sub-RPE deposits in vivo and in vitro. The data revealed that the genetic ablation of C5 does not eliminate the formation of sub-RPE deposits. Contrarily, the absence of C5 in RPE cultures promotes complement dysregulation that results in increased activation of C3, which likely contributes to deposit formation even in the absence of EFEMP1-R345W mutant protein. The results also suggest that genetic ablation of C5 alters the extracellular matrix turnover through an effect on matrix metalloproteinases in RPE cell cultures. These results confirm that C3 rather than C5 could be an effective therapeutic target to treat early AMD.


Subject(s)
Complement C5/metabolism , Extracellular Matrix Proteins/genetics , Retinal Degeneration/immunology , Retinal Pigment Epithelium/pathology , Animals , Complement Activation/genetics , Complement C5/genetics , Disease Models, Animal , Extracellular Matrix/metabolism , Female , Humans , Male , Matrix Metalloproteinases/metabolism , Mice , Mice, Knockout , Mutation , Retinal Degeneration/genetics , Retinal Degeneration/pathology , Retinal Pigment Epithelium/immunology
14.
Transgenic Res ; 30(1): 11-21, 2021 02.
Article in English | MEDLINE | ID: mdl-33387103

ABSTRACT

Decay accelerating factor (DAF), a key complement activation control protein, is a 70 kDa membrane bound glycoprotein which controls extent of formation of the C3 and C5 convertases by accelerating their decay. Using clustered regularly-interspaced short palindromic repeats, (CRISPR)/associated protein 9 (Cas9) genome editing we generated a novel DAF deficient (Daf-/-) rat model. The present study describes the renal and extrarenal phenotype of this model and assesses renal response to complement-dependent injury induced by administration of a complement-fixing antibody (anti-Fx1A) against the glomerular epithelial cell (podocyte). Rats generated were healthy, viable and able to reproduce normally. Complete absence of DAF was documented in renal as well as extra-renal tissues at both protein and mRNA level compared to Daf+/+ rats. Renal histology in Daf-/- rats showed no differences regarding glomerular or tubulointerstitial pathology compared to Daf+/+ rats. Moreover, there was no difference in urine protein excretion (ratio of urine albumin to creatinine) or in serum creatinine and urea levels. In Daf-/- rats, proteinuria was significantly increased following binding of anti-Fx1A antibody to podocytes while increased C3b deposition was observed. The DAF knock-out rat model developed validates the role of this complement cascade regulator in immune-mediated podocyte injury. Given the increasing role of dysregulated complement activation in various forms of kidney disease and the fact that the rat is the preferred animal for renal pathophysiology studies, the rat DAF deficient model may serve as a useful tool to study the role of this complement activation regulator in complement-dependent forms of kidney injury.


Subject(s)
Acute Kidney Injury/genetics , CD55 Antigens/genetics , Complement Activation/genetics , Podocytes/metabolism , Acute Kidney Injury/pathology , Albuminuria , Animals , Antibodies, Anti-Idiotypic/pharmacology , CD55 Antigens/deficiency , CD55 Antigens/immunology , CRISPR-Cas Systems/genetics , Complement Activation/immunology , Complement C3-C5 Convertases/genetics , Complement C5/genetics , Gene Knockout Techniques , Heymann Nephritis Antigenic Complex/genetics , Heymann Nephritis Antigenic Complex/immunology , Humans , Podocytes/pathology , Rats
16.
Dev Comp Immunol ; 116: 103958, 2021 03.
Article in English | MEDLINE | ID: mdl-33290783

ABSTRACT

The complement system is a complex network of soluble and membrane-associated serum proteins that regulate immune response. Activation of the complement C5 generates C5a and C5b which generate chemoattractive effect on myeloid cells and initiate the membrane attack complex (MAC) assembly. However, the study of evolutionary process and systematic function of C5 are still limited. In this study, we performed an evolutionary analysis of C5. Phylogeny analysis indicated that C5 sequences underwent complete divergence in fish and non-fish vertebrate. It was found that codon usage bias improved and provided evolution evidence of C5 in species. Notably, the codon usage bias of grass carp was evolutionarily closer to the zebrafish genome compared with humans and stickleback. This suggested that the zebrafish cell line may provide an alternative environment for heterologous protein expression of grass carp. Sequence comparison showed a higher similarity between human and mouse, grass carp, and zebrafish. Moreover, selective pressure analysis revealed that the C5 genes in fish and non-fish vertebrates exhibited different evolutionary patterns. To study the function of C5, gene co-expression networks of human and zebrafish were built which revealed the complexity of C5 function networks in different species. The protein structure simulation of C5 indicated that grass carp and zebrafish are more similar than to human, however, differences between species in C5a proteins are extremely smaller. Spatial conformations of C5a-C5AR (CD88) protein complex were constructed, which showed that possible interaction may exist between C5a and CD88 proteins. Furthermore, the protein docking sites/residues were measured and calculated according to the minimum distance for all atoms from C5a and CD88 proteins. In summary, this study provides insights into the evolutionary history, function and potential regulatory mechanism of C5 in fish immune responses.


Subject(s)
Complement C5/genetics , Cyprinidae/immunology , Evolution, Molecular , Gene Regulatory Networks/immunology , Animals , Binding Sites , Codon Usage , Complement C5/chemistry , Complement C5a/chemistry , Complement C5a/genetics , Complement C5a/metabolism , Cyprinidae/classification , Cyprinidae/genetics , Humans , Phylogeny , Protein Binding , Protein Conformation , Receptor, Anaphylatoxin C5a/chemistry , Receptor, Anaphylatoxin C5a/genetics , Receptor, Anaphylatoxin C5a/metabolism , Selection, Genetic , Sequence Alignment , Species Specificity
17.
Front Immunol ; 11: 568631, 2020.
Article in English | MEDLINE | ID: mdl-33381109

ABSTRACT

The complement system comprises a large family of plasma proteins that play a central role in innate and adaptive immunity. To better understand the evolution of the complement system in vertebrates and the contribution of complement to fish immunity comprehensive in silico and expression analysis of the gene repertoire was made. Particular attention was given to C3 and the evolutionary related proteins C4 and C5 and to one of the main regulatory factors of C3b, factor H (Cfh). Phylogenetic and gene linkage analysis confirmed the standing hypothesis that the ancestral c3/c4/c5 gene duplicated early. The duplication of C3 (C3.1 and C3.2) and C4 (C4.1 and C4.2) was likely a consequence of the (1R and 2R) genome tetraploidization events at the origin of the vertebrates. In fish, gene number was not conserved and multiple c3 and cfh sequence related genes were encountered, and phylogenetic analysis of each gene generated two main clusters. Duplication of c3 and cfh genes occurred across the teleosts in a species-specific manner. In common, with other immune gene families the c3 gene expansion in fish emerged through a process of tandem gene duplication. Gilthead sea bream (Sparus aurata), had nine c3 gene transcripts highly expressed in liver although as reported in other fish, extra-hepatic expression also occurs. Differences in the sequence and protein domains of the nine deduced C3 proteins in the gilthead sea bream and the presence of specific cysteine and N-glycosylation residues within each isoform was indicative of functional diversity associated with structure. The diversity of C3 and other complement proteins as well as Cfh in teleosts suggests they may have an enhanced capacity to activate complement through direct interaction of C3 isoforms with pathogenic agents.


Subject(s)
Complement C3/genetics , Complement Factor H/genetics , Fish Proteins/genetics , Sea Bream/genetics , Animals , Complement C4/genetics , Complement C5/genetics , Evolution, Molecular , Phylogeny , Sea Bream/immunology , Skin/immunology , Transcriptome
18.
Clin Immunol ; 220: 108598, 2020 11.
Article in English | MEDLINE | ID: mdl-32961333

ABSTRACT

Growing clinical evidence has implicated complement as a pivotal driver of COVID-19 immunopathology. Deregulated complement activation may fuel cytokine-driven hyper-inflammation, thrombotic microangiopathy and NET-driven immunothrombosis, thereby leading to multi-organ failure. Complement therapeutics have gained traction as candidate drugs for countering the detrimental consequences of SARS-CoV-2 infection. Whether blockade of terminal complement effectors (C5, C5a, or C5aR1) may elicit similar outcomes to upstream intervention at the level of C3 remains debated. Here we compare the efficacy of the C5-targeting monoclonal antibody eculizumab with that of the compstatin-based C3-targeted drug candidate AMY-101 in small independent cohorts of severe COVID-19 patients. Our exploratory study indicates that therapeutic complement inhibition abrogates COVID-19 hyper-inflammation. Both C3 and C5 inhibitors elicit a robust anti-inflammatory response, reflected by a steep decline in C-reactive protein and IL-6 levels, marked lung function improvement, and resolution of SARS-CoV-2-associated acute respiratory distress syndrome (ARDS). C3 inhibition afforded broader therapeutic control in COVID-19 patients by attenuating both C3a and sC5b-9 generation and preventing FB consumption. This broader inhibitory profile was associated with a more robust decline of neutrophil counts, attenuated neutrophil extracellular trap (NET) release, faster serum LDH decline, and more prominent lymphocyte recovery. These early clinical results offer important insights into the differential mechanistic basis and underlying biology of C3 and C5 inhibition in COVID-19 and point to a broader pathogenic involvement of C3-mediated pathways in thromboinflammation. They also support the evaluation of these complement-targeting agents as COVID-19 therapeutics in large prospective trials.


Subject(s)
Betacoronavirus/pathogenicity , Complement C3/antagonists & inhibitors , Complement C5/antagonists & inhibitors , Complement Inactivating Agents/therapeutic use , Coronavirus Infections/drug therapy , Immunologic Factors/therapeutic use , Pneumonia, Viral/drug therapy , Respiratory Distress Syndrome/drug therapy , Antibodies, Monoclonal, Humanized/therapeutic use , Biomarkers/blood , C-Reactive Protein/metabolism , COVID-19 , Cohort Studies , Complement Activation/drug effects , Complement C3/genetics , Complement C3/immunology , Complement C5/genetics , Complement C5/immunology , Coronavirus Infections/complications , Coronavirus Infections/immunology , Coronavirus Infections/virology , Extracellular Traps/drug effects , Female , Gene Expression , Humans , Interleukin-6/metabolism , Male , Middle Aged , Neutrophils/drug effects , Neutrophils/immunology , Neutrophils/virology , Pandemics , Peptides, Cyclic/therapeutic use , Pneumonia, Viral/complications , Pneumonia, Viral/immunology , Pneumonia, Viral/virology , Respiratory Distress Syndrome/complications , Respiratory Distress Syndrome/immunology , Respiratory Distress Syndrome/virology , SARS-CoV-2 , Severity of Illness Index
19.
PLoS Biol ; 18(9): e3000821, 2020 09.
Article in English | MEDLINE | ID: mdl-32886672

ABSTRACT

As a novel alternative to established surface display or combinatorial chemistry approaches for the discovery of therapeutic peptides, we present a method for the isolation of small, cysteine-rich domains from bovine antibody ultralong complementarity-determining regions (CDRs). We show for the first time that isolated bovine antibody knob domains can function as autonomous entities by binding antigen outside the confines of the antibody scaffold. This yields antibody fragments so small as to be considered peptides, each stabilised by an intricate, bespoke arrangement of disulphide bonds. For drug discovery, cow immunisations harness the immune system to generate knob domains with affinities in the picomolar to low nanomolar range, orders of magnitude higher than unoptimized peptides from naïve library screening. Using this approach, knob domain peptides that tightly bound Complement component C5 were obtained, at scale, using conventional antibody discovery and peptide purification techniques.


Subject(s)
Antibodies/chemistry , Disulfides/isolation & purification , Immunoglobulin Domains , Peptide Fragments/isolation & purification , Protein Interaction Domains and Motifs , Animals , Antibodies/immunology , Antibodies/metabolism , Antibody Affinity , Antibody Formation , Antibody Specificity , Antigens/genetics , Antigens/immunology , B-Lymphocytes/physiology , Cattle , Complement C5/chemistry , Complement C5/genetics , Complement C5/immunology , Complementarity Determining Regions/chemistry , Complementarity Determining Regions/genetics , Complementarity Determining Regions/immunology , Disulfides/chemistry , Disulfides/immunology , Epitope Mapping/methods , Humans , Immunization , Immunoglobulin Domains/genetics , Models, Molecular , Peptide Fragments/genetics , Peptide Fragments/immunology , Protein Interaction Domains and Motifs/genetics
20.
Immunology ; 161(2): 103-113, 2020 10.
Article in English | MEDLINE | ID: mdl-32557571

ABSTRACT

The implication of complement in multiple diseases over the last 20 years has fuelled interest in developing anti-complement drugs. To date, the focus has been on C5; blocking cleavage of C5 prevents formation of two pro-inflammatory activities, C5a anaphylatoxin and membrane attack complex. The concept of C5 blockade to inhibit inflammation dates back 30 years to the description of BB5.1, an anti-C5 blocking monoclonal antibody raised in C5-deficient mice. This antibody proved an invaluable tool to demonstrate complement involvement in mouse disease models and catalysed enthusiasm for anti-complement drug development, culminating in the anti-human C5 monoclonal antibody eculizumab, the most successful anti-complement drug to date, already in clinical use for several rare diseases. Despite its key role in providing proof-of-concept for C5 blockade, the mechanism of BB5.1 inhibition remains poorly understood. Here, we characterized BB5.1 cross-species inhibition, C5 binding affinity and chain specificity. BB5.1 efficiently inhibited C5 in mouse serum but not in human or other rodent sera; it prevented C5 cleavage and C5a generation. BB5.1 bound the C5 α-chain with high affinity and slow off-rate. BB5.1 complementarity-determining regions were obtained and docking algorithms were used to predict the likely binding interface on mouse C5.


Subject(s)
Antibodies, Monoclonal, Humanized/therapeutic use , Antibodies, Monoclonal/metabolism , Complement C5/metabolism , Inflammation/therapy , Animals , Antibodies, Monoclonal/genetics , Antibodies, Monoclonal, Humanized/genetics , Complement C5/genetics , Computer Simulation , Cross Reactions , Guinea Pigs , Humans , Hybridomas , Mice , Mice, Knockout , Molecular Docking Simulation , Protein Binding , Proteolysis , Rabbits , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL