Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 79.440
Filter
1.
J Environ Sci (China) ; 148: 476-488, 2025 Feb.
Article in English | MEDLINE | ID: mdl-39095182

ABSTRACT

In this study, non-thermal plasma (NTP) was employed to modify the Cu/TiO2 adsorbent to efficiently purify H2S in low-temperature and micro-oxygen environments. The effects of Cu loading amounts and atmospheres of NTP treatment on the adsorption-oxidation performance of the adsorbents were investigated. The NTP modification successfully boosted the H2S removal capacity to varying degrees, and the optimized adsorbent treated by air plasma (Cu/TiO2-Air) attained the best H2S breakthrough capacity of 113.29 mg H2S/gadsorbent, which was almost 5 times higher than that of the adsorbent without NTP modification. Further studies demonstrated that the superior performance of Cu/TiO2-Air was attributed to increased mesoporous volume, more exposure of active sites (CuO) and functional groups (amino groups and hydroxyl groups), enhanced Ti-O-Cu interaction, and the favorable ratio of active oxygen species. Additionally, the X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) results indicated the main reason for the deactivation was the consumption of the active components (CuO) and the agglomeration of reaction products (CuS and SO42-) occupying the active sites on the surface and the inner pores of the adsorbents.


Subject(s)
Copper , Hydrogen Sulfide , Oxidation-Reduction , Titanium , Titanium/chemistry , Adsorption , Copper/chemistry , Hydrogen Sulfide/chemistry , Air Pollutants/chemistry , Plasma Gases/chemistry , Models, Chemical
2.
J Environ Sci (China) ; 147: 487-497, 2025 Jan.
Article in English | MEDLINE | ID: mdl-39003064

ABSTRACT

Dissolved copper and iron ions are regarded as friendly and economic catalysts for peroxymonosulfate (PMS) activation, however, neither Cu(II) nor Fe(III) shows efficient catalytic performance because of the slow rates of Cu(II)/Cu(I) and Fe(III)/Fe(II) cycles. Innovatively, we observed a significant enhancement on the degradation of organic contaminants when Cu(II) and Fe(III) were coupled to activate PMS in borate (BA) buffer. The degradation efficiency of Rhodamine B (RhB, 20 µmol/L) reached up to 96.3% within 10 min, which was higher than the sum of individual Cu(II)- and Fe(III)- activated PMS process. Sulfate radical, hydroxyl radical and high-valent metal ions (i.e., Cu(III) and Fe(IV)) were identified as the working reactive species for RhB removal in Cu(II)/Fe(III)/PMS/BA system, while the last played a predominated role. The presence of BA dramatically facilitated the reduction of Cu(II) to Cu(I) via chelating with Cu(II) followed by Fe(III) reduction by Cu(I), resulting in enhanced PMS activation by Cu(I) and Fe(II) as well as accelerated generation of reactive species. Additionally, the strong buffering capacity of BA to stabilize the solution pH was satisfying for the pollutants degradation since a slightly alkaline environment favored the PMS activation by coupling Cu(II) and Fe(III). In a word, this work provides a brand-new insight into the outstanding PMS activation by homogeneous bimetals and an expanded application of iron-based advanced oxidation processes in alkaline conditions.


Subject(s)
Copper , Peroxides , Water Pollutants, Chemical , Copper/chemistry , Water Pollutants, Chemical/chemistry , Peroxides/chemistry , Catalysis , Iron/chemistry , Rhodamines/chemistry , Oxidation-Reduction
3.
Front Immunol ; 15: 1392259, 2024.
Article in English | MEDLINE | ID: mdl-39086491

ABSTRACT

The treatment of wound inflammation is intricately linked to the concentration of reactive oxygen species (ROS) in the wound microenvironment. Among these ROS, H2O2 serves as a critical signaling molecule and second messenger, necessitating the urgent need for its rapid real-time quantitative detection, as well as effective clearance, in the pursuit of effective wound inflammation treatment. Here, we exploited a sophisticated 3D Cu2- x Se/GO nanostructure-based nanonzymatic H2O2 electrochemical sensor, which is further decorated with evenly distributed Pt nanoparticles (Pt NPs) through electrodeposition. The obtained Cu2- x Se/GO@Pt/SPCE sensing electrode possesses a remarkable increase in specific surface derived from the three-dimensional surface constructed by GO nanosheets. Moreover, the localized surface plasma effect of the Cu2- x Se nanospheres enhances the separation of photogenerated electron-hole pairs between the interface of the Cu2- x Se NPs and the Pt NPs. This innovation enables near-infrared light-enhanced catalysis, significantly reducing the detection limit of the Cu2- x Se/GO@Pt/SPCE sensing electrode for H2O2 (from 1.45 µM to 0.53µM) under NIR light. Furthermore, this biosensor electrode enables in-situ real-time monitoring of H2O2 released by cells. The NIR-enhanced Cu2- x Se/GO@Pt/SPCE sensing electrode provide a simple-yet-effective method to achieve a detection of ROS (H2O2、-OH) with high sensitivity and efficiency. This innovation promises to revolutionize the field of wound inflammation treatment by providing clinicians with a powerful tool for accurate and rapid assessment of ROS levels, ultimately leading to improved patient outcomes.


Subject(s)
Copper , Hydrogen Peroxide , Inflammation , Metal Nanoparticles , Platinum , Hydrogen Peroxide/metabolism , Platinum/chemistry , Copper/chemistry , Metal Nanoparticles/chemistry , Inflammation/metabolism , Animals , Mice , Nanostructures/chemistry , Biosensing Techniques/methods , Selenium/chemistry , Humans , Infrared Rays , Reactive Oxygen Species/metabolism , RAW 264.7 Cells
4.
Luminescence ; 39(8): e4866, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39152772

ABSTRACT

Copper nanoclusters (Cu NCs) have shown significant attention in sensing of molecular and ionic species. In this work, a single-step biosynthetic approach was introduced for the preparation of fluorescent Cu NCs using Holarrhena pubescens (H. pubescens) leaves extract as a template. The synthesized H. pubescens-Cu NCs act as a nanomolecular probe for the detection of bilirubin in biofluids. The synthesized H. pubescens-Cu NCs displayed highest fluorescence intensity at 454 nm, when excited at 330 nm. Importantly, selective detection of bilirubin was obtained by introducing H. pubescens-Cu NCs as a simple molecular probe. The interaction of bilirubin and H. pubescens-Cu NCs resulted in a remarkable decrease in the emission peak intensity. The developed H. pubescens-Cu NCs-based bilirubin molecular probe has a wide linear range of 0.5-20.00 µM with the limit of detection of 30.54 nM for bilirubin. The promising application of H. pubescens-Cu NCs-based molecular probe was assessed by assaying bilirubin in spiked biofluids.


Subject(s)
Bilirubin , Copper , Fluorescent Dyes , Metal Nanoparticles , Spectrometry, Fluorescence , Copper/chemistry , Bilirubin/blood , Bilirubin/chemistry , Bilirubin/analysis , Humans , Metal Nanoparticles/chemistry , Fluorescent Dyes/chemistry , Fluorescence , Plant Leaves/chemistry , Plant Leaves/metabolism , Limit of Detection , Plant Extracts/chemistry
5.
Nat Commun ; 15(1): 6947, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39138174

ABSTRACT

Fluxes in human copper levels recently garnered attention for roles in cellular signaling, including affecting levels of the signaling molecule cyclic adenosine monophosphate. We herein apply an unbiased temporal evaluation of the signaling and whole genome transcriptional activities modulated by copper level fluctuations to identify potential copper sensor proteins responsible for driving these activities. We find that fluctuations in physiologically relevant copper levels modulate EGFR signal transduction and activation of the transcription factor CREB. Both intracellular and extracellular assays support Cu1+ inhibition of the EGFR phosphatase PTPN2 (and potentially PTPN1)-via ligation to the PTPN2 active site cysteine side chain-as the underlying mechanism. We additionally show i) copper supplementation drives weak transcriptional repression of the copper importer CTR1 and ii) CREB activity is inversely correlated with CTR1 expression. In summary, our study reveals PTPN2 as a physiological copper sensor and defines a regulatory mechanism linking feedback control of copper stimulated EGFR/CREB signaling and CTR1 expression.


Subject(s)
Copper Transporter 1 , Copper , Cyclic AMP Response Element-Binding Protein , ErbB Receptors , Protein Tyrosine Phosphatase, Non-Receptor Type 2 , Signal Transduction , ErbB Receptors/metabolism , ErbB Receptors/genetics , Copper/metabolism , Humans , Cyclic AMP Response Element-Binding Protein/metabolism , Copper Transporter 1/metabolism , Protein Tyrosine Phosphatase, Non-Receptor Type 2/metabolism , Protein Tyrosine Phosphatase, Non-Receptor Type 2/genetics , Protein Tyrosine Phosphatase, Non-Receptor Type 1/metabolism , Protein Tyrosine Phosphatase, Non-Receptor Type 1/genetics , Transcription, Genetic/drug effects
6.
Mikrochim Acta ; 191(9): 549, 2024 08 20.
Article in English | MEDLINE | ID: mdl-39162737

ABSTRACT

An intense cathodic electrochemiluminescence (ECL) is reported from a polarized glassy carbon electrode (GCE) in peroxydisulfate solution. After the polarization in 1 M Na2SO4 at the potential of - 3.7 V for 3 s, carbon nanosheets (C-NSs) were in situ grown on the surface of the GCE. Measured in 100 mM K2S2O8 solution, the ECL intensity of the GCE/C-NSs is 112-fold that of a bare GCE. The ECL spectrum revealed that the true ECL luminophore in the GCE/C-NSs-peroxydisulfate system is O2/S2O82- which is promoted by C-NSs. When Cu2+ was electrochemically enriched and reduced to Cu(0) on the catalytic sites of C-NSs, the ECL from GCE/C-NSs/Cu in K2S2O8 solution was decreased with increasing logarithmic concentration of Cu2+ in the range from 10 pM to 1 µM, with a limit of detection (LOD) of 3 pM. An immunoanalysis method is proposed via a biometallization strategy using CuS nanoparticles as the tags and carcinoembryonic antigen (CEA) as the model analyte. After the immune recognition in the microplate, the CuS tags in the immunocomplex were dissolved and the resultant Cu2+ was electrochemically enriched and reduced on the catalytic sites of C-NSs, quenching the ECL intensity of GCE/C-NSs-O2/S2O82- system. The proposed ECL immunoanalysis method was used to quantify CEA in actual serum samples with an LOD of 1.0 fg mL-1, possessing the advantages of simple electrode modification, high sensitivity and good reproducibility.


Subject(s)
Carbon , Carcinoembryonic Antigen , Copper , Electrochemical Techniques , Electrodes , Luminescent Measurements , Carbon/chemistry , Luminescent Measurements/methods , Electrochemical Techniques/methods , Electrochemical Techniques/instrumentation , Carcinoembryonic Antigen/blood , Carcinoembryonic Antigen/immunology , Carcinoembryonic Antigen/analysis , Copper/chemistry , Limit of Detection , Humans , Nanostructures/chemistry , Immunoassay/methods , Copper Sulfate/chemistry , Metal Nanoparticles/chemistry , Glass/chemistry , Sulfates/chemistry
7.
Wei Sheng Yan Jiu ; 53(4): 608-611, 2024 Jul.
Article in Chinese | MEDLINE | ID: mdl-39155229

ABSTRACT

OBJECTIVE: To understand the mineral content of freshwater fish produced in Shaanxi Province and evaluate its related nutritional value. METHODS: According to the 2021 Shaanxi Provincial nutrition monitoring plan, the 9 mineral contents of 13 varieties of freshwater fish, produced in Shaanxi province, were determined by inductively coupled plasma atomic emission spectrometry. The nutritional evaluation of mineral elements was carried out by using the index of nutritional quality(INQ) method. Simultaneously, the correlation between 9 minerals and energy was analyzed by SPSS software. RESULTS: Among the 13 fish species, the contents of P and K were highest, with content ranges of 169-255 and 159-373 mg/100 g, respectively, followed by sodium, calcium, magnesium, iron, zinc. The contents of copper and manganese were lowest. The nutritional evaluation showed that the INQ values of P, K and Mg were than 1, the INQ value of P was highest, which was 4.57-8.72. Some fish have INQ values greater than 1 for calcium, iron, copper and zinc. The correlation between the nine minerals was not strong, as a whole. Only some elements have a correlation coefficient greater than 0.6, indicating that there was a synergistic accumulation effect or antagonistic effect in the fish body. CONCLUSION: The dominant mineral elements in different species of fish were different. However, most fish species can be used as high-quality food sources of phosphorus, potassium, magnesium, copper and zinc.


Subject(s)
Fishes , Fresh Water , Magnesium , Minerals , Phosphorus , Animals , China , Minerals/analysis , Magnesium/analysis , Phosphorus/analysis , Nutritive Value , Copper/analysis , Calcium/analysis , Zinc/analysis , Potassium/analysis , Iron/analysis , Sodium/analysis , Manganese/analysis , Spectrophotometry, Atomic/methods
8.
Bioresour Technol ; 408: 131198, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39097239

ABSTRACT

Factors that contribute to optimal chalcopyrite bioleaching by extremely thermoacidophilic archaea were examined for ten species belonging to the order Sulfolobales from the genera Acidianus (A. brierleyi), Metallosphaera (M. hakonensis, M. sedula, M. prunae), Sulfuracidifex (S. metallicus, S. tepriarius), Sulfolobus (S. acidocaldarius), Saccharlobus (S. solfataricus) and Sulfurisphaera (S. ohwakuensis, S. tokodaii). Only A. brierleyi, M. sedula, S. metallicus, S. tepriarius, S. ohwakuensis, and S. tokodai exhibited significant amounts of bioleaching and were investigated further. At 70-75 °C, Chalcopyrite loadings of 10 g/l were leached for 21 days during which pH, redox potential, planktonic cell density, iron concentrations and sulfate levels were monitored, in addition to copper mobilization. S. ohwakuensis proved to be the most prolific bioleacher. This was attributed to balanced iron and sulfur oxidation, thereby reducing by-product (e.g., jarosites) formation and minimizing surface passivation. Comparative genomics suggest markers for bioleaching potential, but the results here point to the need for experimental verification.


Subject(s)
Copper , Iron , Oxidation-Reduction , Sulfur , Sulfur/metabolism , Copper/metabolism , Iron/metabolism , Archaea/metabolism , Hydrogen-Ion Concentration , Temperature , Sulfolobales/metabolism
9.
ACS Appl Bio Mater ; 7(8): 5258-5267, 2024 Aug 19.
Article in English | MEDLINE | ID: mdl-39103296

ABSTRACT

Sensitive detection of cardiac troponin I (cTnI) is of great significance in the diagnosis of a fatal acute myocardial infarction. A redox-active nanocomposite of copper(II)-tannic acid@Cu (CuTA@Cu) was herein prepared on the surface of a glassy carbon electrode by electrochemical deposition of metallic copper combined with a metal stripping strategy. Then, HAuCl4 was in situ reduced to gold nanoparticles (AuNPs) by strong reductive catechol groups in the TA ligand. The AuNPs/CuTA@Cu composite was further utilized as a bifunctional matrix for the immobilization of the cTnI antibody (anti-cTnI), producing an electrochemical immunosensor. Electrochemical tests show that the immunoreaction between anti-cTnI and target cTnI can cause a significant reduction of the electrochemical signal of CuTA@Cu. It can be attributed to the insulating characteristic of the immunocomplex and its barrier effect to the electrolyte ion diffusion. From the signal changes of CuTA@Cu, cTnI can be analyzed in a wide range from 10 fg mL-1 to 10 ng mL-1, with an ultralow detection limit of 0.65 fg mL-1. The spiked recovery assays show that the immunosensor is reliable for cTnI determination in human serum samples, demonstrating its promising application in the early clinical diagnosis of myocardial infarction.


Subject(s)
Copper , Electrochemical Techniques , Gold , Materials Testing , Metal Nanoparticles , Troponin I , Gold/chemistry , Copper/chemistry , Troponin I/blood , Troponin I/analysis , Troponin I/immunology , Metal Nanoparticles/chemistry , Humans , Immunoassay/methods , Biosensing Techniques , Biocompatible Materials/chemistry , Particle Size , Polyphenols
10.
Sci Rep ; 14(1): 19009, 2024 08 16.
Article in English | MEDLINE | ID: mdl-39152164

ABSTRACT

The contamination of water sources by pharmaceutical pollutants presents significant environmental and health hazards, making the development of effective photocatalytic materials crucial for their removal. This research focuses on the synthesis of a novel Ag/CuS/Fe3O4 nanocomposite and its photocatalytic efficiency against tetracycline (TC) and diclofenac contaminants. The nanocomposite was created through a straightforward and scalable precipitation method, integrating silver nanoparticles (AgNPs) and copper sulfide (CuS) into a magnetite framework. Various analytical techniques, including X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR),ultraviolet-visible spectrophotometry (UV-Vis) and energy-dispersive X-ray spectroscopy (EDS), were employed to characterize the structural and morphological properties of the synthesized material. The photocatalytic activity was tested by degrading tetracycline and diclofenac under visible light. Results indicated a marked improvement in the photocatalytic performance of the Ag/CuS/Fe3O4 nanocomposite (98%photodegradation of TC 60 ppm in 30 min) compared to both pure magnetite and CuS/Fe3O4. The enhanced photocatalytic efficiency is attributed to the synergistic interaction between AgNPs, CuS, and Fe3O4, which improves light absorption and charge separation, thereby increasing the generation of reactive oxygen species (ROS) and promoting the degradation of the pollutants. The rate constant k of photodegradation was about 0.1 min-1 for catalyst dosages 0.02 g. Also the effect of photocatalyst dose and concentration of TC and pH of solution was tested. The modified photocatalyst was also used for simultaneous photodegradation of TC and diclofenac successfully. This study highlights the potential of the Ag/CuS/Fe3O4 nanocomposite as an efficient and reusable photocatalyst for eliminating pharmaceutical pollutants from water.


Subject(s)
Copper , Diclofenac , Ferrosoferric Oxide , Nanocomposites , Silver , Tetracycline , Water Pollutants, Chemical , Diclofenac/chemistry , Nanocomposites/chemistry , Tetracycline/chemistry , Catalysis , Silver/chemistry , Ferrosoferric Oxide/chemistry , Water Pollutants, Chemical/chemistry , Copper/chemistry , Metal Nanoparticles/chemistry , Photolysis , X-Ray Diffraction , Light
11.
J Hematol Oncol ; 17(1): 68, 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-39152464

ABSTRACT

Cuproptosis is a newly identified form of cell death induced by excessive copper (Cu) accumulation within cells. Mechanistically, cuproptosis results from Cu-induced aggregation of dihydrolipoamide S-acetyltransferase, correlated with the mitochondrial tricarboxylic acid cycle and the loss of iron-sulfur cluster proteins, ultimately resulting in proteotoxic stress and triggering cell death. Recently, cuproptosis has garnered significant interest in tumor research due to its potential as a crucial therapeutic strategy against cancer. In this review, we summarized the cellular and molecular mechanisms of cuproptosis and its relationship with other types of cell death. Additionally, we reviewed the current drugs or strategies available to induce cuproptosis in tumor cells, including Cu ionophores, small compounds, and nanomedicine. Furthermore, we targeted cell metabolism and specific regulatory genes in cancer therapy to enhance tumor sensitivity to cuproptosis. Finally, we discussed the feasibility of targeting cuproptosis to overcome tumor chemotherapy and immunotherapy resistance and suggested future research directions. This study suggested that targeting cuproptosis could open new avenues for developing tumor therapy.


Subject(s)
Copper , Neoplasms , Humans , Neoplasms/drug therapy , Copper/metabolism , Copper/therapeutic use , Animals , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/pharmacology , Cell Death/drug effects
12.
J Hazard Mater ; 477: 135245, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-39096640

ABSTRACT

Copper (Cu) is an essential micronutrient for humans, but excessive Cu in rice grains causes health risks. Currently, the mechanisms underlying Cu accumulation in rice are unclear. Here, we identified a novel member of the high-affinity copper transporter (Ctr)-like (COPT) protein family in rice, OsCOPT7, which controls Cu accumulation in rice grains. Mutation in the coding sequence of OsCOPT7 (mutant lc1) leads to inhibition of Cu transport through the xylem, contributing to lower Cu concentrations in the grain of lc1. Knockout or modulation of the expression of OsCOPT7 significantly impacts Cu transportation in the xylem and its accumulation in rice grains. OsCOPT7 localizes at the multi-pass membrane in the cell and the gene is expressed in the exodermis and stele cells, facilitating Cu loading into the xylem. OsCOPT7 expression is upregulated under Cu deficiency and in various organs, implying its contribution to Cu distribution within the rice plant. The variable expression pattern of OsCOPT7 suggests that OsCOPT7 expression responds to Cu stress in rice. Moreover, assays reveal that OsCOPT7 expression level is suppressed by the SQUAMOSA promoter-binding protein-like 9 (OsSPL9) and that OsCOPT7 interacts with Antioxidant Protein1 (OsATX1). This study elucidates the involvement of OsCOPT7 in Cu loading into the xylem, its subsequent distribution within the rice plant, and the potential of this protein in reducing the risk of high Cu concentrations in rice grain grown on Cu-contaminated soil.


Subject(s)
Copper , Oryza , Plant Proteins , Xylem , Copper/metabolism , Xylem/metabolism , Oryza/metabolism , Oryza/genetics , Plant Proteins/metabolism , Plant Proteins/genetics , Gene Expression Regulation, Plant , Biological Transport
13.
Biochemistry ; 63(16): 2051-2062, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39099176

ABSTRACT

The copper chaperone for Sod1 (Ccs) is a metallochaperone that plays a multifaceted role in the maturation of Cu,Zn superoxide dismutase (Sod1). The Ccs mutation R163W was identified in an infant with fatal neurological abnormalities. Based on a comprehensive structural and functional analysis, we developed the first data-driven model for R163W-related pathogenic phenotypes. The work here confirms previous findings that the substitution of arginine with tryptophan at this site, which is located adjacent to a conserved Zn binding site, creates an unstable Zn-deficient protein that loses its ability to efficiently activate Sod1. Intriguingly, R163W Ccs can reduce copper (i.e., Cu(II) → Cu(I)) bound in its Sod1-like domain (D2), and this novel redox event is accompanied by disulfide bond formation. The loss of Zn binding, along with the unusual ability to bind copper in D2, diverts R163W Ccs toward aggregation. The remarkably high affinity of D2 Cu(I) binding converts R163W from a Cu chaperone to a Cu scavenger that accelerates Sod1 deactivation (i.e., an Anti-chaperone). Overall, these findings present a first-of-its-kind molecular mechanism for Ccs dysfunction that leads to pathogenesis in humans.


Subject(s)
Copper , Molecular Chaperones , Superoxide Dismutase-1 , Humans , Molecular Chaperones/metabolism , Molecular Chaperones/genetics , Superoxide Dismutase-1/metabolism , Superoxide Dismutase-1/genetics , Superoxide Dismutase-1/chemistry , Copper/metabolism , Zinc/metabolism , Models, Molecular , Amino Acid Substitution , Binding Sites , Oxidation-Reduction
14.
Luminescence ; 39(8): e4849, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39099225

ABSTRACT

Pesticides in environmental samples pose significant risks to ecosystems and human health since they require precise and efficient detection methods. Imidacloprid (IMI), a widely used neonicotinoid insecticide, exemplifies these hazards due to its potential toxicity. This study addresses the urgent need for improved monitoring of such contaminants by introducing a novel fluorometric method for detecting IMI using nitrogen-doped graphite carbon dots (N-GCDs). The sensor operates by quenching fluorescence through the interaction of Cu2+ ions with N-GCDs. Subsequently, IMI binds to the imidazole group, chelates with Cu2+, and restores the fluorescence of N-GCDs. This alternating fluorescence behavior allows for the accurate identification of both Cu2+ and IMI. The sensor exhibits linear detection ranges of 20-100 nM for Cu2+ and 10-140 µg/L for IMI, with detection limits of 18 nM and 1.2 µg/L, respectively. The high sensitivity of this sensor enables the detection of real-world samples, which underscores its potential for practical use in environmental monitoring and agricultural safety.


Subject(s)
Copper , Environmental Monitoring , Fluorometry , Graphite , Neonicotinoids , Nitro Compounds , Nitrogen , Quantum Dots , Neonicotinoids/analysis , Neonicotinoids/chemistry , Nitro Compounds/chemistry , Nitro Compounds/analysis , Copper/chemistry , Copper/analysis , Nitrogen/chemistry , Graphite/chemistry , Quantum Dots/chemistry , Insecticides/analysis , Insecticides/chemistry , Imidazoles/chemistry
15.
Mikrochim Acta ; 191(8): 505, 2024 08 04.
Article in English | MEDLINE | ID: mdl-39097544

ABSTRACT

A novel and sensitive fluorescence ratiometric method is developed for urea detection based  on the pH-sensitive response of two fluorescent carbon dot (CD) systems: R-CDs/methyl red (MR) and NIR-CDs/Cu2+. The sensing mechanism involves breaking down urea using the enzyme urease, releasing ammonia and increasing pH. At higher pH, the fluorescence of NIR-CDs is quenched due to the enhanced interaction with Cu2+, while the fluorescence of R-CDs is restored as the acidic MR converts to its basic form, removing the inner filter effect. The ratiometric signal (F608/F750) of the R-CDs/MR and NIR-CDs/Cu2+ intensities changed in response to the pH induced by urea hydrolysis, enabling selective and sensitive urea detection. Detailed spectroscopic and morphological investigations confirmed the fluorescence probe design and elucidated the sensing mechanism. The method exhibited excellent sensitivity (0.00028 mM LOD) and linearity range (0.001 - 8.0 mM) for urea detection, with successful application in milk samples for monitoring adulteration, demonstrating negligible interference and high recovery levels (96.5% to 101.0%). This ratiometric fluorescence approach offers a robust strategy for selective urea sensing in complicated matrices.


Subject(s)
Carbon , Copper , Fluorescent Dyes , Limit of Detection , Quantum Dots , Spectrometry, Fluorescence , Urea , Urease , Urea/analysis , Urea/chemistry , Urease/chemistry , Copper/chemistry , Carbon/chemistry , Hydrogen-Ion Concentration , Quantum Dots/chemistry , Fluorescent Dyes/chemistry , Spectrometry, Fluorescence/methods , Animals , Milk/chemistry , Azo Compounds/chemistry , Food Contamination/analysis
16.
BMC Pediatr ; 24(1): 518, 2024 Aug 10.
Article in English | MEDLINE | ID: mdl-39127646

ABSTRACT

BACKGROUND: Drug-resistant epilepsy is defined as failure of seizure control in spite of using 2 or 3 proper antiepileptic drugs in appropriate time. Mineral elements play important roles in neuronal function; it is believed that mineral deficiency may lead to complications through seizure management. In the present study, serum levels of zinc (Zn), copper (Cu), magnesium (Mg), calcium (Ca), and 25-hydroxy vitamin D (Vit D) in drug-resistant-epilepsy (DRE) patients were evaluated and compared with the controlled patients. METHODS: In this cross-sectional study, epileptic patients were included and categorized into two groups of DRE and well-controlled patients. Patients' serum samples were analysed to evaluate Zn, Cu, Mg, Ca, and Vit D levels. The primary objective was comparison of serum levels of different trace elements between the groups. RESULTS: Sixty-four epileptic children including 33 DRE and 31 well-controlled children entered the study. The DRE children showed a significantly earlier onset of disease compared to the other group (p = 0.014). Comparing the frequency of developmental delay between the groups, the results showed this complication was significantly more frequent in the DRE group (p < 0.001). Concerning serum elements, the results showed a significantly higher concentration of Zn in the well-controlled group than the DRE group (p = 0.007). On the other hand, no significant differences were observed between the groups regarding the means of Vit D, Ca, Cu, and Mg levels (p > 0.05). CONCLUSION: The results of the present study delineated that drug-resistant epilepsy patients had earlier onset of disease and were at higher risk of neurodevelopmental delay compared with well-controlled-epilepsy patients. A significant lower serum levels of Zn were also observed in drug-resistant-epilepsy patients. This finding may suggest the role of zinc supplementation in help to better control of drug-resistant seizures, as well as, the importance of serum zinc monitoring in epileptic patients.


Subject(s)
Copper , Drug Resistant Epilepsy , Magnesium , Vitamin D , Zinc , Humans , Cross-Sectional Studies , Vitamin D/blood , Vitamin D/analogs & derivatives , Copper/blood , Female , Zinc/blood , Male , Magnesium/blood , Child , Drug Resistant Epilepsy/blood , Drug Resistant Epilepsy/etiology , Drug Resistant Epilepsy/drug therapy , Child, Preschool , Adolescent , Anticonvulsants/therapeutic use , Case-Control Studies , Calcium/blood , Infant
17.
Mikrochim Acta ; 191(9): 522, 2024 08 07.
Article in English | MEDLINE | ID: mdl-39112842

ABSTRACT

An ultrasensitive photothermal assay was designed for point-of-care testing (POCT) of tumor markers based on a filter membrane. Firstly, Cu2-xSe was successfully encapsulated in liposome spheres with biotin on the surface and connected to carcinoembryonic antigen (CEA) aptamer with 3'end modified biotin by streptavidin. Secondly, the CEA antibody was successfully modified on the surface of the nitrocellulose membrane through simple incubation. Finally, the assay process was completed using a disposable syringe, and the temperature was recorded using a handheld infrared temperature detector. In the range 0-50 ng mL-1, the temperature change of the nitrocellulose membrane has a strong linear relationship with CEA concentration, and the detection limit is 0.097 ng mL-1. It is worth noting that the entire testing process can be easily performed in 10 min, much shorter than traditional clinical methods. In addition, this method was successfully applied to the quantitative determination of CEA levels in human serum samples with a recovery of 96.2-103.3%. This rapid assay can be performed by "one suction and one push" through a disposable syringe, which is simple to operate, and the excellent sensitivity reveals the great potential of the proposed strategy in the POCT of tumor biomarkers.


Subject(s)
Aptamers, Nucleotide , Biomarkers, Tumor , Carcinoembryonic Antigen , Copper , Limit of Detection , Humans , Carcinoembryonic Antigen/blood , Copper/chemistry , Aptamers, Nucleotide/chemistry , Biomarkers, Tumor/blood , Liposomes/chemistry , Biosensing Techniques/methods , Point-of-Care Systems , Temperature , Biotin/chemistry , Point-of-Care Testing , Collodion/chemistry
18.
J Nanobiotechnology ; 22(1): 485, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39138462

ABSTRACT

Nanozymes are promising antimicrobials, as they produce reactive oxygen species (ROS). However, the intrinsic lack of selectivity of ROS in distinguishing normal flora from pathogenic bacteria deprives nanozymes of the necessary selectivities of ideal antimicrobials. Herein, we exploit the physiological conditions of bacteria (high alkaline phosphatase (ALP) expression) using a novel CuO nanoparticle (NP) nanoenzyme system to initiate an ALP-activated ROS prodrug system for use in the on-demand precision killing of bacteria. The prodrug strategy involves using 2-phospho-L-ascorbic acid trisodium salt (AAP) that catalyzes the ALP in pathogenic bacteria to generate ascorbic acid (AA), which is converted by the CuO NPs, with intrinsic ascorbate oxidase- and peroxidase-like activities, to produce ROS. Notably, the prodrug system selectively kills Escherichia coli (pathogenic bacteria), with minimal influence on Staphylococcus hominis (non-pathogenic bacteria) due to their different levels of ALP expression. Compared to the CuO NPs/AA system, which generally depletes ROS during storage, CuO NPs/AAP exhibits a significantly higher stability without affecting its antibacterial activity. Furthermore, a rat model is used to indicate the applicability of the CuO NPs/AAP fibrin gel in wound disinfection in vivo with negligible side effects. This study reveals the therapeutic precision of this bifunctional tandem nanozyme platform against pathogenic bacteria in ALP-activated conditions.


Subject(s)
Alkaline Phosphatase , Anti-Bacterial Agents , Copper , Disinfection , Escherichia coli , Prodrugs , Reactive Oxygen Species , Copper/chemistry , Copper/pharmacology , Animals , Prodrugs/pharmacology , Prodrugs/chemistry , Alkaline Phosphatase/metabolism , Rats , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Escherichia coli/drug effects , Reactive Oxygen Species/metabolism , Disinfection/methods , Ascorbic Acid/pharmacology , Ascorbic Acid/chemistry , Ascorbic Acid/analogs & derivatives , Metal Nanoparticles/chemistry , Rats, Sprague-Dawley , Male
19.
BMC Plant Biol ; 24(1): 777, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39143569

ABSTRACT

Chromium (Cr) is a toxic metal in soil-plant system, hence causing possible health risks prominently in the areas with forgoing industrial activities. Copper nanoparticles (Cu NPs) have been reported as an excellent adsorbent for pollutants. Therefore, this study investigates how copper nanoparticles enhance onion growth while decreasing chromium uptake in onion plants. Additionally, it examines the potential health risks of consuming onion plants with elevated chromium levels. The results demonstrated that the addition of CuNPs at 15 mg kg-1 significantly improved the plant height (48%), leaf length (37%), fresh weight of root (61%), root dry weight (70%), fresh weight of bulb (52%), bulb dry weight (59%), leaves fresh weight (52%) and dry weight of leaves (59%), leaf area (72%), number of onion leaves per plant (60%), Chl. a (42%), chl. b (36%), carotenoids (40%), total chlorophyll (40%), chlorophyll contents SPAD value (56%), relative water contents (35%), membrane stability index (16%), total sugars (25%), crude protein (21%), ascorbic acid (19%) and ash contents (64%) at 10 mg kg-1 Cr. Whereas, maximum decline of Cr by 46% in roots, 68% in leaves and 92% in bulb was found with application of 15 mg kg-1 of Cu NPs in onion plants under 10 mg kg-1 Cr toxicity. The health risk assessment parameters of onion plants showed minimum values 0.0028 for average daily intake (ADI), 0.001911 for Non-cancer risk (NCR), and 0.001433 for cancer risk (CR) in plants treated with Cu NPs at 15 mg kg-1 concentration grown in soil spiked with 10 mg kg-1 chromium. It is concluded that Cu NPs at 15 mg kg-1 concentration improved growth of plants in control as well as Cr contaminated soil. Therefore, use of Cu NPs at 15 mg kg-1 concentration is recommended for improving growth of plants under normal and metal contaminated soils.


Subject(s)
Chromium , Copper , Metal Nanoparticles , Onions , Soil Pollutants , Onions/drug effects , Onions/growth & development , Copper/toxicity , Chromium/toxicity , Soil Pollutants/toxicity , Plant Roots/drug effects , Plant Roots/growth & development , Plant Roots/metabolism , Plant Leaves/drug effects , Plant Leaves/chemistry , Plant Leaves/growth & development , Chlorophyll/metabolism
20.
Sci Rep ; 14(1): 19304, 2024 08 20.
Article in English | MEDLINE | ID: mdl-39164280

ABSTRACT

First time compared the different metals doped ZnS nanoparticles for antibacterial and liver cancer cell line. In this study, copper, aluminum and nickel doped ZnS NPs were synthesized via co-precipitation method. The XRD analysis was confirmed the presence of cubic crystal structure and crystallite size decreased from 6 to 3 nm with doping elements. While as SEM micro-grains were revealed slightly irregular and agglomerated morphology with the presence of dopant elements. The presence of different dopant elements such as Cu, Al and Ni in ZnS NPs was identified via EDX analysis. The FTIR results demonstrate various vibrational stretching and bending modes attached to the surface of ZnS nanomaterials. After that the well diffusion method was used to conduct in-vitro bioassays for evaluation of antibacterial and anticancer activities against E.coli and B.cereus, as well as HepG2 liver cancer cell line. Our findings unveil exceptional results with maximum inhibition zone of approximately 9 to 23 mm observed against E.coli and 12 to 27 mm against B.cereus, respectively. In addition, the significant reduction in cell viability was achieved against the HepG2 liver cancer cell line. These favorable results highlight the potential of Ni doped ZnS NPs for various biomedical applications. In future, the doped ZnS nanomaterials will be suitable for hyperthermia therapy and wound healing process.


Subject(s)
Aluminum , Anti-Bacterial Agents , Antineoplastic Agents , Copper , Escherichia coli , Nickel , Sulfides , Zinc Compounds , Humans , Nickel/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Sulfides/chemistry , Sulfides/pharmacology , Copper/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Aluminum/chemistry , Zinc Compounds/chemistry , Escherichia coli/drug effects , Hep G2 Cells , Metal Nanoparticles/chemistry , Cell Survival/drug effects , Bacillus cereus/drug effects , Microbial Sensitivity Tests , Nanoparticles/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL