Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.058
Filter
1.
Cell Mol Biol Lett ; 29(1): 95, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38956466

ABSTRACT

BACKGROUND: An increasing number of studies have demonstrated the association of circular RNAs (circRNAs) with the pathological processes of various diseases and their involvement in the onset and progression of multiple cancers. Nevertheless, the functional roles and underlying mechanisms of circRNAs in the autophagy regulation of gastric cancer (GC) have not been fully elucidated. METHODS: We used transmission electron microscopy and the mRFP-GFP-LC3 dual fluorescent autophagy indicator to investigate autophagy regulation. The cell counting kit-8 assay, colony formation assay, 5-ethynyl-2'-deoxyuridine incorporation assay, Transwell assay, and Western blot assay were conducted to confirm circPTPN22's influence on GC progression. Dual luciferase reporter assays validated the binding between circPTPN22 and miR-6788-5p, as well as miR-6788-5p and p21-activated kinase-1 (PAK1). Functional rescue experiments assessed whether circPTPN22 modulates PAK1 expression by competitively binding miR-6788-5p, affecting autophagy and other biological processes in GC cells. We investigated the impact of circPTPN22 on in vivo GC tumors using a nude mouse xenograft model. Bioinformatics tools predicted upstream regulatory transcription factors and binding proteins of circPTPN22, while chromatin immunoprecipitation and ribonucleoprotein immunoprecipitation assays confirmed the binding status. RESULTS: Upregulation of circPTPN22 in GC has been shown to inhibit autophagy and promote cell proliferation, migration, and invasion. Mechanistically, circPTPN22 directly binds to miR-6788-5p, subsequently regulating the expression of PAK1, which activates protein kinase B (Akt) and extracellular signal-regulated kinase (Erk) phosphorylation. This modulation ultimately affects autophagy levels in GC cells. Additionally, runt-related transcription factor 1 (RUNX1) negatively regulates circPTPN22 expression, while RNA-binding proteins such as FUS (fused in sarcoma) and ELAVL1 (recombinant ELAV-like protein 1) positively regulate its expression. Inhibition of the autophagy pathway can increase FUS expression, further upregulating circPTPN22 in GC cells, thereby exacerbating the progression of GC. CONCLUSION: Under the regulation of the transcription factor RUNX1 and RNA-binding proteins FUS and ELAVL1, circPTPN22 activates the phosphorylation of Akt and Erk through the miR-6788-5p/PAK1 axis, thereby modulating autophagy in GC cells. Inhibition of autophagy increases FUS, which in turn upregulates circPTPN22, forming a positive feedback loop that ultimately accelerates the progression of GC.


Subject(s)
Autophagy , Cell Movement , Cell Proliferation , Core Binding Factor Alpha 2 Subunit , ELAV-Like Protein 1 , MicroRNAs , RNA, Circular , RNA-Binding Protein FUS , Stomach Neoplasms , p21-Activated Kinases , Humans , Stomach Neoplasms/genetics , Stomach Neoplasms/pathology , Stomach Neoplasms/metabolism , RNA, Circular/genetics , RNA, Circular/metabolism , Autophagy/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , p21-Activated Kinases/metabolism , p21-Activated Kinases/genetics , Cell Proliferation/genetics , RNA-Binding Protein FUS/metabolism , RNA-Binding Protein FUS/genetics , Cell Movement/genetics , Cell Line, Tumor , Animals , ELAV-Like Protein 1/metabolism , ELAV-Like Protein 1/genetics , Core Binding Factor Alpha 2 Subunit/metabolism , Core Binding Factor Alpha 2 Subunit/genetics , Gene Expression Regulation, Neoplastic , Mice, Nude , Mice , Neoplasm Invasiveness , Mice, Inbred BALB C
2.
Sci Rep ; 14(1): 13906, 2024 06 17.
Article in English | MEDLINE | ID: mdl-38886545

ABSTRACT

Colon adenocarcinoma (COAD) is the second leading cause of cancer death, and there is still a lack of diagnostic biomarkers and therapeutic targets. In this study, bioinformatics analysis of the TCGA database was used to obtain RUNX1, a gene with prognostic value in COAD. RUNX1 plays an important role in many malignancies, and its molecular regulatory mechanisms in COAD remain to be fully understood. To explore the physiological role of RUNX1, we performed functional analyses, such as CCK-8, colony formation and migration assays. In addition, we investigated the underlying mechanisms using transcriptome sequencing and chromatin immunoprecipitation assays. RUNX1 is highly expressed in COAD patients and significantly correlates with survival. Silencing of RUNX1 significantly slowed down the proliferation and migratory capacity of COAD cells. Furthermore, we demonstrate that CDC20 and MCM2 may be target genes of RUNX1, and that RUNX1 may be physically linked to the deubiquitinating enzyme USP31, which mediates the upregulation of RUNX1 protein to promote transcriptional function. Our results may provide new insights into the mechanism of action of RUNX1 in COAD and reveal potential therapeutic targets for this disease.


Subject(s)
Cdc20 Proteins , Core Binding Factor Alpha 2 Subunit , Gene Expression Regulation, Neoplastic , Minichromosome Maintenance Complex Component 2 , Ubiquitination , Humans , Core Binding Factor Alpha 2 Subunit/metabolism , Core Binding Factor Alpha 2 Subunit/genetics , Cdc20 Proteins/metabolism , Cdc20 Proteins/genetics , Minichromosome Maintenance Complex Component 2/metabolism , Minichromosome Maintenance Complex Component 2/genetics , Cell Line, Tumor , Colonic Neoplasms/genetics , Colonic Neoplasms/metabolism , Colonic Neoplasms/pathology , Cell Proliferation/genetics , Ubiquitin-Specific Proteases/metabolism , Ubiquitin-Specific Proteases/genetics , Disease Progression , Cell Movement/genetics
3.
Funct Integr Genomics ; 24(3): 113, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38862712

ABSTRACT

Myocardial infarction (MI) results in prolonged ischemia and the subsequent cell death leads to heart failure which is linked to increased deaths or hospitalizations. New therapeutic targets are urgently needed to prevent cell death and reduce infarct size among patients with MI. Runt-related transcription factor-1 (RUNX1) is a master-regulator transcription factor intensively studied in the hematopoietic field. Recent evidence showed that RUNX1 has a critical role in cardiomyocytes post-MI. The increased RUNX1 expression in the border zone of the infarct heart contributes to decreased cardiac contractile function and can be therapeutically targeted to protect against adverse cardiac remodelling. This study sought to investigate whether pharmacological inhibition of RUNX1 function has an impact on infarct size following MI. In this work we demonstrate that inhibiting RUNX1 with a small molecule inhibitor (Ro5-3335) reduces infarct size in an in vivo rat model of acute MI. Proteomics study using data-independent acquisition method identified increased cathepsin levels in the border zone myocardium following MI, whereas heart samples treated by RUNX1 inhibitor present decreased cathepsin levels. Cathepsins are lysosomal proteases which have been shown to orchestrate multiple cell death pathways. Our data illustrate that inhibition of RUNX1 leads to reduced infarct size which is associated with the suppression of cathepsin expression. This study demonstrates that pharmacologically antagonizing RUNX1 reduces infarct size in a rat model of acute MI and unveils a link between RUNX1 and cathepsin-mediated cell death, suggesting that RUNX1 is a novel therapeutic target that could be exploited clinically to limit infarct size after an acute MI.


Subject(s)
Core Binding Factor Alpha 2 Subunit , Myocardial Infarction , Proteomics , Animals , Myocardial Infarction/metabolism , Myocardial Infarction/genetics , Myocardial Infarction/pathology , Myocardial Infarction/drug therapy , Core Binding Factor Alpha 2 Subunit/metabolism , Core Binding Factor Alpha 2 Subunit/genetics , Core Binding Factor Alpha 2 Subunit/antagonists & inhibitors , Rats , Male , Disease Models, Animal , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/pathology , Rats, Sprague-Dawley , Myocardium/metabolism , Myocardium/pathology
4.
Sci Rep ; 14(1): 14080, 2024 06 18.
Article in English | MEDLINE | ID: mdl-38890442

ABSTRACT

Familial platelet disorder with associated myeloid malignancies (FPDMM) is an autosomal dominant disease caused by heterozygous germline mutations in RUNX1. It is characterized by thrombocytopenia, platelet dysfunction, and a predisposition to hematological malignancies. Although FPDMM is a precursor for diseases involving abnormal DNA methylation, the DNA methylation status in FPDMM remains unknown, largely due to a lack of animal models and challenges in obtaining patient-derived samples. Here, using genome editing techniques, we established two lines of human induced pluripotent stem cells (iPSCs) with different FPDMM-mimicking heterozygous RUNX1 mutations. These iPSCs showed defective differentiation of hematopoietic progenitor cells (HPCs) and megakaryocytes (Mks), consistent with FPDMM. The FPDMM-mimicking HPCs showed DNA methylation patterns distinct from those of wild-type HPCs, with hypermethylated regions showing the enrichment of ETS transcription factor (TF) motifs. We found that the expression of FLI1, an ETS family member, was significantly downregulated in FPDMM-mimicking HPCs with a RUNX1 transactivation domain (TAD) mutation. We demonstrated that FLI1 promoted binding-site-directed DNA demethylation, and that overexpression of FLI1 restored their megakaryocytic differentiation efficiency and hypermethylation status. These findings suggest that FLI1 plays a crucial role in regulating DNA methylation and correcting defective megakaryocytic differentiation in FPDMM-mimicking HPCs with a RUNX1 TAD mutation.


Subject(s)
Cell Differentiation , Core Binding Factor Alpha 2 Subunit , DNA Methylation , Induced Pluripotent Stem Cells , Megakaryocytes , Mutation , Proto-Oncogene Protein c-fli-1 , Core Binding Factor Alpha 2 Subunit/genetics , Core Binding Factor Alpha 2 Subunit/metabolism , Humans , Megakaryocytes/metabolism , Proto-Oncogene Protein c-fli-1/genetics , Proto-Oncogene Protein c-fli-1/metabolism , Cell Differentiation/genetics , Induced Pluripotent Stem Cells/metabolism , Induced Pluripotent Stem Cells/cytology , Blood Platelet Disorders/genetics , Blood Platelet Disorders/metabolism , Blood Platelet Disorders/pathology , Transcriptional Activation , Hematopoietic Stem Cells/metabolism , Hematopoietic Stem Cells/cytology , Leukemia, Myeloid, Acute , Blood Coagulation Disorders, Inherited
5.
Biochemistry (Mosc) ; 89(5): 973-986, 2024 May.
Article in English | MEDLINE | ID: mdl-38880656

ABSTRACT

Ischemia/reperfusion (I/R) injury is one of the major causes of cardiovascular disease. Gypenoside A (GP), the main active component of Gynostemma pentaphyllum, alleviates myocardial I/R injury. Circular RNAs (circRNAs) and microRNAs (miRNAs) are involved in the I/R injury. We explored the protective effect of GP on human cardiomyocytes (HCMs) via the circ_0010729/miR-370-3p/RUNX1 axis. Overexpression of circ_0010729 abolished the effects of GP on HMC, such as suppression of apoptosis and increase in cell viability and proliferation. Overexpression of miR-370-3p reversed the effect of circ_0010729 overexpression, resulting in the stimulation of HMC viability and proliferation and inhibition of apoptosis. The knockdown of miR-370-3p suppressed the effects of GP in HCMs. RUNX1 silencing counteracted the effect of miR-370-3p knockdown and maintained GP-induced suppression of apoptosis and stimulation of HMC viability and proliferation. The levels of RUNX1 mRNA and protein were reduced in cells expressing miR-370-3p. In conclusion, this study confirmed that GP alleviated the I/R injury of myocardial cell via the circ_0010729/miR-370-3p/RUNX1 axis.


Subject(s)
Core Binding Factor Alpha 2 Subunit , Gynostemma , MicroRNAs , Myocardial Reperfusion Injury , Myocytes, Cardiac , RNA, Circular , Humans , MicroRNAs/metabolism , MicroRNAs/genetics , RNA, Circular/genetics , RNA, Circular/metabolism , Core Binding Factor Alpha 2 Subunit/metabolism , Core Binding Factor Alpha 2 Subunit/genetics , Myocardial Reperfusion Injury/metabolism , Myocardial Reperfusion Injury/genetics , Myocardial Reperfusion Injury/pathology , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/drug effects , Apoptosis/drug effects , Cell Survival/drug effects , Cell Proliferation/drug effects , Plant Extracts
6.
Cancer Lett ; 594: 216980, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38797229

ABSTRACT

Acute myeloid leukemia (AML) is frequently linked to genetic abnormalities, with the t (8; 21) translocation, resulting in the production of a fusion oncoprotein AML1-ETO (AE), being a prevalent occurrence. This protein plays a pivotal role in t (8; 21) AML's onset, advancement, and recurrence, making it a therapeutic target. However, the development of drug molecules targeting AML1-ETO are markedly insufficient, especially used in clinical treatment. In this study, it was uncovered that Neratinib could significantly downregulate AML1-ETO protein level, subsequently promoting differentiation of t (8; 21) AML cells. Based on "differentiated active" probes, Neratinib was identified as a functional inhibitor against HNRNPA3 through covalent binding. The further studies demonstrated that HNRNPA3 function as a putative m6A reader responsible for recognizing and regulating the alternative splicing of AML-ETO pre-mRNA. These findings not only contribute to a novel insight to the mechanism governing post-transcriptional modification of AML1-ETO transcript, but also suggest that Neratinib would be promising therapeutic potential for t (8; 21) AML treatment.


Subject(s)
Cell Differentiation , Core Binding Factor Alpha 2 Subunit , Leukemia, Myeloid, Acute , Oncogene Proteins, Fusion , Quinolines , RUNX1 Translocation Partner 1 Protein , Humans , Core Binding Factor Alpha 2 Subunit/genetics , Core Binding Factor Alpha 2 Subunit/metabolism , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/metabolism , Leukemia, Myeloid, Acute/pathology , Oncogene Proteins, Fusion/genetics , Oncogene Proteins, Fusion/metabolism , Quinolines/pharmacology , Cell Differentiation/drug effects , RUNX1 Translocation Partner 1 Protein/genetics , RUNX1 Translocation Partner 1 Protein/metabolism , RNA Precursors/metabolism , RNA Precursors/genetics , Heterogeneous-Nuclear Ribonucleoprotein Group A-B/metabolism , Heterogeneous-Nuclear Ribonucleoprotein Group A-B/genetics , Translocation, Genetic/drug effects , Adenosine/analogs & derivatives , Adenosine/metabolism , Adenosine/pharmacology , Alternative Splicing/drug effects , Cell Line, Tumor , Animals , Mice
7.
Int Immunopharmacol ; 136: 112361, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-38820961

ABSTRACT

OBJECTIVE: Natural killer (NK) cells are an integral part of the staunch defense line against malignant tumors within the tumor microenvironment. Existing research indicates that miRNAs can influence the development of NK cells by negatively modulating gene expression. In this study, we aim to explore how the miR-17-5p in Hepatocellular Carcinoma (HCC) exosomes regulates the killing function of NK cells towards HCC cells through the transcription factor RNX1. METHODS: The exosomes were isolated from HCC tissues and cell lines, followed by a second generation sequencing to compare differential miRNAs. Verification was performed using qRT-PCR and Western blot methods. The mutual interactions between miR-17-5p and RUNX1, as well as between RUNX1 and NKG2D, were authenticated using techniques like luciferase reporter gene assays, Western blotting, and Chromatin Immunoprecipitation (ChIP). The cytotoxic activity of NK cells towards HCC cells in vitro was measured using methods such as RTCA and ELISPOT. The zebrafish xenotransplantation was utilized to assess the in vivo killing capacity of NK cells against HCC cells. RESULTS: The level of miR-17-5p in exosomes from HCC tissue increased compared to adjacent tissues. We verified that RUNX1 was a target of miR-17-5p and that RUNX1 enhances the transcription of NKG2D. MiR-17-5p was found to downregulate the expression of RUNX1 and NKG2D, subsequently reducing the in vitro and in vivo cytotoxic capabilities of NK cells against HCC cells. CONCLUSIONS: The miR-17-5p found within HCC exosomes can target RUNX1, subsequently attenuating the cytotoxic activity of NK cells.


Subject(s)
Carcinoma, Hepatocellular , Core Binding Factor Alpha 2 Subunit , Exosomes , Gene Expression Regulation, Neoplastic , Killer Cells, Natural , Liver Neoplasms , MicroRNAs , NK Cell Lectin-Like Receptor Subfamily K , MicroRNAs/genetics , MicroRNAs/metabolism , Humans , Exosomes/metabolism , Core Binding Factor Alpha 2 Subunit/genetics , Core Binding Factor Alpha 2 Subunit/metabolism , Carcinoma, Hepatocellular/immunology , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Animals , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Liver Neoplasms/immunology , Liver Neoplasms/genetics , Liver Neoplasms/pathology , NK Cell Lectin-Like Receptor Subfamily K/metabolism , NK Cell Lectin-Like Receptor Subfamily K/genetics , Cell Line, Tumor , Zebrafish , Down-Regulation , Cytotoxicity, Immunologic
8.
Biochem Biophys Res Commun ; 722: 150155, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-38795454

ABSTRACT

Runt-related transcription factor (RUNX) family members play critical roles in the development of multiple organs. Mammalian RUNX family members, consisting of RUNX1, RUNX2, and RUNX3, have distinct tissue-specific expression and function. In this study, we examined the spatiotemporal expression patterns of RUNX family members in developing kidneys and analyzed the role of RUNX1 during kidney development. In the developing mouse kidney, RUNX1 protein was strongly expressed in the ureteric bud (UB) tip and weakly expressed in the distal segment of the renal vesicle (RV), comma-shaped body (CSB), and S-shaped body (SSB). In contrast, RUNX2 protein was restricted to the stroma, and RUNX3 protein was only expressed in immune cells. We also analyzed the expression of RUNX family members in the cynomolgus monkey kidney. We found that expression patterns of RUNX2 and RUNX3 were conserved between rodents and primates, whereas RUNX1 was only expressed in the UB tip, not in the RV, CSB, or SSB of cynomolgus monkeys, suggesting a species differences. We further evaluated the roles of RUNX1 using two different conditional knockout mice: Runx1f/f:HoxB7-Cre and Runx1f/f:R26-CreERT2 and found no abnormalities in the kidney. Our findings showed that RUNX1, which is mainly expressed in the UB tip, is not essential for kidney development.


Subject(s)
Core Binding Factor Alpha 2 Subunit , Kidney , Animals , Core Binding Factor Alpha 2 Subunit/metabolism , Core Binding Factor Alpha 2 Subunit/genetics , Kidney/metabolism , Kidney/embryology , Kidney/growth & development , Mice , Macaca fascicularis , Gene Expression Regulation, Developmental , Core Binding Factor Alpha 1 Subunit/metabolism , Core Binding Factor Alpha 1 Subunit/genetics , Core Binding Factor Alpha 3 Subunit/metabolism , Core Binding Factor Alpha 3 Subunit/genetics , Core Binding Factor alpha Subunits/metabolism , Core Binding Factor alpha Subunits/genetics , Mice, Inbred C57BL , Mice, Knockout
9.
Sci Rep ; 14(1): 9960, 2024 04 30.
Article in English | MEDLINE | ID: mdl-38693222

ABSTRACT

The pathogenesis of aortic dissection (AD), an aortic disease associated with high mortality, involves significant vascular inflammatory infiltration. However, the precise relationship between perivascular adipose tissue (PVAT) and aortic dissection remains incompletely understood. The objective of this study is to investigate the role of PVAT inflammation in the pathogenesis of aortic dissection and identify novel therapeutic targets for this disease. The mouse model of aortic dissection was established in this study through intraperitoneal injection of Ang II and administration of BAPN in drinking water. Additionally, control groups were established at different time points including the 2-week group, 3-week group, and 4-week group. qPCR and immunohistochemistry techniques were employed to detect the expression of inflammatory markers and RUNX1 in PVAT surrounding the thoracic aorta in mice. Additionally, an aortic dissection model was established using RUNX1 knockout mice, and the aforementioned indicators were assessed. The 3T3-L1 cells were induced to differentiate into mature adipocytes in vitro, followed by lentivirus transfection for the knockdown or overexpression of RUNX1. The study aimed to investigate the potential cell-to-cell interactions by co-culturing 3T3-L1 cells with A7r5 or RAW264.7 cells. Subsequently, human aortic PVAT samples were obtained through clinical surgery and the aforementioned indicators were detected. In comparison to the control group, the aortic dissection model group exhibited decreased expression of MMP-2 and NF-κB in PVAT, while TNF-α and RUNX1 expression increased. Suppression of RUNX1 expression resulted in increased MMP-2 and NF-κB expression in PVAT, along with decreased TNF-α expression. Overexpression of RUNX1 upregulated the expression levels of NF-Κb, MMP-2, and TNF-α in adipocytes, whereas knockdown of RUNX1 exerted an opposite effect. Macrophages co-cultured with adipocytes overexpressing RUNX1 exhibited enhanced CD86 expression, while vascular smooth muscle cells co-cultured with these adipocytes showed reduced α-SMA expression. In human samples, there was an increase in both RUNX1 and MMP-2 expression levels, accompanied by a decrease in TNF-α and NF-Κb expression. The presence of aortic dissection is accompanied by evident inflammatory alterations in the PVAT, and this phenomenon appears to be associated with the involvement of RUNX1. It is plausible that the regulation of PVAT's inflammatory changes by RUNX1/NF-κB signaling pathway plays a role in the pathogenesis of aortic dissection.


Subject(s)
Adipose Tissue , Aortic Dissection , Core Binding Factor Alpha 2 Subunit , Disease Models, Animal , Inflammation , NF-kappa B , Animals , Humans , Male , Mice , 3T3-L1 Cells , Adipose Tissue/metabolism , Adipose Tissue/pathology , Aortic Dissection/metabolism , Aortic Dissection/pathology , Aortic Dissection/genetics , Core Binding Factor Alpha 2 Subunit/metabolism , Core Binding Factor Alpha 2 Subunit/genetics , Inflammation/metabolism , Inflammation/pathology , Mice, Inbred C57BL , Mice, Knockout , NF-kappa B/metabolism , RAW 264.7 Cells , Signal Transduction
10.
Elife ; 122024 May 29.
Article in English | MEDLINE | ID: mdl-38809590

ABSTRACT

Hematopoietic stem cells emerge in the embryo from an aortic-derived tissue called the hemogenic endothelium (HE). The HE appears to give birth to cells of different nature and fate but the molecular principles underlying this complexity are largely unknown. Here we show, in the zebrafish embryo, that two cell types emerge from the aortic floor with radically different morphodynamics. With the support of live imaging, we bring evidence suggesting that the mechanics underlying the two emergence types rely, or not, on apicobasal polarity establishment. While the first type is characterized by reinforcement of apicobasal polarity and maintenance of the apical/luminal membrane until release, the second type emerges via a dynamic process reminiscent of trans-endothelial migration. Interfering with Runx1 function suggests that the balance between the two emergence types depends on tuning apicobasal polarity at the level of the HE. In support of this and unexpectedly, we show that Pard3ba - one of the four Pard3 proteins expressed in the zebrafish - is sensitive to interference with Runx1 activity, in aortic endothelial cells. This supports the idea of a signaling cross talk controlling cell polarity and its associated features, between aortic and hemogenic cells. In addition, using new transgenic fish lines that express Junctional Adhesion Molecules and functional interference, we bring evidence for the essential role of ArhGEF11/PDZ-RhoGEF in controlling the HE-endothelial cell dynamic interface, including cell-cell intercalation, which is ultimately required for emergence completion. Overall, we highlight critical cellular and dynamic events of the endothelial-to-hematopoietic transition that support emergence complexity, with a potential impact on cell fate.


In mammals and other animals with backbones, the cells that will make up blood and immune cells are generated during a very narrow timeframe in embryonic development. These cells, called hematopoietic stem cells and progenitors (or HSPCs for short), emerge from tissue known as hemogenic endothelium that makes up the floor of early blood vessels. For HPSCs to eventually specialise into different types of blood and immune cells, they require diverse migratory and homing properties that, ultimately, will determine the specific type of functions they exert. An important question for scientists studying the development of different blood and immune cell types is when this commitment to functional diversity is established. It could, for example, arise due to cells in the hemogenic endothelium having different origins. Alternatively, the signals that generate hemogenic endothelium cells could be responsible. It is also possible that both explanations are true, and that having different mechanisms involved ensures diversity in populations of HSPCs. To investigate differences between the HSPCs emerging from the hemogenic endothelium, Torcq et al. studied zebrafish embryos that had been modified so that one of the proteins involved in sensing cell polarity ­ where the top and bottom of the cell are located ­ was fluorescent. Live imaging of the embryos showed that two types of cells, with striking differences in morphology, emerge from the hemogenic tissue. In addition, one cell type displays the same polarity as the other vessel cells, whereas the other does not. Torcq et al. also present evidence suggesting that the signals responsible for controlling this cell polarity are provided by surrounding blood vessel cells, supporting the idea of an interplay between the different cell types. The finding that two different cell types emerge from the hemogenic endothelium, reveals a potential new source of diversity in HSPCs. Ultimately, this is expected to contribute to their functional complexity, resulting in both long-term stem cells that retain their full regenerative potential into adulthood and more specialized blood and immune cells.


Subject(s)
Cell Polarity , Core Binding Factor Alpha 2 Subunit , Hematopoietic Stem Cells , Zebrafish Proteins , Zebrafish , Zebrafish/embryology , Animals , Zebrafish Proteins/metabolism , Zebrafish Proteins/genetics , Core Binding Factor Alpha 2 Subunit/metabolism , Core Binding Factor Alpha 2 Subunit/genetics , Hematopoietic Stem Cells/physiology , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/metabolism , Hemangioblasts/metabolism , Hemangioblasts/cytology , Hemangioblasts/physiology , Embryo, Nonmammalian/metabolism , Animals, Genetically Modified
11.
Sci Rep ; 14(1): 11670, 2024 05 22.
Article in English | MEDLINE | ID: mdl-38778047

ABSTRACT

Colorectal cancer (CRC) arises via the progressive accumulation of dysregulation in key genes including oncogenes and tumor-suppressor genes. Prostaglandin-endoperoxide synthase 2 (PTGS2, also called COX2) acts as an oncogenic driver in CRC. Here, we explored the upstream transcription factors (TFs) responsible for elevating PTGS2 expression in CRC cells. The results showed that PTGS2 silencing repressed cell growth, migration and invasion in HCT116 and SW480 CRC cells. The two fragments (499-981 bp) and (1053-1434 bp) were confirmed as the core TF binding profiles of the PTGS2 promoter. PTGS2 expression positively correlated with RUNX1 level in colon adenocarcinoma (COAD) samples using the TCGA-COAD dataset. Furthermore, RUNX1 acted as a positive regulator of PTGS2 expression by promoting transcriptional activation of the PTGS2 promoter via the 1086-1096 bp binding motif. In conclusion, our study demonstrates that PTGS2 upregulation induced by the TF RUNX1 promotes CRC cell growth, migration and invasion, providing an increased rationale for the use of PTGS2 inhibitors in CRC prevention and treatment.


Subject(s)
Cell Movement , Cell Proliferation , Colorectal Neoplasms , Core Binding Factor Alpha 2 Subunit , Cyclooxygenase 2 , Gene Expression Regulation, Neoplastic , Neoplasm Invasiveness , Promoter Regions, Genetic , Up-Regulation , Humans , Cyclooxygenase 2/metabolism , Cyclooxygenase 2/genetics , Core Binding Factor Alpha 2 Subunit/metabolism , Core Binding Factor Alpha 2 Subunit/genetics , Cell Movement/genetics , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Colorectal Neoplasms/metabolism , Cell Proliferation/genetics , Cell Line, Tumor , HCT116 Cells
12.
Nat Commun ; 15(1): 3415, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38649367

ABSTRACT

An important epigenetic component of tyrosine kinase signaling is the phosphorylation of histones, and epigenetic readers, writers, and erasers. Phosphorylation of protein arginine methyltransferases (PRMTs), have been shown to enhance and impair their enzymatic activity. In this study, we show that the hyperactivation of Janus kinase 2 (JAK2) by the V617F mutation phosphorylates tyrosine residues (Y149 and Y334) in coactivator-associated arginine methyltransferase 1 (CARM1), an important target in hematologic malignancies, increasing its methyltransferase activity and altering its target specificity. While non-phosphorylatable CARM1 methylates some established substrates (e.g. BAF155 and PABP1), only phospho-CARM1 methylates the RUNX1 transcription factor, on R223 and R319. Furthermore, cells expressing non-phosphorylatable CARM1 have impaired cell-cycle progression and increased apoptosis, compared to cells expressing phosphorylatable, wild-type CARM1, with reduced expression of genes associated with G2/M cell cycle progression and anti-apoptosis. The presence of the JAK2-V617F mutant kinase renders acute myeloid leukemia (AML) cells less sensitive to CARM1 inhibition, and we show that the dual targeting of JAK2 and CARM1 is more effective than monotherapy in AML cells expressing phospho-CARM1. Thus, the phosphorylation of CARM1 by hyperactivated JAK2 regulates its methyltransferase activity, helps select its substrates, and is required for the maximal proliferation of malignant myeloid cells.


Subject(s)
Apoptosis , Core Binding Factor Alpha 2 Subunit , Janus Kinase 2 , Protein-Arginine N-Methyltransferases , Tyrosine , Humans , Phosphorylation , Janus Kinase 2/metabolism , Janus Kinase 2/genetics , Protein-Arginine N-Methyltransferases/metabolism , Protein-Arginine N-Methyltransferases/genetics , Core Binding Factor Alpha 2 Subunit/metabolism , Core Binding Factor Alpha 2 Subunit/genetics , Tyrosine/metabolism , Cell Line, Tumor , Leukemia, Myeloid, Acute/metabolism , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/pathology , Methylation , Substrate Specificity , HEK293 Cells , Cell Cycle , Mutation
13.
Cell Rep ; 43(4): 114044, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38568812

ABSTRACT

We identify a senescence restriction point (SeRP) as a critical event for cells to commit to senescence. The SeRP integrates the intensity and duration of oncogenic stress, keeps a memory of previous stresses, and combines oncogenic signals acting on different pathways by modulating chromatin accessibility. Chromatin regions opened upon commitment to senescence are enriched in nucleolar-associated domains, which are gene-poor regions enriched in repeated sequences. Once committed to senescence, cells no longer depend on the initial stress signal and exhibit a characteristic transcriptome regulated by a transcription factor network that includes ETV4, RUNX1, OCT1, and MAFB. Consistent with a tumor suppressor role for this network, the levels of ETV4 and RUNX1 are very high in benign lesions of the pancreas but decrease dramatically in pancreatic ductal adenocarcinomas. The discovery of senescence commitment and its chromatin-linked regulation suggests potential strategies for reinstating tumor suppression in human cancers.


Subject(s)
Cellular Senescence , Chromatin , Humans , Chromatin/metabolism , Cellular Senescence/genetics , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/metabolism , Signal Transduction , Animals , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/pathology , Carcinoma, Pancreatic Ductal/metabolism , Core Binding Factor Alpha 2 Subunit/metabolism , Core Binding Factor Alpha 2 Subunit/genetics , Transcription Factors/metabolism , Mice , Carcinogenesis/genetics , Carcinogenesis/pathology , Carcinogenesis/metabolism , Oncogenes
14.
Nat Immunol ; 25(5): 860-872, 2024 May.
Article in English | MEDLINE | ID: mdl-38632339

ABSTRACT

Adaptive immunity relies on specialized effector functions elicited by lymphocytes, yet how antigen recognition activates appropriate effector responses through nonspecific signaling intermediates is unclear. Here we examined the role of chromatin priming in specifying the functional outputs of effector T cells and found that most of the cis-regulatory landscape active in effector T cells was poised early in development before the expression of the T cell antigen receptor. We identified two principal mechanisms underpinning this poised landscape: the recruitment of the nucleosome remodeler mammalian SWItch/Sucrose Non-Fermentable (mSWI/SNF) by the transcription factors RUNX1 and PU.1 to establish chromatin accessibility at T effector loci; and a 'relay' whereby the transcription factor BCL11B succeeded PU.1 to maintain occupancy of the chromatin remodeling complex mSWI/SNF together with RUNX1, after PU.1 silencing during lineage commitment. These mechanisms define modes by which T cells acquire the potential to elicit specialized effector functions early in their ontogeny and underscore the importance of integrating extrinsic cues to the developmentally specified intrinsic program.


Subject(s)
Core Binding Factor Alpha 2 Subunit , Proto-Oncogene Proteins , Repressor Proteins , Trans-Activators , Transcription Factors , Tumor Suppressor Proteins , Proto-Oncogene Proteins/metabolism , Animals , Trans-Activators/metabolism , Trans-Activators/genetics , Mice , Core Binding Factor Alpha 2 Subunit/metabolism , Core Binding Factor Alpha 2 Subunit/genetics , Repressor Proteins/metabolism , Repressor Proteins/genetics , Transcription Factors/metabolism , Transcription Factors/genetics , Tumor Suppressor Proteins/metabolism , Tumor Suppressor Proteins/genetics , Mice, Inbred C57BL , Chromosomal Proteins, Non-Histone/metabolism , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Mice, Knockout , Chromatin Assembly and Disassembly , Cell Differentiation/immunology
15.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 55(2): 256-262, 2024 Mar 20.
Article in Chinese | MEDLINE | ID: mdl-38645858

ABSTRACT

Runt-related transcription factor (RUNX1) is a transcription factor closely involved in hematopoiesis. RUNX1 gene mutation plays an essential pathogenic role in the initiation and development of hematological tumors, especially in acute myeloid leukemia. Recent studies have shown that RUNX1 is also involved in the regulation of bone development and the pathological progression of bone-related diseases. RUNX1 promotes the differentiation of mesenchymal stem cells into chondrocytes and osteoblasts and modulates the maturation and extracellular matrix formation of chondrocytes. The expression of RUNX1 in mesenchymal stem cells, chondrocytes, and osteoblasts is of great significance for maintaining normal bone development and the mass and quality of bones. RUNX1 also inhibits the differentiation and bone resorptive activities of osteoclasts, which may be influenced by sexual dimorphism. In addition, RUNX1 deficiency contributes to the pathogenesis of osteoarthritis, delayed fracture healing, and osteoporosis, which was revealed by the RUNX1 conditional knockout modeling in mice. However, the roles of RUNX1 in regulating the hypertrophic differentiation of chondrocytes, the sexual dimorphism of activities of osteoclasts, as well as bone loss in diabetes mellitus, senescence, infection, chronic inflammation, etc, are still not fully understood. This review provides a systematic summary of the research progress concerning RUNX1 in the field of bone biology, offering new ideas for using RUNX1 as a potential target for bone related diseases, especially osteoarthritis, delayed fracture healing, and osteoporosis.


Subject(s)
Bone Development , Cell Differentiation , Chondrocytes , Core Binding Factor Alpha 2 Subunit , Core Binding Factor Alpha 2 Subunit/genetics , Core Binding Factor Alpha 2 Subunit/metabolism , Humans , Animals , Bone Development/physiology , Bone Development/genetics , Chondrocytes/metabolism , Osteoblasts/metabolism , Osteoblasts/cytology , Osteoclasts/metabolism , Osteoclasts/cytology , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Mice , Bone Diseases/genetics , Bone Diseases/metabolism , Osteoporosis/genetics , Osteoporosis/metabolism , Osteoarthritis/metabolism , Osteoarthritis/genetics , Osteoarthritis/etiology
16.
J Cell Biochem ; 125(6): e30570, 2024 06.
Article in English | MEDLINE | ID: mdl-38616697

ABSTRACT

Runt-related transcription factor 1 (RUNX1) plays an important role in normal haematopoietic cell development and function, and its function is frequently disrupted in leukaemia. RUNX1 is widely recognised as a sequence-specific DNA binding factor that recognises the motif 5'-TG(T/C)GGT-3' in promoter and enhancer regions of its target genes. Moreover, RUNX1 fusion proteins, such as RUNX1-ETO formed by the t(8;21) translocation, retain the ability to recognise and bind to this sequence to elicit atypical gene regulatory effects on bona fide RUNX1 targets. However, our analysis of publicly available RUNX1 chromatin immunoprecipitation sequencing (ChIP-Seq) data has provided evidence challenging this dogma, revealing that this motif-specific model of RUNX1 recruitment and function is incomplete. Our analyses revealed that the majority of RUNX1 genomic localisation occurs outside of promoters, that 20% of RUNX1 binding sites lack consensus RUNX motifs, and that binding in the absence of a cognate binding site is more common in promoter regions compared to distal sites. Reporter assays demonstrate that RUNX1 can drive promoter activity in the absence of a recognised DNA binding motif, in contrast to RUNX1-ETO. RUNX1-ETO supresses activity when it is recruited to promoters containing a sequence specific motif, while interestingly, it binds but does not repress promoters devoid of a RUNX1 recognition site. These data suggest that RUNX1 regulation of target genes occurs through multiple mechanisms depending on genomic location, the type of regulatory element and mode of recruitment.


Subject(s)
Core Binding Factor Alpha 2 Subunit , Promoter Regions, Genetic , Core Binding Factor Alpha 2 Subunit/metabolism , Core Binding Factor Alpha 2 Subunit/genetics , Humans , Binding Sites , Nucleotide Motifs , Protein Binding , DNA/metabolism , DNA/genetics
17.
Mol Genet Genomics ; 299(1): 33, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38478174

ABSTRACT

Idiopathic pulmonary fibrosis (IPF) is a chronic pulmonary fibrosis disease that is fatal. Mesenchymal stem cells (MSCs)-secreted exosomes (exos) have been linked to improving PF. Moreover, exosomal microRNAs (miRs) can control the growth of numerous diseases, including lung disorders. Our bioinformatics analysis showed that miR-30b was downregulated in tissue samples from surgical remnants of biopsies or lungs explanted from patients with IPF who underwent pulmonary transplantation. This suggests that miR-30b plays an important role in both the pathogenesis and treatment of IPF. Herein, this research was designed to ascertain the mechanism of MSCs-exos-packaged miR-30b in alleviating PF. The serum was harvested from idiopathic PF (IPF) patients with interstitial pneumonia caused by dermatomyositis and the MLE12 lung epithelial cell fibrosis model was built with TGF-ß1 (10 ng/mL), followed by miR-30b expression determination. TGF-ß1-stimulated MLE12 cells were co-incubated with exos from MSCs with or without Spred2 or Runx1 overexpression, followed by measurement of cell viability and apoptosis. After establishing the IPF mouse model with bleomycin and injecting exos and/or silencing and overexpressing adenovirus vectors, fibrosis evaluation was conducted. In mice and cells, the expression of TGF-ß1, TNF-α, and IL-1ß was tested via ELISA, and the levels of E-cad, ZO-1, α-SMA, and collagen type I via western blot analysis. The promoters of miR-30b, Runx1, and Spred2 were investigated. miR-30b was downregulated in the serum of IPF patients and TGF-ß1-stimulated MLE12 cells. Mechanistically, miR-30b inhibited Spred2 transcription by negatively targeting Runx1. MSCs-exos or MSCs-exo-miR-30b decreased the apoptosis, inflammation, and fibrosis while increasing their viability in TGF-ß1-stimulated MLE12 cells, which was annulled by overexpressing Runx1 or Spred2. Exo-miR-30b decreased Runx1 expression to downregulate Spred2, reducing fibrosis and inflammation in IPF mice. Our results indicated that MSCs-exos-encapsulated miR-30b had a potential function to inhibit PF and part of its function may be achieved by targeting RUNX1 to reduce the Spred2 transcription level. Moreover, this work offered evidence and therapeutic targets for therapeutic strategies for managing clinical PF in patients.


Subject(s)
Exosomes , Mesenchymal Stem Cells , MicroRNAs , Pulmonary Fibrosis , Humans , Mice , Animals , Pulmonary Fibrosis/genetics , Pulmonary Fibrosis/metabolism , Transforming Growth Factor beta1/genetics , Transforming Growth Factor beta1/metabolism , Exosomes/genetics , Exosomes/metabolism , Core Binding Factor Alpha 2 Subunit/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Fibrosis , Inflammation/metabolism , Mesenchymal Stem Cells/metabolism , Repressor Proteins/metabolism
18.
FASEB J ; 38(5): e23436, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38430461

ABSTRACT

Chronic kidney disease (CKD) is a global health burden, with ineffective therapies leading to increasing morbidity and mortality. Renal interstitial fibrosis is a common pathway in advanced CKD, resulting in kidney function and structure deterioration. In this study, we investigate the role of FTO-mediated N6-methyladenosine (m6A) and its downstream targets in the pathogenesis of renal fibrosis. M6A modification, a prevalent mRNA internal modification, has been implicated in various organ fibrosis processes. We use a mouse model of unilateral ureteral obstruction (UUO) as an in vivo model and treated tubular epithelial cells (TECs) with transforming growth factor (TGF)-ß1 as in vitro models. Our findings revealed increased FTO expression in UUO mouse model and TGF-ß1-treated TECs. By modulating FTO expression through FTO heterozygous mutation mice (FTO+/- ) in vivo and small interfering RNA (siRNA) in vitro, we observed attenuation of UUO and TGF-ß1-induced epithelial-mesenchymal transition (EMT), as evidenced by decreased fibronectin and N-cadherin accumulation and increased E-cadherin levels. Silencing FTO significantly improved UUO and TGF-ß1-induced inflammation, apoptosis, and inhibition of autophagy. Further transcriptomic assays identified RUNX1 as a downstream candidate target of FTO. Inhibiting FTO was shown to counteract UUO/TGF-ß1-induced RUNX1 elevation in vivo and in vitro. We demonstrated that FTO signaling contributes to the elevation of RUNX1 by demethylating RUNX1 mRNA and improving its stability. Finally, we revealed that the PI3K/AKT pathway may be activated downstream of the FTO/RUNX1 axis in the pathogenesis of renal fibrosis. In conclusion, identifying small-molecule compounds that target this axis could offer promising therapeutic strategies for treating renal fibrosis.


Subject(s)
Adenine/analogs & derivatives , Renal Insufficiency, Chronic , Ureteral Obstruction , Mice , Animals , Kidney/metabolism , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Transforming Growth Factor beta1/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Core Binding Factor Alpha 2 Subunit/genetics , Core Binding Factor Alpha 2 Subunit/metabolism , Ureteral Obstruction/metabolism , Renal Insufficiency, Chronic/metabolism , Fibrosis , Demethylation , Alpha-Ketoglutarate-Dependent Dioxygenase FTO/genetics , Alpha-Ketoglutarate-Dependent Dioxygenase FTO/metabolism
19.
Blood Adv ; 8(10): 2410-2423, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38513139

ABSTRACT

ABSTRACT: The transcription factor RUNX1 is a master regulator of hematopoiesis and is frequently mutated in myeloid malignancies. Mutations in its runt homology domain (RHD) frequently disrupt DNA binding and result in loss of RUNX1 function. However, it is not clearly understood how other RUNX1 mutations contribute to disease development. Here, we characterized RUNX1 mutations outside of the RHD. Our analysis of the patient data sets revealed that mutations within the C-terminus frequently occur in hematopoietic disorders. Remarkably, most of these mutations were nonsense or frameshift mutations and were predicted to be exempt from nonsense-mediated messenger RNA decay. Therefore, this class of mutation is projected to produce DNA-binding proteins that contribute to the pathogenesis in a distinct manner. To model this, we introduced the RUNX1R320∗ mutation into the endogenous gene locus and demonstrated the production of RUNX1R320∗ protein. Expression of RUNX1R320∗ resulted in the disruption of RUNX1 regulated processes such as megakaryocytic differentiation, through a transcriptional signature different from RUNX1 depletion. To understand the underlying mechanisms, we used Global RNA Interactions with DNA by deep sequencing (GRID-seq) to examine enhancer-promoter connections. We identified widespread alterations in the enhancer-promoter networks within RUNX1 mutant cells. Additionally, we uncovered enrichment of RUNX1R320∗ and FOXK2 binding at the MYC super enhancer locus, significantly upregulating MYC transcription and signaling pathways. Together, our study demonstrated that most RUNX1 mutations outside the DNA-binding domain are not subject to nonsense-mediated decay, producing protein products that act in concert with additional cofactors to dysregulate hematopoiesis through mechanisms distinct from those induced by RUNX1 depletion.


Subject(s)
Cell Differentiation , Core Binding Factor Alpha 2 Subunit , Mutation , Promoter Regions, Genetic , Core Binding Factor Alpha 2 Subunit/genetics , Core Binding Factor Alpha 2 Subunit/metabolism , Humans , Cell Differentiation/genetics , Enhancer Elements, Genetic , Blood Cells/metabolism , Gene Regulatory Networks , Gene Expression Regulation
20.
Nat Commun ; 15(1): 1832, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38418452

ABSTRACT

PHF6 mutations (PHF6MT) are identified in various myeloid neoplasms (MN). However, little is known about the precise function and consequences of PHF6 in MN. Here we show three main findings in our comprehensive genomic and proteomic study. Firstly, we show a different pattern of genes correlating with PHF6MT in male and female cases. When analyzing male and female cases separately, in only male cases, RUNX1 and U2AF1 are co-mutated with PHF6. In contrast, female cases reveal co-occurrence of ASXL1 mutations and X-chromosome deletions with PHF6MT. Next, proteomics analysis reveals a direct interaction between PHF6 and RUNX1. Both proteins co-localize in active enhancer regions that define the context of lineage differentiation. Finally, we demonstrate a negative prognostic role of PHF6MT, especially in association with RUNX1. The negative effects on survival are additive as PHF6MT cases with RUNX1 mutations have worse outcomes when compared to cases carrying single mutation or wild-type.


Subject(s)
Leukemia, Myeloid, Acute , Neoplasms , Humans , Male , Female , Repressor Proteins/genetics , Core Binding Factor Alpha 2 Subunit/genetics , Core Binding Factor Alpha 2 Subunit/metabolism , Proteomics , Mutation , Leukemia, Myeloid, Acute/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...