Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.078
Filter
1.
J Headache Pain ; 25(1): 113, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39009958

ABSTRACT

BACKGROUND: Neurogenic meningeal inflammation is regarded as a key driver of migraine headache. Multiple evidence show importance of inflammatory processes in the dura mater for pain generation but contribution of the leptomeninges is less clear. We assessed effects of cortical spreading depolarization (CSD), the pathophysiological mechanism of migraine aura, on expression of inflammatory mediators in the leptomeninges. METHODS: A single CSD event was produced by a focal unilateral microdamage of the cortex in freely behaving rats. Three hours later intact cortical leptomeninges and parenchyma of ipsi-lesional (invaded by CSD) and sham-treated contra-lesional (unaffected by CSD) hemispheres were collected and mRNA levels of genes associated with inflammation (Il1b, Tnf, Ccl2; Cx3cl1, Zc3h12a) and endocannabinoid CB2 receptors (Cnr2) were measured using qPCR. RESULTS: Three hours after a single unilateral CSD, most inflammatory factors changed their expression levels in the leptomeninges, mainly on the side of CSD. The meninges overlying affected cortex increased mRNA expression of all proinflammatory cytokines (Il1b, Tnf, Ccl2) and anti-inflammatory factors Zc3h12a and Cx3cl1. Upregulation of proinflammatory cytokines was found in both meninges and parenchyma while anti-inflammatory markers increased only meningeal expression. CONCLUSION: A single CSD is sufficient to produce pronounced leptomeningeal inflammation that lasts for at least three hours and involves mostly meninges overlying the cortex affected by CSD. The prolonged post-CSD inflammation of the leptomeninges can contribute to mechanisms of headache generation following aura phase of migraine attack.


Subject(s)
Cortical Spreading Depression , Meninges , Animals , Cortical Spreading Depression/physiology , Rats , Male , Meninges/physiopathology , Inflammation/physiopathology , Cerebral Cortex/metabolism , Cerebral Cortex/physiopathology , Disease Models, Animal , Rats, Wistar , Chemokine CX3CL1/metabolism , Chemokine CX3CL1/genetics
2.
Exp Brain Res ; 242(9): 2241-2247, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39034328

ABSTRACT

Sensory development is a complex process that can influence physiological and pathological factors. In laterally-eyed mammals, monocular enucleation (ME) during development and the subsequent lack of external sensory stimuli can result in permanent morphological and physiological changes. Malnutrition, especially in early life, also can cause permanent morphofunctional changes due to inadequate nutrient intake in both hemispheres. This study investigated the effects of early (postnatal day 7) ME and malnutrition during the suckling period on cortical excitability in adulthood (110-140 days of life). For this, we compared the speed propagation of cortical spreading depression in the occipital and parietal cortex of malnourished and well-nourished adult rats, previously suckled small-sized litters with three pups (L3/dam) medium-sized litters with six pups (L6/dam), and large-sized litters with twelve pups (L12/dam). The CSD velocity was augmented by the ME in the contralateral side of the removed eye in the parietal and occipital cortex. These findings suggest that visual sensory input deprivation is associated with permanent functional changes in the visual pathways, which can alter cortical excitability and lead to modifications in CSD propagation.


Subject(s)
Cortical Spreading Depression , Eye Enucleation , Malnutrition , Rats, Wistar , Animals , Cortical Spreading Depression/physiology , Malnutrition/physiopathology , Malnutrition/complications , Rats , Male , Female , Animals, Newborn , Occipital Lobe/physiopathology , Parietal Lobe/physiopathology
3.
J Headache Pain ; 25(1): 120, 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39044141

ABSTRACT

Migraine is a neurological disorder characterized by episodes of severe headache. Cortical spreading depression (CSD), the electrophysiological equivalent of migraine aura, results in opening of pannexin 1 megachannels that release ATP and triggers parenchymal neuroinflammatory signaling cascade in the cortex. Migraine symptoms suggesting subcortical dysfunction bring subcortical spread of CSD under the light. Here, we investigated the role of purinergic P2X7 receptors on the subcortical spread of CSD and its consequent neuroinflammation using a potent and selective P2X7R antagonist, JNJ-47965567. P2X7R antagonism had no effect on the CSD threshold and characteristics but increased the latency to hypothalamic voltage deflection following CSD suggesting that ATP acts as a mediator in the subcortical spread. P2X7R antagonism also prevented cortical and subcortical neuronal activation following CSD, revealed by bilateral decrease in c-fos positive neuron count, and halted CSD-induced neuroinflammation revealed by decreased neuronal HMGB1 release and decreased nuclear translocation of NF-kappa B-p65 in astrocytes. In conclusion, our data suggest that P2X7R plays a role in CSD-induced neuroinflammation, subcortical spread of CSD and CSD-induced neuronal activation hence can be a potential target.


Subject(s)
Cortical Spreading Depression , Neuroinflammatory Diseases , Purinergic P2X Receptor Antagonists , Receptors, Purinergic P2X7 , Cortical Spreading Depression/drug effects , Cortical Spreading Depression/physiology , Animals , Purinergic P2X Receptor Antagonists/pharmacology , Male , Receptors, Purinergic P2X7/metabolism , Receptors, Purinergic P2X7/drug effects , Optogenetics , Mice , Migraine Disorders/physiopathology , Migraine Disorders/metabolism , Migraine Disorders/drug therapy , Neurons/drug effects , Mice, Inbred C57BL , Niacinamide/analogs & derivatives , Piperazines
4.
Nat Rev Neurol ; 20(7): 408-425, 2024 07.
Article in English | MEDLINE | ID: mdl-38886512

ABSTRACT

Considerable strides in medical interventions during the acute phase of traumatic brain injury (TBI) have brought improved overall survival rates. However, following TBI, people often face ongoing, persistent and debilitating long-term complications. Here, we review the recent literature to propose possible mechanisms that lead from TBI to long-term complications, focusing particularly on the involvement of a compromised blood-brain barrier (BBB). We discuss evidence for the role of spreading depolarization as a key pathological mechanism associated with microvascular dysfunction and the transformation of astrocytes to an inflammatory phenotype. Finally, we summarize new predictive and diagnostic biomarkers and explore potential therapeutic targets for treating long-term complications of TBI.


Subject(s)
Blood-Brain Barrier , Brain Injuries, Traumatic , Humans , Brain Injuries, Traumatic/physiopathology , Brain Injuries, Traumatic/therapy , Blood-Brain Barrier/metabolism , Cortical Spreading Depression/physiology , Animals
5.
Biol Res ; 57(1): 39, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38867288

ABSTRACT

BACKGROUND: Spreading depression (SD) is an intriguing phenomenon characterized by massive slow brain depolarizations that affect neurons and glial cells. This phenomenon is repetitive and produces a metabolic overload that increases secondary damage. However, the mechanisms associated with the initiation and propagation of SD are unknown. Multiple lines of evidence indicate that persistent and uncontrolled opening of hemichannels could participate in the pathogenesis and progression of several neurological disorders including acute brain injuries. Here, we explored the contribution of astroglial hemichannels composed of connexin-43 (Cx43) or pannexin-1 (Panx1) to SD evoked by high-K+ stimulation in brain slices. RESULTS: Focal high-K+ stimulation rapidly evoked a wave of SD linked to increased activity of the Cx43 and Panx1 hemichannels in the brain cortex, as measured by light transmittance and dye uptake analysis, respectively. The activation of these channels occurs mainly in astrocytes but also in neurons. More importantly, the inhibition of both the Cx43 and Panx1 hemichannels completely prevented high K+-induced SD in the brain cortex. Electrophysiological recordings also revealed that Cx43 and Panx1 hemichannels critically contribute to the SD-induced decrease in synaptic transmission in the brain cortex and hippocampus. CONCLUSIONS: Targeting Cx43 and Panx1 hemichannels could serve as a new therapeutic strategy to prevent the initiation and propagation of SD in several acute brain injuries.


Subject(s)
Astrocytes , Connexin 43 , Connexins , Cortical Spreading Depression , Synaptic Transmission , Animals , Astrocytes/physiology , Connexins/metabolism , Cortical Spreading Depression/physiology , Cortical Spreading Depression/drug effects , Synaptic Transmission/physiology , Synaptic Transmission/drug effects , Connexin 43/metabolism , Male , Nerve Tissue Proteins/metabolism , Cerebral Cortex , Neurons/physiology , Hippocampus , Rats, Sprague-Dawley , Rats , Potassium/metabolism
6.
Neurosci Lett ; 832: 137814, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38723760

ABSTRACT

Galanin (Gal) is a neuropeptide with the potential to ameliorate cortical spreading depolarization (CSD), an electrophysiological phenomenon occurring after brain injury or in migraine aura. Gal is expressed in all cortical neurons both in rat and in mouse cortices. Here we investigated whether the effect of Gal on CSD previously described in the rat is conserved in the mouse cortex. In rats, the topical application of Gal to the cortex for 1 h did not induce any change in CSD amplitudes, propagation velocity, or threshold of elicitation. Rather, topical application of Gal for 3 h was necessary to obtain a significant decrease in these CSD parameters and to develop a remarkable increase in the KCl threshold to elicit a CSD in rat cortex. In contrast, the topical application of Gal on cortical surface for 1 h in mice was sufficient to significantly attenuate CSD amplitudes and increase threshold. A thinner cortex, a faster diffusion or different affinity/expression of receptors for Gal are possible reasons to explain this difference in the time course between rats and mice. Our data are relevant to postulate Gal as a potential target for inhibition of CSD under pathological situations such as stroke or ischemia. SIGNIFICANCE STATEMENT: The neuropeptide Galanin (Gal) is expressed in all neurons throughout the cerebral cortex, both in rats and mice, and is able to reduce or even inhibit Cortical Spreading Depolarization, thus, Gal has the potential to control neuronal excitability that may identify Gal as a target in drug development against CSD.


Subject(s)
Cerebral Cortex , Cortical Spreading Depression , Galanin , Animals , Galanin/pharmacology , Galanin/metabolism , Cortical Spreading Depression/drug effects , Cortical Spreading Depression/physiology , Male , Mice , Rats , Cerebral Cortex/drug effects , Cerebral Cortex/metabolism , Mice, Inbred C57BL , Neurons/drug effects , Neurons/metabolism , Rats, Wistar
7.
Neuroscience ; 551: 323-332, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-38821241

ABSTRACT

Spreading depolarization (SD) is a slowly propagating wave of prolonged activation followed by a period of synaptic suppression. Some prior reports have shown potentiation of synaptic transmission after recovery from synaptic suppression and noted similarities with the phenomenon of long-term potentiation (LTP). Since SD is increasingly recognized as participating in diverse neurological disorders, it is of interest to determine whether SD indeed leads to a generalized and sustained long-term strengthening of synaptic connections. We performed a characterization of SD-induced potentiation, and tested whether distinctive features of SD, including adenosine accumulation and swelling, contribute to reports of SD-induced plasticity. Field excitatory postsynaptic potentials (fEPSPs) were recorded in the hippocampal CA1 subregion of murine brain slices, and SD elicited using focal microinjection of KCl. A single SD was sufficient to induce a consistent potentiation of slope and amplitude of fEPSPs. Both AMPA- and NMDA-receptor mediated components were enhanced. Potentiation peaked ∼20 min after SD recovery and was sustained for ∼30 min. However, fEPSP amplitude and slope decayed over an extended 2-hour recording period and was estimated to reach baseline after ∼3 h. Potentiation was saturated after a single SD and adenosine A1 receptor activation did not mask additional potentiation. Induction of LTP with theta-burst stimulation was not altered by prior induction of SD and molecular mediators known to block LTP induction did not block SD-induced potentiation. Together, these results indicate an intermediate duration potentiation that is distinct from hippocampal LTP and may have implications for circuit function for 1-2 h following SD.


Subject(s)
Excitatory Postsynaptic Potentials , Mice, Inbred C57BL , Animals , Excitatory Postsynaptic Potentials/physiology , Male , Long-Term Potentiation/physiology , Synaptic Transmission/physiology , Synaptic Transmission/drug effects , CA1 Region, Hippocampal/physiology , Adenosine/metabolism , Adenosine/pharmacology , Mice , Cortical Spreading Depression/physiology , Cortical Spreading Depression/drug effects , Potassium Chloride/pharmacology , Hippocampus/physiology , Receptors, N-Methyl-D-Aspartate/metabolism , Receptors, AMPA/metabolism
8.
Rinsho Shinkeigaku ; 64(6): 383-389, 2024 Jun 27.
Article in Japanese | MEDLINE | ID: mdl-38811205

ABSTRACT

Migraine attacks, especially ones with aura, have symptoms similar to epileptic seizures, and the two may sometimes be difficult to differentiate clinically. However, the characteristic minute-by-minute symptom development and progress within 60 |min is useful for diagnosis. Although the details of its pathophysiology remain unsolved, cortical spreading depolarization (CSD) is one of the main pathogenetic factors. In epilepsy, clinical data have shown that ictal DC shifts could reflect impaired homeostasis of extracellular potassium by astrocyte dysfunction. Ictal DC shifts were found to be difficult to detect by scalp EEG, but can be clinically recorded from the seizure focus using wide-band EEG method. The similarity between DC shifts and CSD has been gaining attention from the neurophysiology point of view. The clinical implementation of infraslow activity/DC shifts analysis of scalp EEG is expected to elucidate further the pathophysiology of migraine, which may lie in the borderland of epilepsy.


Subject(s)
Electroencephalography , Epilepsy , Migraine Disorders , Humans , Migraine Disorders/physiopathology , Migraine Disorders/diagnosis , Epilepsy/physiopathology , Epilepsy/diagnosis , Scalp , Cortical Spreading Depression/physiology , Seizures/diagnosis , Seizures/physiopathology
9.
Rev Neurosci ; 35(6): 651-678, 2024 Aug 27.
Article in English | MEDLINE | ID: mdl-38581271

ABSTRACT

Cerebral autoregulation is an intrinsic myogenic response of cerebral vasculature that allows for preservation of stable cerebral blood flow levels in response to changing systemic blood pressure. It is effective across a broad range of blood pressure levels through precapillary vasoconstriction and dilation. Autoregulation is difficult to directly measure and methods to indirectly ascertain cerebral autoregulation status inherently require certain assumptions. Patients with impaired cerebral autoregulation may be at risk of brain ischemia. One of the central mechanisms of ischemia in patients with metabolically compromised states is likely the triggering of spreading depolarization (SD) events and ultimately, terminal (or anoxic) depolarization. Cerebral autoregulation and SD are therefore linked when considering the risk of ischemia. In this scoping review, we will discuss the range of methods to measure cerebral autoregulation, their theoretical strengths and weaknesses, and the available clinical evidence to support their utility. We will then discuss the emerging link between impaired cerebral autoregulation and the occurrence of SD events. Such an approach offers the opportunity to better understand an individual patient's physiology and provide targeted treatments.


Subject(s)
Brain Injuries , Brain Ischemia , Cerebrovascular Circulation , Homeostasis , Humans , Homeostasis/physiology , Cerebrovascular Circulation/physiology , Brain Ischemia/physiopathology , Brain Injuries/physiopathology , Cortical Spreading Depression/physiology , Animals , Brain/physiopathology
10.
Brain ; 147(8): 2884-2896, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38411458

ABSTRACT

Recently, we showed that while atogepant-a small-molecule calcitonin gene-related peptide (CGRP) receptor antagonist-does not fully prevent activation of meningeal nociceptors, it significantly reduces a cortical spreading depression (CSD)-induced early response probability in C fibres and late response probability in Aδ fibres. The current study investigates atogepant effect on CSD-induced activation and sensitization of high threshold (HT) and wide dynamic range (WDR) central dura-sensitive trigeminovascular neurons. In anaesthetized male rats, single-unit recordings were used to assess effects of atogepant (5 mg/kg) versus vehicle on CSD-induced activation and sensitization of HT and WDR trigeminovascular neurons. Single cell analysis of atogepant pretreatment effects on CSD-induced activation and sensitization of central trigeminovascular neurons in the spinal trigeminal nucleus revealed the ability of this small molecule CGRP receptor antagonist to prevent activation and sensitization of nearly all HT neurons (8/10 versus 1/10 activated neurons in the control versus treated groups, P = 0.005). In contrast, atogepant pretreatment effects on CSD-induced activation and sensitization of WDR neurons revealed an overall inability to prevent their activation (7/10 versus 5/10 activated neurons in the control versus treated groups, P = 0.64). Unexpectedly however, in spite of atogepant's inability to prevent activation of WDR neurons, it prevented their sensitization (as reflected their responses to mechanical stimulation of the facial receptive field before and after the CSD). Atogepant' ability to prevent activation and sensitization of HT neurons is attributed to its preferential inhibitory effects on thinly myelinated Aδ fibres. Atogepant's inability to prevent activation of WDR neurons is attributed to its lesser inhibitory effects on the unmyelinated C fibres. Molecular and physiological processes that govern neuronal activation versus sensitization can explain how reduction in CGRP-mediated slow but not glutamate-mediated fast synaptic transmission between central branches of meningeal nociceptors and nociceptive neurons in the spinal trigeminal nucleus can prevent their sensitization but not activation.


Subject(s)
Calcitonin Gene-Related Peptide Receptor Antagonists , Cortical Spreading Depression , Migraine Disorders , Rats, Sprague-Dawley , Animals , Male , Migraine Disorders/prevention & control , Migraine Disorders/drug therapy , Rats , Calcitonin Gene-Related Peptide Receptor Antagonists/pharmacology , Calcitonin Gene-Related Peptide Receptor Antagonists/therapeutic use , Cortical Spreading Depression/drug effects , Cortical Spreading Depression/physiology , Trigeminal Nucleus, Spinal/drug effects , Receptors, Calcitonin Gene-Related Peptide/metabolism , Nociceptors/drug effects , Nociceptors/physiology , Neurons/drug effects , Neurons/physiology
11.
Neuroscience ; 543: 90-100, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38417540

ABSTRACT

Extracellular signal-regulated kinase (ERK) are serine/threonine-selective proteins and ERK1/2 can be phosphorylated in peripheral and central brain regions after cortical spreading depolarization (CSD) and calcitonin gene-related peptide; However, it remains unclear about whether and how ERK activity modulates CSD that correlates to migraine aura. Here, we determined the role of ERK in regulating CSD and explored the underlying mechanism involving transient receptor potential ankyrin 1 (TRPA1), a stress-sensing cation channel. CSD was recorded using intrinsic optical imaging in mouse brain slices, and electrophysiology in rats. Phosphorylated ERK (pERK1/2) and interleukin-1ß (IL-1ß) protein levels were detected using Western blot or enzyme-linked immunosorbent assay, respectively. IL-1ß mRNA level was detected using qPCR. The results showed that an ERK inhibitor, SCH77298, markedly prolonged CSD latency and reduced propagation rate in mouse brain slices. Corresponding to this, CSD induction increased levels of cytosolic pERK1/2 in ipsilateral cerebral cortices of rats, the elevation of which correlated to the level of IL-1ß mRNA. Mechanistic analysis showed that pre-treatment of an anti-TRPA1 antibody reduced the cytosolic pERK2 level but not pERK1 following CSD in cerebral cortices of rats and this level of pERK2 correlated with that of cerebral cortical IL-1ß protein. Furthermore, an ERK activator, AES16-2M, but not its scrambled control, reversed the prolonged CSD latency by a TRPA1 inhibitor, HC-030031, in mouse brain slices. These data revealed a crucial role of ERK activity in regulating CSD, and elevation of pERK and IL-1ß production induced by CSD is predominantly TRPA1 channel-dependent, thereby contributing to migraine pathogenesis.


Subject(s)
Cortical Spreading Depression , Migraine Disorders , Mice , Rats , Animals , Cortical Spreading Depression/physiology , Ankyrins/metabolism , Mitogen-Activated Protein Kinase 1/metabolism , Cerebral Cortex/metabolism , Migraine Disorders/metabolism , RNA, Messenger/metabolism
12.
J Headache Pain ; 25(1): 8, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38225575

ABSTRACT

BACKGROUND: Spreading depolarization (SD), underlying mechanism of migraine aura and potential activator of pain pathways, is known to elicit transient local silencing cortical activity. Sweeping across the cortex, the electrocorticographic depression is supposed to underlie spreading negative symptoms of migraine aura. Main information about the suppressive effect of SD on cortical oscillations was obtained in anesthetized animals while ictal recordings in conscious patients failed to detect EEG depression during migraine aura. Here, we investigate the suppressive effect of SD on spontaneous cortical activity in awake animals and examine whether the anesthesia modifies the SD effect. METHODS: Spectral and spatiotemporal characteristics of spontaneous cortical activity following a single unilateral SD elicited by amygdala pinprick were analyzed in awake freely behaving rats and after induction of urethane anesthesia. RESULTS: In wakefulness, SD transiently suppressed cortical oscillations in all frequency bands except delta. Slow delta activity did not decline its power during SD and even increased it afterwards; high-frequency gamma oscillations showed the strongest and longest depression under awake conditions. Unexpectedly, gamma power reduced not only during SD invasion the recording cortical sites but also when SD occupied distant subcortical/cortical areas. Contralateral cortex not invaded by SD also showed transient depression of gamma activity in awake animals. Introduction of general anesthesia modified the pattern of SD-induced depression: SD evoked the strongest cessation of slow delta activity, milder suppression of fast oscillations and no distant changes in gamma activity. CONCLUSION: Slow and fast cortical oscillations differ in their vulnerability to SD influence, especially in wakefulness. In the conscious brain, SD produces stronger and spatially broader depression of fast cortical oscillations than slow ones. The frequency-specific effects of SD on cortical activity of awake brain may underlie some previously unexplained clinical features of migraine aura.


Subject(s)
Cortical Spreading Depression , Epilepsy , Migraine with Aura , Humans , Rats , Animals , Cortical Spreading Depression/physiology , Migraine with Aura/etiology , Brain , Head , Epilepsy/etiology
13.
Neurobiol Dis ; 192: 106405, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38211710

ABSTRACT

Mechanisms underlying the migraine aura are incompletely understood, which to large extent is related to a lack of models in which cortical spreading depolarization (CSD), the correlate of the aura, occurs spontaneously. Here, we investigated electrophysiological and behavioural CSD features in freely behaving mice expressing mutant CaV2.1 Ca2+ channels, either with the milder R192Q or the severer S218L missense mutation in the α1 subunit, known to cause familial hemiplegic migraine type 1 (FHM1) in patients. Very rarely, spontaneous CSDs were observed in mutant but never in wildtype mice. In homozygous Cacna1aR192Q mice exclusively single-wave CSDs were observed whereas heterozygous Cacna1aS218L mice displayed multiple-wave events, seemingly in line with the more severe clinical phenotype associated with the S218L mutation. Spontaneous CSDs were associated with body stretching, one-directional slow head turning, and rotating movement of the body. Spontaneous CSD events were compared with those induced in a controlled manner using minimally invasive optogenetics. Also in the optogenetic experiments single-wave CSDs were observed in Cacna1aR192Q and Cacna1aS218L mice (whereas the latter also showed multiple-wave events) with movements similar to those observed with spontaneous events. Compared to wildtype mice, FHM1 mutant mice exhibited a reduced threshold and an increased propagation speed for optogenetically induced CSD with a more profound CSD-associated dysfunction, as indicated by a prolonged suppression of transcallosal evoked potentials and a reduction of unilateral forepaw grip performance. When induced during sleep, the optogenetic CSD threshold was particularly lowered, which may explain why spontaneous CSD events predominantly occurred during sleep. In conclusion, our data show that key neurophysiological and behavioural features of optogenetically induced CSDs mimic those of rare spontaneous events in FHM1 R192Q and S218L mutant mice with differences in severity in line with FHM1 clinical phenotypes seen with these mutations.


Subject(s)
Cerebellar Ataxia , Cortical Spreading Depression , Epilepsy , Migraine Disorders , Migraine with Aura , Humans , Mice , Animals , Migraine with Aura/genetics , Mice, Transgenic , Cortical Spreading Depression/physiology , Migraine Disorders/genetics , Evoked Potentials
14.
Brain ; 147(2): 680-697, 2024 02 01.
Article in English | MEDLINE | ID: mdl-37831655

ABSTRACT

Migraine is a common and disabling neurological disorder. The headache and sensory amplifications of migraine are attributed to hyperexcitable sensory circuits, but a detailed understanding remains elusive. A mutation in casein kinase 1 delta (CK1δ) was identified in non-hemiplegic familial migraine with aura and advanced sleep phase syndrome. Mice carrying the CK1δT44A mutation were more susceptible to spreading depolarization (the phenomenon that underlies migraine aura), but mechanisms underlying this migraine-relevant phenotype were not known. We used a combination of whole-cell electrophysiology and multiphoton imaging, in vivo and in brain slices, to compare CK1δT44A mice (adult males) to their wild-type littermates. We found that despite comparable synaptic activity at rest, CK1δT44A neurons were more excitable upon repetitive stimulation than wild-type, with a reduction in presynaptic adaptation at excitatory but not inhibitory synapses. The mechanism of this adaptation deficit was a calcium-dependent enhancement of the size of the readily releasable pool of synaptic vesicles, and a resultant increase in glutamate release, in CK1δT44A compared to wild-type synapses. Consistent with this mechanism, CK1δT44A neurons showed an increase in the cumulative amplitude of excitatory post-synaptic currents, and a higher excitation-to-inhibition ratio during sustained activity compared to wild-type. At a local circuit level, action potential bursts elicited in CK1δT44A neurons triggered an increase in recurrent excitation compared to wild-type, and at a network level, CK1δT44A mice showed a longer duration of 'up state' activity, which is dependent on recurrent excitation. Finally, we demonstrated that the spreading depolarization susceptibility of CK1δT44A mice could be returned to wild-type levels with the same intervention (reduced extracellular calcium) that normalized presynaptic adaptation. Taken together, these findings show a stimulus-dependent presynaptic gain of function at glutamatergic synapses in a genetic model of migraine, that accounts for the increased spreading depolarization susceptibility and may also explain the sensory amplifications that are associated with the disease.


Subject(s)
Cortical Spreading Depression , Epilepsy , Migraine Disorders , Migraine with Aura , Mice , Animals , Migraine with Aura/genetics , Mice, Transgenic , Calcium Channels, N-Type/genetics , Calcium/metabolism , Migraine Disorders/genetics , Mutation/genetics , Cortical Spreading Depression/physiology
15.
J Cereb Blood Flow Metab ; 44(6): 1000-1012, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38140913

ABSTRACT

Cortical spreading depolarization (SD) imposes a massive increase in energy demand and therefore evolves as a target for treatment following acute brain injuries. Anesthetics are empirically used to reduce energy metabolism in critical brain conditions, yet their effect on metabolism during SD remains largely unknown. We investigated oxidative metabolism during SD in brain slices from Wistar rats. Extracellular potassium ([K+]o), local field potential and partial tissue oxygen pressure (ptiO2) were measured simultaneously. The cerebral metabolic rate of oxygen (CMRO2) was calculated using a reaction-diffusion model. By that, we tested the effect of clinically relevant concentrations of isoflurane on CMRO2 during SD and modeled tissue oxygenation for different capillary pO2 values. During SD, CMRO2 increased 2.7-fold, resulting in transient hypoxia in the slice core. Isoflurane decreased CMRO2, reduced peak [K+]o, and prolonged [K+]o clearance, which indicates reduced synaptic transmission and sodium-potassium ATPase inhibition. Modeling tissue oxygenation during SD illustrates the need for increased capillary pO2 levels to prevent hypoxia. In the absence thereof, isoflurane could improve tissue oxygenation by lowering CMRO2. Therefore, isoflurane is a promising candidate for pre-clinical studies on neuronal survival in conditions involving SD.


Subject(s)
Cortical Spreading Depression , Isoflurane , Oxygen , Rats, Wistar , Animals , Isoflurane/pharmacology , Cortical Spreading Depression/drug effects , Cortical Spreading Depression/physiology , Rats , Oxygen/metabolism , Anesthetics, Inhalation/pharmacology , Male , Hypoxia/metabolism , Potassium/metabolism , Oxygen Consumption/drug effects , Brain/metabolism , Brain/drug effects , Hypoxia, Brain/metabolism , Hypoxia, Brain/drug therapy
16.
J Cereb Blood Flow Metab ; 44(1): 3-5, 2024 01.
Article in English | MEDLINE | ID: mdl-37871620

ABSTRACT

Functional ultrasound (FUS) has emerged as a novel imaging method to reliably assess relative cerebral blood volume (rCBV) and infer perfusion, with good spatiotemporal resolution. Brunner and colleagues provide what appears to be its first application to characterize peri-infarct spreading depolarizations (SDs) in experimental stroke through recording of transient hyperemic events. They also report incomplete overlap between acute perfusion deficits and subsequent infarct distribution, specifically noting a rostral expansion to involve penumbral territory from which propagating depolarizations had preferentially originated. This observation would not be straightforward using other methodologies. Other strengths and limitations of the study are considered.


Subject(s)
Brain Ischemia , Cortical Spreading Depression , Ischemic Stroke , Stroke , Humans , Cortical Spreading Depression/physiology , Brain/diagnostic imaging , Stroke/diagnostic imaging , Brain Ischemia/diagnostic imaging , Ultrasonography , Hemodynamics/physiology , Cerebrovascular Circulation/physiology , Infarction
17.
Handb Clin Neurol ; 198: 3-21, 2023.
Article in English | MEDLINE | ID: mdl-38043968

ABSTRACT

Migraine symptoms were described in ancient Babylonia, and supernatural forces were felt to play a role in etiology and treatment. This changed in the Greco-Roman period, when the (dis)balance of humors was considered in (patho)physiology and treatment based on this. Aretaeus distinguished between cephalalgia, cephalea, and heterocrania. The latter term was changed to hemicrania by Galen. Physicians in the 17th century attributed headache to the meninges, extracranial periost, and cranial blood vessels. As for the pathophysiology, Willis suggested intracranial vasoconstriction with subsequent dilatation. Tissot and Fothergill gave comprehensive descriptions of migraine, including visual symptoms. Symptomatic and idiopathic hemicrania were distinguished in the early 19th century. Vasomotor pathophysiology was scientifically studied in the 1860s, leading to sympathicotonic and angioparalytic theories. Latham combined them, stating the latter follows the first. Ergot was introduced in 1868; ergotamine was isolated in 1918. This led to the vasodilatation theory of migraine (Wolff), the discovery of 5-HT, and later the specific agonists. Aura and cortical spreading depression were studied in the early 1940s and related to spreading oligemia in the 1980s. Subsequently, hyperemia followed by oligemia after CSD was found. After the discovery of CGRP, a new a class of drugs became the subject of clinical studies.


Subject(s)
Cortical Spreading Depression , Migraine Disorders , Humans , Cortical Spreading Depression/physiology , Headache , Skull , Vasodilation
18.
Chaos ; 33(8)2023 Aug 01.
Article in English | MEDLINE | ID: mdl-38060797

ABSTRACT

Cortical spreading depression and spreading depolarization (CSD) are waves of neuronal depolarization that spread across the cortex, leading to a temporary saturation of brain activity. They are associated with various brain disorders such as migraine and ischemia. We consider a reduced version of a biophysical model of a neuron-astrocyte network for the initiation and propagation of CSD waves [Huguet et al., Biophys. J. 111(2), 452-462, 2016], consisting of reaction-diffusion equations. The reduced model considers only the dynamics of the neuronal and astrocytic membrane potentials and the extracellular potassium concentration, capturing the instigation process implicated in such waves. We present a computational and mathematical framework based on the parameterization method and singular perturbation theory to provide semi-analytical results on the existence of a wave solution and to compute it jointly with its velocity of propagation. The traveling wave solution can be seen as a heteroclinic connection of an associated system of ordinary differential equations with a slow-fast dynamics. The presence of distinct time scales within the system introduces numerical instabilities, which we successfully address through the identification of significant invariant manifolds and the implementation of the parameterization method. Our results provide a methodology that allows to identify efficiently and accurately the mechanisms responsible for the initiation of these waves and the wave propagation velocity.


Subject(s)
Cortical Spreading Depression , Cortical Spreading Depression/physiology , Neurons/physiology , Astrocytes , Membrane Potentials , Potassium
19.
Nat Commun ; 14(1): 7729, 2023 Nov 25.
Article in English | MEDLINE | ID: mdl-38007508

ABSTRACT

Spreading depolarizations (SDs) are classically thought to be associated with spreading depression of cortical activity. Here, we found that SDs in patients with subarachnoid hemorrhage produce variable, ranging from depression to booming, changes in electrocorticographic activity, especially in the delta frequency band. In rats, depression of activity was characteristic of high-potassium-induced full SDs, whereas partial superficial SDs caused either little change or a boom of activity at the cortical vertex, supported by volume conduction of signals from spared delta generators in the deep cortical layers. Partial SDs also caused moderate neuronal depolarization and sustained excitation, organized in gamma oscillations in a narrow sub-SD zone. Thus, our study challenges the concept of homology between spreading depolarization and spreading depression by showing that SDs produce variable, from depression to booming, changes in activity at the cortical surface and in different cortical layers depending on the depth of SD penetration.


Subject(s)
Cortical Spreading Depression , Subarachnoid Hemorrhage , Humans , Rats , Animals , Cortical Spreading Depression/physiology , Electrocorticography , Head , Neurons
20.
Stroke ; 54(10): 2640-2651, 2023 10.
Article in English | MEDLINE | ID: mdl-37610105

ABSTRACT

BACKGROUND: Spreading depolarizations (SDs) occur in all types of brain injury and may be associated with detrimental effects in ischemic stroke and subarachnoid hemorrhage. While rapid hematoma growth during intracerebral hemorrhage triggers SDs, their role in intracerebral hemorrhage is unknown. METHODS: We used intrinsic optical signal and laser speckle imaging, combined with electrocorticography, to investigate the effects of SD on hematoma growth during the hyperacute phase (0-4 hours) after intracortical collagenase injection in mice. Hematoma expansion, SDs, and cerebral blood flow were simultaneously monitored under normotensive and hypertensive conditions. RESULTS: Spontaneous SDs erupted from the vicinity of the hematoma during rapid hematoma growth. We found that hematoma growth slowed down by >60% immediately after an SD. This effect was even stronger in hypertensive animals with faster hematoma growth. To establish causation, we exogenously induced SDs (every 30 minutes) at a remote site by topical potassium chloride application and found reduced hematoma growth rate and final hemorrhage volume (18.2±5.8 versus 10.7±4.1 mm3). Analysis of cerebral blood flow using laser speckle flowmetry revealed that suppression of hematoma growth by spontaneous or induced SDs coincided and correlated with the characteristic oligemia in the wake of SD, implicating the vasoconstrictive effect of SD as one potential mechanism of action. CONCLUSIONS: Our findings reveal that SDs limit hematoma growth during the early hours of intracerebral hemorrhage and decrease final hematoma volume.


Subject(s)
Cortical Spreading Depression , Subarachnoid Hemorrhage , Mice , Animals , Cortical Spreading Depression/physiology , Subarachnoid Hemorrhage/complications , Electrocorticography , Cerebral Hemorrhage/diagnostic imaging , Cerebral Hemorrhage/drug therapy , Cerebral Hemorrhage/complications , Hematoma/diagnostic imaging , Hematoma/complications
SELECTION OF CITATIONS
SEARCH DETAIL