Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.934
Filter
1.
Int J Biol Macromol ; 273(Pt 2): 133045, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38942666

ABSTRACT

This work was to investigate the effect of four prebiotic saccharides gum arabic (GA), fructooligosaccharide (FOS), konjac glucomannan (KGM), and inulin (INU) incorporation on the encapsulation efficiency (EE), physicochemical stability, and in vitro digestion of urolithin A-loaded liposomes (UroA-LPs). The regulation of liposomes on gut microbiota was also investigated by in vitro colonic fermentation. Results indicated that liposomes coated with GA showed the best EE, bioaccessibility, storage and thermal stability, the bioaccessibility was 1.67 times of that of UroA-LPs. The UroA-LPs coated with FOS showed the best freeze-thaw stability and transformation. Meanwhile, saccharides addition remarkably improved the relative abundance of Bacteroidota, reduced the abundances of Proteobacteria and Actinobacteria. The UroA-LPs coated with FOS, INU, and GA exhibited the highest beneficial bacteria abundance of Parabacteroides, Monoglobus, and Phascolarctobacterium, respectively. FOS could also decrease the abundance of harmful bacteria Collinsella and Enterococcus, and increase the levels of acetic acid, butyric acid and iso-butyric acid. Consequently, prebiotic saccharides can improve the EE, physicochemical stability, gut microbiota regulation of UroA-LPs, and promote the bioaccessibility of UroA, but the efficiency varied based on saccharides types, which can lay a foundation for the application of UroA in foods industry and for the enhancement of its bio-activities.


Subject(s)
Gastrointestinal Microbiome , Liposomes , Prebiotics , Gastrointestinal Microbiome/drug effects , Liposomes/chemistry , Polymerization , Coumarins/chemistry , Coumarins/metabolism , Fermentation
2.
Gigascience ; 132024 Jan 02.
Article in English | MEDLINE | ID: mdl-38837945

ABSTRACT

BACKGROUND: Traditional Chinese medicine has used Peucedanum praeruptorum Dunn (Apiaceae) for a long time. Various coumarins, including the significant constituents praeruptorin (A-E), are the active constituents in the dried roots of P. praeruptorum. Previous transcriptomic and metabolomic studies have attempted to elucidate the distribution and biosynthetic network of these medicinal-valuable compounds. However, the lack of a high-quality reference genome impedes an in-depth understanding of genetic traits and thus the development of better breeding strategies. RESULTS: A telomere-to-telomere (T2T) genome was assembled for P. praeruptorum by combining PacBio HiFi, ONT ultra-long, and Hi-C data. The final genome assembly was approximately 1.798 Gb, assigned to 11 chromosomes with genome completeness >98%. Comparative genomic analysis suggested that P. praeruptorum experienced 2 whole-genome duplication events. By the transcriptomic and metabolomic analysis of the coumarin metabolic pathway, we presented coumarins' spatial and temporal distribution and the expression patterns of critical genes for its biosynthesis. Notably, the COSY and cytochrome P450 genes showed tandem duplications on several chromosomes, which may be responsible for the high accumulation of coumarins. CONCLUSIONS: A T2T genome for P. praeruptorum was obtained, providing molecular insights into the chromosomal distribution of the coumarin biosynthetic genes. This high-quality genome is an essential resource for designing engineering strategies for improving the production of these valuable compounds.


Subject(s)
Apiaceae , Coumarins , Genome, Plant , Telomere , Coumarins/metabolism , Apiaceae/genetics , Apiaceae/metabolism , Telomere/genetics , Telomere/metabolism , Evolution, Molecular , Phylogeny , Genomics/methods , Biosynthetic Pathways/genetics
3.
BMC Plant Biol ; 24(1): 507, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38844853

ABSTRACT

BACKGROUND: Powdery mildew, caused by Eeysiphe heraclei, seriously threatens Heracleum moellendorffii Hance. Plant secondary metabolites are essential to many activities and are necessary for defense against biotic stress. In order to clarify the functions of these metabolites in response to the pathogen, our work concentrated on the variations in the accumulation of secondary metabolites in H. moellendorffii during E. heraclei infection. RESULTS: Following E. heraclei infection, a significant upregulation of coumarin metabolites-particularly simple coumarins and associated genes was detected by RNA-seq and UPLC-MS/MS association analysis. Identifying HmF6'H1, a Feruloyl CoA 6'-hydroxylase pivotal in the biosynthesis of the coumarin basic skeleton through ortho-hydroxylation, was a significant outcome. The cytoplasmic HmF6'H1 protein was shown to be able to catalyze the ortho-hydroxylation of p-coumaroyl-CoA and caffeoyl-CoA, resulting in the formation of umbelliferone and esculetin, respectively. Over-expression of the HmF6'H1 gene resulted in increased levels of simple coumarins, inhibiting the biosynthesis of furanocoumarins and pyranocoumarins by suppressing PT gene expression, enhancing H. moellendorffii resistance to powdery mildew. CONCLUSIONS: These results established HmF6'H1 as a resistance gene aiding H. moellendorffii in combatting E. heraclei infection, offering additional evidence of feruloyl-CoA 6'-hydroxylase role in catalyzing various types of simple coumarins. Therefore, this work contributes to our understanding of the function of simple coumarins in plants' defense against powdery mildew infection.


Subject(s)
Ascomycota , Coumarins , Metabolome , Plant Diseases , Transcriptome , Coumarins/metabolism , Plant Diseases/microbiology , Plant Diseases/genetics , Ascomycota/physiology , Plant Proteins/genetics , Plant Proteins/metabolism , Gene Expression Regulation, Plant , Apiaceae/metabolism , Apiaceae/genetics , Disease Resistance/genetics
4.
Gut Microbes ; 16(1): 2367342, 2024.
Article in English | MEDLINE | ID: mdl-38889450

ABSTRACT

Alcohol-related liver disease (ALD) is recognized as a global health crisis, contributing to approximately 20% of liver cancer-associated fatalities. Dysbiosis of the gut microbiome is associated with the development of ALD, with the gut microbial metabolite urolithin A (UA) exhibiting a potential for alleviating liver symptoms. However, the protective efficacy of UA against ALD and its underlying mechanism mediated by microbiota remain elusive. In this study, we provide evidence demonstrating that UA effectively ameliorates alcohol-induced metabolic disorders and hepatic endoplasmic reticulum (ER) stress through a specific gut-microbiota-liver axis mediated by major urinary protein 1 (MUP1). Moreover, UA exhibited the potential to restore alcohol-induced dysbiosis of the intestinal microbiota by enriching the abundance of Bacteroides sartorii (B. sartorii), Parabacteroides distasonis (P. distasonis), and Akkermansia muciniphila (A. muciniphila), along with their derived metabolite propionic acid. Partial attenuation of the hepatoprotective effects exerted by UA was observed upon depletion of gut microbiota using antibiotics. Subsequently, a fecal microbiota transplantation (FMT) experiment was conducted to evaluate the microbiota-dependent effects of UA in ALD. FMT derived from mice treated with UA exhibited comparable efficacy to direct UA treatment, as it effectively attenuated ER stress through modulation of MUP1. It was noteworthy that strong associations were observed among the hepatic MUP1, gut microbiome, and metabolome profiles affected by UA. Intriguingly, oral administration of UA-enriched B. sartorii, P. distasonis, and A. muciniphila can enhance propionic acid production to effectively suppress ER stress via MUP1, mimicking UA treatment. Collectively, these findings elucidate the causal mechanism that UA alleviated ALD through the gut-microbiota-liver axis. This unique mechanism sheds light on developing novel microbiome-targeted therapeutic strategies against ALD.


Subject(s)
Coumarins , Endoplasmic Reticulum Stress , Gastrointestinal Microbiome , Liver Diseases, Alcoholic , Liver , Mice, Inbred C57BL , Gastrointestinal Microbiome/drug effects , Animals , Mice , Liver/metabolism , Liver/drug effects , Liver Diseases, Alcoholic/microbiology , Liver Diseases, Alcoholic/metabolism , Liver Diseases, Alcoholic/prevention & control , Male , Endoplasmic Reticulum Stress/drug effects , Coumarins/pharmacology , Coumarins/metabolism , Dysbiosis/microbiology , Humans , Bacteria/metabolism , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification
5.
J Biol Chem ; 300(6): 107383, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38762182

ABSTRACT

Disulfide bond formation has a central role in protein folding of both eukaryotes and prokaryotes. In bacteria, disulfide bonds are catalyzed by DsbA and DsbB/VKOR enzymes. First, DsbA, a periplasmic disulfide oxidoreductase, introduces disulfide bonds into substrate proteins. Then, the membrane enzyme, either DsbB or VKOR, regenerate DsbA's activity by the formation of de novo disulfide bonds which reduce quinone. We have previously performed a high-throughput chemical screen and identified a family of warfarin analogs that target either bacterial DsbB or VKOR. In this work, we expressed functional human VKORc1 in Escherichia coli and performed a structure-activity-relationship analysis to study drug selectivity between bacterial and mammalian enzymes. We found that human VKORc1 can function in E. coli by removing two positive residues, allowing the search for novel anticoagulants using bacteria. We also found one warfarin analog capable of inhibiting both bacterial DsbB and VKOR and a second one antagonized only the mammalian enzymes when expressed in E. coli. The difference in the warfarin structure suggests that substituents at positions three and six in the coumarin ring can provide selectivity between the bacterial and mammalian enzymes. Finally, we identified the two amino acid residues responsible for drug binding. One of these is also essential for de novo disulfide bond formation in both DsbB and VKOR enzymes. Our studies highlight a conserved role of this residue in de novo disulfide-generating enzymes and enable the design of novel anticoagulants or antibacterials using coumarin as a scaffold.


Subject(s)
Bacterial Proteins , Escherichia coli Proteins , Escherichia coli , Vitamin K Epoxide Reductases , Warfarin , Warfarin/metabolism , Warfarin/chemistry , Vitamin K Epoxide Reductases/metabolism , Vitamin K Epoxide Reductases/chemistry , Vitamin K Epoxide Reductases/genetics , Humans , Escherichia coli/metabolism , Escherichia coli/genetics , Escherichia coli/enzymology , Escherichia coli Proteins/metabolism , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Disulfides/chemistry , Disulfides/metabolism , Coumarins/metabolism , Coumarins/chemistry , Protein Disulfide-Isomerases/metabolism , Protein Disulfide-Isomerases/chemistry , Protein Disulfide-Isomerases/genetics , Anticoagulants/chemistry , Anticoagulants/metabolism , Benzoquinones/metabolism , Benzoquinones/chemistry , Structure-Activity Relationship , Protein Binding , Membrane Proteins
6.
Spectrochim Acta A Mol Biomol Spectrosc ; 318: 124466, 2024 Oct 05.
Article in English | MEDLINE | ID: mdl-38761474

ABSTRACT

The interaction of biomacromolecules with each other or with the ligands is essential for biological activity. In this context, the molecular recognition of bovine serum albumin (BSA) with 4-(Benzo[1,3]dioxol-5-yloxymethyl)-7-hydroxy-chromen-2-one (4BHC) is explored using multispectroscopic and computational techniques. UV-Vis spectroscopy helped in predicting the conformational variations in BSA. Using fluorescence spectroscopy, the quenching behaviour of the fluorophore upon interaction with the ligand is examined, which is found to be a static type of quenching; fluorescence lifetime studies further verify this. The binding constant is discovered to be in the range of 104 M-1, which indicates the moderate type of association that results in reversible binding, where the transport and release of ligands in the target tissue takes place. Fourier-transform infrared spectroscopy (FT-IR) measurements validate the secondary structure conformational changes of BSA after complexing with 4BHC. The thermodynamic factors obtained through temperature-dependent fluorescence studies suggest that the dominant kind of interaction force is hydrophobic in nature, and the interaction process is spontaneous. The alterations in the surrounding microenvironment of the binding site and conformational shifts in the structure of the protein are studied through 3D fluorescence and synchronous fluorescence studies. Molecular docking and molecular dynamics (MD) simulations agree with experimental results and explain the structural stability throughout the discussion. The outcomes might have possible applications in the field of pharmacodynamics and pharmacokinetics.


Subject(s)
Coumarins , Molecular Docking Simulation , Serum Albumin, Bovine , Spectrometry, Fluorescence , Serum Albumin, Bovine/chemistry , Serum Albumin, Bovine/metabolism , Animals , Cattle , Coumarins/chemistry , Coumarins/metabolism , Thermodynamics , Protein Binding , Fluorescent Dyes/chemistry , Spectrophotometry, Ultraviolet , Spectroscopy, Fourier Transform Infrared , Binding Sites , Computer Simulation
7.
J Phys Chem B ; 128(23): 5567-5575, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38814729

ABSTRACT

Methyl-parathion hydrolase (MPH), which evolved from dihydrocoumarin hydrolase, offers one of the most efficient enzymes for the hydrolysis of methyl-parathion. Interestingly, the substrate preference of MPH shifts from the methyl-parathion to the lactone dihydrocoumarin (DHC) after its mutation of five specific residues (R72L, L273F, L258H, T271I, and S193Δ, m5-MPH). Here, extensive QM/MM calculations and MM MD simulations have been used to delve into the structure-function relationship of MPH enzymes and plausible mechanisms for the chemical and nonchemical steps, including the transportation and binding of the substrate DHC to the active site, the hydrolysis reaction, and the product release. The results reveal that the five mutations remodel the active pocket and reposition DHC within the active site, leading to stronger enzyme-substrate interactions. The MM/GBSA-estimated binding free energies are about -20.7 kcal/mol for m5-MPH and -17.1 kcal/mol for wild-type MPH. Furthermore, this conformational adjustment of the protein may facilitate the chemical step of DHC hydrolysis and the product release, although there is a certain influence on the substrate transport. The hydrolytic reaction begins with the nucleophilic attack of the bridging OH- with the energy barriers of 22.0 and 18.0 kcal/mol for the wild-type and m5-MPH enzymes, respectively, which is rate-determining for the entire process. Unraveling these mechanistic intricacies may help in the understanding of the natural evolution of enzymes for diverse substrates and establish the enzyme structure-function relationship.


Subject(s)
Coumarins , Molecular Dynamics Simulation , Quantum Theory , Coumarins/chemistry , Coumarins/metabolism , Hydrolysis , Catalytic Domain , Substrate Specificity , Thermodynamics , Hydrolases/metabolism , Hydrolases/chemistry , Hydrolases/genetics
8.
J Phys Chem B ; 128(22): 5293-5309, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38808573

ABSTRACT

Given the fact that the cellular interior is crowded by many different kinds of macromolecules, it is important that in vitro studies be carried out in the presence of mixed crowder systems. In this regard, we have used binary crowders formed by the combination of some of the commonly used crowding agents, namely, Ficoll 70, Dextran 70, Dextran 40, and PEG 8000 (PEG 8), to study how these affect enzyme activity, dynamics, and crowder diffusion. The enzyme chosen is AK3L1, an isoform of adenylate kinase. To investigate its dynamics, we have carried out three single point mutations (A74C, A132C, and A209C) with the cysteine residues being labeled with a coumarin-based solvatochromic probe [CPM: (7-diethylamino-3-(4-maleimido-phenyl)-4-methylcoumarin)]. Both enzyme activity and dynamics decreased in the binary mixtures as compared with the sum of the individual crowders, suggesting a reduction in excluded volume (in the mixture). To gain deeper insights into the binary mixtures, fluorescence correlation spectroscopy studies were carried out using fluorescein isothiocyanate-labeled Dextran 70 and tetramethylrhodamine-labeled AK3L1 as the diffusion probes. Diffusion in binary mixtures was observed to be much more constrained (relative to the sum of the individual crowders) for the labeled enzyme as compared to the labeled crowder showing different environments being faced by the two species. This was further confirmed during imaging of the phase-separated droplets formed in the binary mixtures having PEG as one of the crowding agents. The interior of these droplets was found to be rich in crowders and densely packed, as shown by confocal and digital holographic microscopy images, with the enzymes predominantly residing outside these droplets, that is, in the relatively less crowded regions. Taken together, our data provide important insights into various aspects of the simplest form of mixed crowding, that is, composed of just two components, and also hint at the enhanced complexity that the cellular interior presents toward having a detailed and comprehensive understanding of the same.


Subject(s)
Adenylate Kinase , Polyethylene Glycols , Diffusion , Adenylate Kinase/metabolism , Adenylate Kinase/chemistry , Adenylate Kinase/genetics , Polyethylene Glycols/chemistry , Ficoll/chemistry , Dextrans/chemistry , Dextrans/metabolism , Spectrometry, Fluorescence , Point Mutation , Coumarins/chemistry , Coumarins/metabolism
9.
Plant Physiol Biochem ; 211: 108705, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38714128

ABSTRACT

Research on nanoparticles (NPs) and future elevated CO2 (eCO2) is extensive, but the effects of SeNPs on plant growth and secondary metabolism under eCO2 remain uncertain. In this study, we explored the impact of SeNPs and/or eCO2 on the growth, physiology, chemical composition (primary metabolites, coumarins, and essential oils), and antioxidant capacity of Trachyspermum (T.) ammi. The treatment with SeNPs notably improved the biomass and photosynthesis of T. ammi plants, particularly under eCO2 conditions. Plant fresh and dry weights were improved by about 19, 33 and 36% in groups treated by SeNPs, eCO2, and SeNPs + eCO2, respectively. SeNPs + eCO2 induced photosynthesis, consequently enhancing sugar and amino acid levels. Similar to the increase in total sugars, amino acids showed variable enhancements ranging from 6 to 42% upon treatment with SeNPs + eCO2. At the level of the secondary metabolites, SeNPs + eCO2 substantially augmented coumarin biosynthesis and essential oil accumulation. Consistently, there were increases in coumarins and essential oil precursors (shikimic and cinnamic acids) and their biosynthetic enzymes. The enhanced accumulation of coumarins and essential oils resulted in increased overall antioxidant activity, as evidenced by improvements in FRAP, ORAC, TBARS, conjugated dienes, and inhibition % of hemolysis. Conclusively, the application of SeNPs demonstrates significant enhancements in plant growth and metabolism under future CO2 conditions, notably concerning coumarin metabolism and essential oil production of T. ammi.


Subject(s)
Carbon Dioxide , Coumarins , Oils, Volatile , Selenium , Oils, Volatile/metabolism , Coumarins/metabolism , Carbon Dioxide/metabolism , Carbon Dioxide/pharmacology , Selenium/metabolism , Selenium/pharmacology , Antioxidants/metabolism , Nanoparticles , Photosynthesis/drug effects
10.
BMB Rep ; 57(5): 207-215, 2024 May.
Article in English | MEDLINE | ID: mdl-38627947

ABSTRACT

The gut microbiota, an intricate community of bacteria residing in the gastrointestinal system, assumes a pivotal role in various physiological processes. Beyond its function in food breakdown and nutrient absorption, gut microbiota exerts a profound influence on immune and metabolic modulation by producing diverse gut microbiota-generated metabolites (GMGMs). These small molecules hold potential to impact host health via multiple pathways, which exhibit remarkable diversity, and have gained increasing attention in recent studies. Here, we elucidate the intricate implications and significant impacts of four specific metabolites, Urolithin A (UA), equol, Trimethylamine N-oxide (TMAO), and imidazole propionate, in shaping human health. Meanwhile, we also look into the advanced research on GMGMs, which demonstrate promising curative effects and hold great potential for further clinical therapies. Notably, the emergence of positive outcomes from clinical trials involving GMGMs, typified by UA, emphasizes their promising prospects in the pursuit of improved health and longevity. Collectively, the multifaceted impacts of GMGMs present intriguing avenues for future research and therapeutic interventions. [BMB Reports 2024; 57(5): 207-215].


Subject(s)
Aging , Gastrointestinal Microbiome , Methylamines , Gastrointestinal Microbiome/physiology , Humans , Aging/metabolism , Methylamines/metabolism , Equol/metabolism , Coumarins/metabolism , Imidazoles/metabolism , Propionates/metabolism , Animals
11.
Adv Sci (Weinh) ; 11(18): e2310065, 2024 May.
Article in English | MEDLINE | ID: mdl-38447147

ABSTRACT

According to the latest evidence, the microbial metabolite Urolithin A (UA), known for its role in promoting cellular health, modulates CD8+ T cell-mediated antitumor activity. However, the direct target protein of UA and its underlying mechanism remains unclear. Here, this research identifies ERK1/2 as the specific target crucial for UA-mediated CD8+ T cell activation. Even at low doses, UA markedly enhances the persistence and effector functions of primary CD8+ cytotoxic T lymphocytes (CTLs) and human chimeric antigen receptor (CAR) T cells both in vitro and in vivo. Mechanistically, UA interacts directly with ERK1/2 kinases, enhancing their activation and subsequently facilitating T cell activation by engaging ULK1. The UA-ERK1/2-ULK1 axis promotes autophagic flux in CD8+ CTLs, enhancing cellular metabolism and maintaining reactive oxygen species (ROS) levels, as evidenced by increased oxygen consumption and extracellular acidification rates. UA-treated CD8+ CTLs also display elevated ATP levels and enhanced spare respiratory capacity. Overall, UA activates ERK1/2, inducing autophagy and metabolic adaptation, showcasing its potential in tumor immunotherapy and interventions for diseases involving ERKs.


Subject(s)
Autophagy-Related Protein-1 Homolog , CD8-Positive T-Lymphocytes , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Animals , Mice , Humans , Autophagy-Related Protein-1 Homolog/metabolism , Autophagy-Related Protein-1 Homolog/genetics , MAP Kinase Signaling System/immunology , Coumarins/pharmacology , Coumarins/metabolism , Disease Models, Animal , Neoplasms/immunology , Neoplasms/therapy , Neoplasms/metabolism , Mice, Inbred C57BL , Autophagy/immunology
12.
Microb Pathog ; 190: 106608, 2024 May.
Article in English | MEDLINE | ID: mdl-38503396

ABSTRACT

The occurrence of bacterial resistance has been increasing, compromising the treatment of various infections. The high virulence of Staphylococcus aureus allows for the maintenance of the infectious process, causing many deaths and hospitalizations. The MepA and NorA efflux pumps are transporter proteins responsible for expelling antimicrobial agents such as fluoroquinolones from the bacterial cell. Coumarins are phenolic compounds that have been studied for their diverse biological actions, including against bacteria. A pharmacokinetic in silico characterization of compounds C10, C11, C13, and C14 was carried out according to the principles of Lipinski's Rule of Five, in addition to searching for similarity in ChemBL and subsequent search for publications in CAS SciFinder. All compounds were evaluated for their in vitro antibacterial and modulatory activity against standard and multidrug-resistant Gram-positive and Gram-negative strains. The effect of coumarins C9, C10, C11, C13, and C14 as efflux pump inhibitors in Staphylococcus aureus strains was evaluated using the microdilution method (MepA or NorA) and fluorimetry (NorA). The behavior of coumarins regarding the efflux pump was determined from their interaction properties with the membrane and coumarin-protein using molecular docking and molecular dynamics simulations. Only the isolated coumarin compound C13 showed antibacterial activity against standard strains of Staphylococcus aureus and Escherichia coli. However, the other tested coumarins showed modulatory capacity for fluoroquinolone and aminoglycoside antibacterials. Compounds C10, C13, and C14 were effective in reducing the MIC of both antibiotics for both multidrug-resistant strains, while C11 potentiated the effect of norfloxacin and gentamicin for Gram-positive and Gram-negative bacteria and only norfloxacin for Gram-negative. Only coumarin C14 produced synergistic effects when associated with ciprofloxacin in MepA-carrying strains. All tested coumarins have the ability to inhibit the NorA efflux pump present in Staphylococcus aureus, both in reducing the MIC and inducing increased ethidium bromide fluorescence emission in fluorimetry. The findings of this study offer an atomistic perspective on the potential of coumarins as active inhibitors of the NorA pump, highlighting their specific mode of action mainly targeting protein inhibition. In molecular docking, it was observed that coumarins are capable of interacting with various amino acid residues of the NorA pump. The simulation showed that coumarin C10 can cross the bilayer; however, the other coumarins interacted with the membrane but were unable to cross it. Coumarins demonstrated their potentiating role in the effect of norfloxacin through a dual mechanism: efflux pump inhibition through direct interaction with the protein (C9, C10, C11, and C13) and increased interaction with the membrane (C10 and C13). In the context of pharmacokinetic prediction studies, the studied structures have a suitable chemical profile for possible oral use. We suggest that coumarin derivatives may be an interesting alternative in the future for the treatment of resistant bacterial infections, with the possibility of a synergistic effect with other antibacterials, although further studies are needed to characterize their therapeutic effects and toxicity.


Subject(s)
Anti-Bacterial Agents , Bacterial Proteins , Coumarins , Microbial Sensitivity Tests , Molecular Docking Simulation , Molecular Dynamics Simulation , Multidrug Resistance-Associated Proteins , Staphylococcus aureus , Coumarins/pharmacology , Coumarins/chemistry , Coumarins/metabolism , Staphylococcus aureus/drug effects , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Bacterial Proteins/metabolism , Bacterial Proteins/antagonists & inhibitors , Multidrug Resistance-Associated Proteins/antagonists & inhibitors , Multidrug Resistance-Associated Proteins/metabolism , Drug Resistance, Multiple, Bacterial , Gram-Negative Bacteria/drug effects , Membrane Transport Proteins/metabolism
13.
Biochim Biophys Acta Mol Basis Dis ; 1870(4): 167056, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38360072

ABSTRACT

Our previous research suggests that targeting NLRP3 inflammasomes holds promise for mitigating cerebral ischemia/reperfusion injury. The gut metabolite Urolithin B (UroB) has been shown to inhibit the neuroinflammation. However, the specific role of UroB in cerebral ischemia/reperfusion injury and its potential impact on NLRP3 inflammasome remain unclear. In this study, acute stroke was simulated using the MCAO model in male Sprague-Dawley rats. UroB was intraperitoneally administered after 1 h of reperfusion. The effects of UroB on brain tissue were evaluated, including infarct volume, brain edema, and neurobehavioral changes. Western blotting and immunofluorescence were performed to investigate the effect of UroB on inflammation-related proteins. Furthermore, TRIM65 knockdown and TXNIP overexpression experiments elucidated the role of UroB in NLRP3 inflammasome activation. The ( demonstrate the neuroprotective effect of UroB in acute stroke, reducing brain tissue damage and improving motor function. Mechanistically, UroB modulated neuroinflammation by influencing TXNIP and TRIM65 protein expression, as well as competitive binding to the NLRP3 inflammasome, attenuating cerebral ischemia/reperfusion injury. In conclusion, the potential of UroB as a protective agent against cerebral ischemia/reperfusion injury in acute stroke stands out as it regulates TRIM65 and TXNIP competitive binding to the NLRP3 inflammasome. These findings suggest that UroB is a promising drug candidate for the treatment of acute stroke.


Subject(s)
Brain Ischemia , Coumarins , Reperfusion Injury , Stroke , Animals , Male , Rats , Brain Ischemia/drug therapy , Brain Ischemia/metabolism , Cell Cycle Proteins , Coumarins/metabolism , Coumarins/pharmacology , Coumarins/therapeutic use , Inflammasomes/metabolism , Neuroinflammatory Diseases , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Rats, Sprague-Dawley , Reperfusion Injury/drug therapy , Reperfusion Injury/metabolism
14.
Chem Biodivers ; 21(3): e202400184, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38372676

ABSTRACT

The phytochemical study of Peucedanum praeruptorum led to the isolation of twenty-five coumarins (1-25). Of which, (±) praeruptol A (±1), one pair of previous undescribed seco-coumarin enantiomers were obtained. Their structures were established according to HR-ESI-MS, NMR, X-ray single crystal diffraction analysis, as well as ECD calculation. All compounds were tested for anti-inflammatory activity in the RAW264.7 macrophage model, and eight compounds (7-10, and 13-16) exhibited significant inhibitory effects with IC50 values ranging from 9.48 to 34.66 µM. Among them, compound 7 showed the strongest inhibitory effect, which significantly suppressed the production of IL-6, IL-1ß, and TNF-α, as well as iNOS and COX-2 in a concentration-dependent manner. Further investigated results showed that compound 7 exerted an anti-inflammatory effect via the NF-κB signaling pathway.


Subject(s)
Coumarins , NF-kappa B , NF-kappa B/metabolism , Coumarins/pharmacology , Coumarins/metabolism , Anti-Inflammatory Agents/pharmacology , Plant Extracts/chemistry , Signal Transduction , Lipopolysaccharides/pharmacology
15.
Plant J ; 117(6): 1716-1727, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38361338

ABSTRACT

Plant roots release phytochemicals into the soil environment to influence nutrient availability and uptake. Arabidopsis thaliana roots release phenylpropanoid coumarins in response to iron (Fe) deficiency, likely to enhance Fe uptake and improve plant health. This response requires sufficient phosphorus (P) in the root environment. Nonetheless, the regulatory interplay influencing coumarin production under varying availabilities of Fe and P is not known. Through genome-wide association studies, we have pinpointed the influence of the ABC transporter G family member, PDR9, on coumarin accumulation and trafficking (homeostasis) under combined Fe and P deficiency. We show that genetic variation in the promoter of PDR9 regulates its expression in a manner associated with coumarin production. Furthermore, we find that MYB63 transcription factor controls dedicated coumarin production by regulating both COUMARIN SYNTHASE (COSY) and FERULOYL-CoA 6'-HYDROXYLASE 1 (F6'H1) expression while orchestrating secretion through PDR9 genes under Fe and P combined deficiency. This integrated approach illuminates the intricate connections between nutrient signaling pathways in coumarin response mechanisms.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Coumarins/metabolism , Gene Expression Regulation, Plant , Genome-Wide Association Study , Homeostasis , Plant Roots/genetics , Plant Roots/metabolism
16.
Chemistry ; 30(2): e202303174, 2024 Jan 08.
Article in English | MEDLINE | ID: mdl-37883670

ABSTRACT

Protein synthesis is important and regulated by various mechanisms in the cell. Translation initiation in eukaryotes starts at the 5' cap and is the most complex of the three phases of mRNA translation. It requires methylation of the N7 position of the terminal guanosine (m7 G). The canonical capping occurs in the nucleus, however, cytoplasmic recapping has been discovered. It functions in switching mRNAs between translating and non-translating states, but the individual steps are difficult to dissect. We targeted cytoplasmic cap methylation as the ultimate step of cytoplasmic recapping. We present an N7G photocaged 5' cap that can be activated for cytoplasmic methylation by visible light. We report chemical and chemo-enzymatic synthesis of this 5' cap with 7-(diethylamino)-4-methyl-coumarin (DEACM) at the N7G and validate that it is not bound by translation initiation factor 4E (eIF4E). We demonstrate incorporation into mRNA, the release of unmethylated cap analog and enzymatic remethylation to functional cap 0 after irradiation at 450 nm. In cells, irradiation triggers translation of mRNAs with the N7G photocaged 5' cap via cytoplasmic cap methylation.


Subject(s)
Coumarins , Protein Biosynthesis , RNA, Messenger/metabolism , Cytoplasm/metabolism , Methylation , Coumarins/metabolism , Light
17.
Plant Cell ; 36(3): 642-664, 2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38016103

ABSTRACT

Many non-graminaceous species release various coumarins in response to iron (Fe) deficiency. However, the physiological relevance of these coumarins remains poorly understood. Here, we show that the three enzymes leading to sideretin biosynthesis co-exist in Arabidopsis (Arabidopsis thaliana) epidermal and cortical cells and that the shift to fraxetin at alkaline pH depends on MYB72-mediated repression of CYTOCHROME P450, FAMILY 82, SUBFAMILY C, POLYPEPTIDE 4 (CYP82C4). In vitro, only fraxetin and sideretin can reduce part of the Fe(III) that they mobilize. We demonstrate that coumarin-mediated Fe(III) reduction is critical under acidic conditions, as fraxetin and sideretin can complement the Fe(III)-chelate reductase mutant ferric reduction oxidase 2 (fro2), and disruption of coumarin biosynthesis in fro2 plants impairs Fe acquisition similar to in the Fe(II) uptake-deficient mutant iron-regulated transporter 1 (irt1). Disruption of sideretin biosynthesis in a fro2 cyp82C4-1 double mutant revealed that sideretin is the dominant chemical reductant that functions with FRO2 to mediate Fe(II) formation for root uptake. At alkaline pH, Fe(III) reduction by coumarins becomes almost negligible but fraxetin still sustains high Fe(III) mobilization, suggesting that its main function is to provide chelated Fe(III) for FRO2. Our study indicates that strategy-I plants link sideretin and fraxetin biosynthesis and secretion to external pH to recruit distinct coumarin chemical activities to maximize Fe acquisition according to prevailing soil pH conditions.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Ferric Compounds/metabolism , Iron/metabolism , Coumarins/metabolism , Ferrous Compounds/metabolism , Plant Roots/metabolism , Gene Expression Regulation, Plant
18.
Food Funct ; 14(23): 10375-10386, 2023 Nov 27.
Article in English | MEDLINE | ID: mdl-37921630

ABSTRACT

Urolithin A (Uro-A), an intestinal microbiota metabolite of ellagitannin, has anti-aging properties. Through the direct intake of ellagitannin (or ellagic acid) and strains capable of producing Uro-A, the transformation of Uro-A in vivo is a potential method to develop anti-aging preparations. Therefore, this study aimed to investigate the dose-response relationship between the colonic infusion of Uro-A and its anti-aging effects. Results indicated that Uro-A exhibited a dose-dependent anti-aging effect in the colon, and the minimum effective dose might be 3.0 mg kg-1 day-1. The main manifestations were that, compared with the model group, 3.0 mg kg-1 day-1 and 15.0 mg kg-1 day-1 of Uro-A can increase forelimb grip strength by 11.87% and 16.72%, respectively, and increase the discrimination index by 92.14% and 238.11%, respectively. Both doses effectively inhibited the D-galactose-induced increase in oxidative stress levels in the body, muscle atrophy, and neuronal apoptosis. Additionally, Uro-A released through the colon could alleviate D-galactose-induced aging in mice by inhibiting NF-κB and mTOR targets, providing significant protection for motor and cognitive functions. These findings provide a theoretical basis for future application and development of ellagitannin (or ellagic acid) in combination with strains capable of producing Uro-A.


Subject(s)
Hydrolyzable Tannins , NF-kappa B , Mice , Animals , NF-kappa B/genetics , Hydrolyzable Tannins/pharmacology , Hydrolyzable Tannins/metabolism , Galactose , Ellagic Acid/pharmacology , Ellagic Acid/metabolism , Coumarins/pharmacology , Coumarins/metabolism , TOR Serine-Threonine Kinases/genetics , Aging
19.
Appl Environ Microbiol ; 89(10): e0110923, 2023 10 31.
Article in English | MEDLINE | ID: mdl-37815346

ABSTRACT

Coumarin (COU) is both a naturally derived phytotoxin and a synthetic pollutant which causes hepatotoxicity in susceptible humans. Microbes have potentials in COU biodegradation; however, its underlying genetic determinants remain unknown. Pseudomonas sp. strain NyZ480, a robust COU degrader, has been isolated and proven to grow on COU as its sole carbon source. In this study, five homologs of xenobiotic reductase A scattered throughout the chromosome of strain NyZ480 were identified, which catalyzed the conversion of COU to dihydrocoumarin (DHC) in vitro. Phylogenetic analysis indicated that these COU reductases belong to different subgroups of the old yellow enzyme family. Moreover, two hydrolases (CouB1 and CouB2) homologous to the 3,4-dihydrocoumarin hydrolase in the fluorene degradation were found to accelerate the generation of melilotic acid (MA) from DHC. CouC, a new member from the group A flavin monooxygenase, was heterologously expressed and purified, catalyzing the hydroxylation of MA to produce 3-(2,3-dihydroxyphenyl)propionate (DHPP). Gene deletion and complementation of couC indicated that couC played an essential role in the COU catabolism in strain NyZ480, considering that the genes involved in the downstream catabolism of DHPP have been characterized (Y. Xu and N. Y. Zhou, Appl Environ Microbiol 86:e02385-19, 2020) and homologous catabolic cluster exists in strain NyZ480. This study elucidated the genetic determinants for complete degradation of COU by Pseudomonas sp. strain NyZ480.IMPORTANCECoumarin (COU) is a phytochemical widely distributed in the plant kingdom and also artificially produced as an ingredient for personal care products. Hence, the environmental occurrence of COU has been reported in different places. Toxicologically, COU was proven hepatotoxic to individuals with mutations in the CYP2A6 gene and listed as a group 3 carcinogen by the International Agency for Research on Cancer and thus has raised increasing concerns. Until now, different physicochemical methods have been developed for the removal of COU, whereas their practical applications were hampered due to high cost and the risk of secondary contamination. In this study, genetic evidence and biochemical characterization of the COU degradation by Pseudomonas sp. strain NyZ480 are presented. With the gene and strain resources provided here, better managements of the hazards that humans face from COU could be achieved, and the possible microbiota-plant interaction mediated by the COU-utilizing rhizobacteria could also be investigated.


Subject(s)
Mixed Function Oxygenases , Pseudomonas , Humans , Pseudomonas/genetics , Pseudomonas/metabolism , Phylogeny , Mixed Function Oxygenases/genetics , Mixed Function Oxygenases/metabolism , Biodegradation, Environmental , Coumarins/metabolism
20.
Nutrients ; 15(20)2023 Oct 19.
Article in English | MEDLINE | ID: mdl-37892516

ABSTRACT

Urolithin A (UA) is a naturally occurring compound derived from the metabolism of gut microbiota, which has attracted considerable research attention due to its pharmacological effects and potential implications in muscle health and performance. Recent studies have demonstrated that Urolithin A exhibits diverse biological activities, encompassing anti-inflammatory, antioxidant, anti-tumor, and anti-aging properties. In terms of muscle health, accumulating evidence suggests that Urolithin A may promote muscle protein synthesis and muscle growth through various pathways, offering promise in mitigating muscle atrophy. Moreover, Urolithin A exhibits the potential to enhance muscle health and performance by improving mitochondrial function and regulating autophagy. Nonetheless, further comprehensive investigations are still warranted to elucidate the underlying mechanisms of Urolithin A and to assess its feasibility and safety in human subjects, thereby advancing its potential applications in the realms of muscle health and performance.


Subject(s)
Anti-Inflammatory Agents , Coumarins , Humans , Coumarins/pharmacology , Coumarins/metabolism , Anti-Inflammatory Agents/pharmacology , Muscles/metabolism , Muscular Atrophy/drug therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...