Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 693
Filter
1.
BMC Genom Data ; 25(1): 81, 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39227788

ABSTRACT

OBJECTIVES: The two oyster species studied hold considerable economic importance for artisanal harvest (Crassostrea rhizophorae) and aquaculture (Crassostrea gasar). Their draft genomes will play an important role in the application of genomic methods such as RNAseq, population-based genomic scans aiming at addressing expression responses to pollution stress, adaptation to salinity and temperature variation, and will also permit investigating the genetic bases and enable marker-assisted selection of economically important traits like shell and mantle coloration and resistance to temperature and disease. DATA DESCRIPTION: The draft assembly size of Crassostrea gasar is 506 Mbp, and of Crassostrea rhizophorae is 584 Mbp with scaffolds N50 of 11,3 Mbp and 4,9 Mbp, respectively. The general masked bases by RepeatMasker in both genomes were highly similar using different datasets. The masked bases varied from 9.41% in C. gasar to 10.05% in C. rhizophorae and 42.85% in C. gasar to 44.44% in C. rhizophorae using Dfam and RepeatModeler datasets, respectively. Functional annotation with eggNog resulted in 34,693 annotated proteins in C. rhizophorae and 26,328 in C. gasar. BUSCO analysis shows that almost 99% of genes (5,295) are complete in relation to the mollusk orthologous genes dataset (mollusca_odb10).


Subject(s)
Crassostrea , Genome , Crassostrea/genetics , Crassostrea/growth & development , Animals , Genome/genetics , Aquaculture/methods , Molecular Sequence Annotation , Genomics/methods , Atlantic Ocean
2.
J Agric Food Chem ; 72(35): 19494-19504, 2024 Sep 04.
Article in English | MEDLINE | ID: mdl-39168117

ABSTRACT

Tropomyosin was reported as an important allergen in Crassostrea angulata and designated as Cra a 1. The localization of the T cell epitopes and the reduction of the immunoreactivity of Cra a 1 are still lacking. In this study, four T cell epitopes were identified by using wild-type Cra a 1 (wtCra a 1)-immunized mouse splenocytes cultured with synthetic peptides. The immunoreactivity was maintained after chemical denaturation treatment, indicating that the linear epitope is an immunodominant epitope of wtCra a 1. Furthermore, the hypoallergenic derivative (mCra a 1) was developed by the deletion of linear B cell epitopes and retention of T cell epitopes. mCra a 1 could stimulate CD4+T cell proliferation and upregulate interleukin-10 secretion. Overall, basophil activation by mCra a 1 was low, but its ability to induce T cell proliferation was retained, suggesting that mCra a 1 may serve as a viable candidate for treating oyster allergy.


Subject(s)
Allergens , Crassostrea , Epitopes, B-Lymphocyte , Epitopes, T-Lymphocyte , Animals , Mice , Epitopes, T-Lymphocyte/immunology , Epitopes, T-Lymphocyte/chemistry , Epitopes, T-Lymphocyte/genetics , Allergens/immunology , Allergens/chemistry , Allergens/genetics , Epitopes, B-Lymphocyte/immunology , Epitopes, B-Lymphocyte/chemistry , Epitopes, B-Lymphocyte/genetics , Crassostrea/immunology , Crassostrea/chemistry , Crassostrea/genetics , Tropomyosin/immunology , Tropomyosin/genetics , Tropomyosin/chemistry , Mice, Inbred BALB C , Female , Humans , Cell Proliferation/drug effects , CD4-Positive T-Lymphocytes/immunology , Shellfish Hypersensitivity/immunology , T-Lymphocytes/immunology , T-Lymphocytes/drug effects
3.
Dev Comp Immunol ; 159: 105226, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38992733

ABSTRACT

The interactions induced by RIP homotypic interaction motif (RHIM) are essential for the activation of inflammatory signaling and certain cell death pathways. In the present study, a RHIM-containing protein was identified from Pacific oyster Crassostrea gigas, which harbored a RHIM domain and a Death domain (designated CgRHIM-containing protein). The mRNA transcripts of CgRHIM-containing protein were constitutively expressed in all the examined tissues of oysters, with the highest expression level in mantle. The CgRHIM-containing protein was mainly distributed in the cytoplasm of oyster haemocytes. After high temperature stress, the expression levels of CgRel and CgBcl-2 increased significantly, and reached the peak level at 12 h, then decreased gradually. The transcripts of CgRHIM-containing protein, Cgcaspase-8 and Cgcaspase-3 in haemocytes up-regulated at 12 h after high temperature stress. Moreover, the protein abundance of CgRHIM-containing protein increased significantly, and the ubiquitination level of CgRHIM-containing protein in haemocytes showed an increasing trend at first and then decreased. After the expression of CgRHIM-containing protein was knocked down by siRNA, the mRNA expression levels of CgRel and CgBcl-2 decreased significantly at 6 h after high temperature stress, and those of CgFADD-like, Cgcaspase-8 and Cgcaspase-3, as well as the apoptosis rate of haemocytes also decreased significantly at 24 h. These results indicated that CgRHIM-containing protein might regulate haemocyte apoptosis in oysters upon high temperature stress via mediating the expression of Rel, Bcl-2 and caspase-8/3.


Subject(s)
Apoptosis , Crassostrea , Hemocytes , Animals , Hemocytes/metabolism , Hemocytes/physiology , Crassostrea/immunology , Crassostrea/genetics , Heat-Shock Response , Stress, Physiological , Hot Temperature , Caspase 8/metabolism , Caspase 8/genetics , Caspase 3/metabolism
4.
Gene ; 927: 148748, 2024 Nov 15.
Article in English | MEDLINE | ID: mdl-38969245

ABSTRACT

Biomineralization processes in bivalves, particularly the initial production of molecular components (such as matrix deposition and calcification) in the early stages of shell development are highly complex and well-organized. This study investigated the temporal dynamics of organic matrix and calcium carbonate (CaCO3) deposition in Pacific oysters (Crassostrea gigas) across various development stages. The shell-field initiated matrix secretion during the gastrula stage. Subsequent larval development triggered central shell-field calcification, accompanied by expansion of the calcium ring from its interior to the periphery. Notably, the expression patterns of CgTyrp-2 and CgTyr closely correlated with matrix deposition and calcification during early developmental stages, with peak expression occurring in oyster's gastrula and D-veliger stages. Subsequently, the CRISPR/Cas9 system was utilized to knock out CgTyrp-2 and CgTyr with more distinct phenotypic alterations observed when both genes were concurrently knocked out. The relative gene expression was analyzed post-knockout, indicating that the knockout of CgTyr or CgTyrp-2 led to reduced expression of CgChs1, along with increased expression of CgChit4. Furthermore, when dual-sgRNAs were employed to knockout CgTyrp-2, a large deletion (2 kb) within the CgTyrp-2 gene was identified. In summary, early shell formation in C. gigas is the result of a complex interplay of multiple molecular components with CgTyrp-2 and CgTyr playing key roles in regulating CaCO3 deposition.


Subject(s)
Animal Shells , CRISPR-Cas Systems , Calcification, Physiologic , Calcium Carbonate , Crassostrea , Gene Knockout Techniques , Animals , Crassostrea/genetics , Crassostrea/growth & development , Crassostrea/metabolism , Animal Shells/metabolism , Animal Shells/growth & development , Gene Knockout Techniques/methods , Calcification, Physiologic/genetics , Calcium Carbonate/metabolism , RNA, Guide, CRISPR-Cas Systems/genetics , Biomineralization/genetics
5.
Int J Biol Macromol ; 276(Pt 2): 134020, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39038584

ABSTRACT

Mollusc shell color polymorphism is influenced by various factors. Pigments secreted in vivo by animals play a critical role in shell coloration. Among the different shell-color hues, orange pigmentation has been partially attributed to porphyrins. However, the detailed causal relationship between porphyrins and orange-shell phenotype in molluscs remains largely unexplored. The various strains of Pacific oyster (Crassostrea gigas) with different shell color provide useful models to study the molecular regulation of mollusc coloration. Accordingly, oysters with orange and gold-shells, exhibiting distinct porphyrin distributions, were selected for analysis of total metabolites and gene expression profile through mantle metabolomic and transcriptomic studies. Translocator protein (TspO) and protoporphyrin IX (PPIX) were identified as potential factors influencing oyster shell-color. The concentration of PPIX was measured using HPLC, while expression profiling of CgTspO was analyzed by qPCR, in situ hybridization, Western blotting, and immunofluorescence techniques. Moreover, the roles of CgTspO in regulating PPIX metabolism and affecting the orange-shell-coloration were investigated in vitro and in vivo. These studies indicate that PPIX and its associated metabolic protein, CgTspO may serve as new regulators of orange-shell-coloration in C. gigas. Data of this study offer new insights into oyster shell coloration and enhancing understandings of mollusc shell color polymorphism.


Subject(s)
Animal Shells , Crassostrea , Pigmentation , Protoporphyrins , Animals , Protoporphyrins/metabolism , Crassostrea/metabolism , Crassostrea/genetics , Animal Shells/metabolism , Color
6.
Fish Shellfish Immunol ; 151: 109736, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38950760

ABSTRACT

RIPK1/TAK1 are important for programmed cell death, including liver death, necroptosis and apoptosis. However, there have been few published reports on the functions of RIPK1/TAK1 in invertebrates. In this study, full-length ChRIPK1 and ChTAK1 were cloned from C. hongkongensis through the rapid amplification of cDNA ends (RACE) technology. ChRIPK1 has almost no homology with human RIPK1 and lacks a kinase domain at the N-terminus but has a DD and RHIM domain. ChTAK1 is conserved throughout evolution. qRT‒PCR was used to analyze the mRNA expression patterns of ChRIPK1 in different tissues, developmental stages, and V. coralliilyticus-infected individuals, and both were highly expressed in the mantle and gills, while ChRIPK1 was upregulated in hemocytes and gills after V. coralliilyticus or S. aureus infection, which indicates that ChRIPK1 is involved in immune regulation. Fluorescence assays revealed that ChRIPK1 localized to the cytoplasm of HEK293T cells in a punctiform manner, but the colocalization of ChRIPK1 with ChTAK1 abolished the punctiform morphology. In the dual-luciferase reporter assay, both ChRIPK1 and ChRIPK1-RIHM activated the NF-κB signaling pathway in HEK293T cells, and ChTAK1 activated ChRIPK1 in the NF-κB signaling pathway. The apoptosis rate of the hemocytes was not affected by the necroptosis inhibitor Nec-1 but was significantly decreased, and ChRIPK1 expression was knocked down in the hemocytes of C. hongkongensis. These findings indicated that ChRIPK1 induces apoptosis but not necroptosis in oysters. This study provides a theoretical basis for further research on the molecular mechanism by which invertebrates regulate the programmed cell death of hemocytes in oysters.


Subject(s)
Crassostrea , Necroptosis , Phylogeny , Signal Transduction , Animals , Crassostrea/genetics , Crassostrea/immunology , Necroptosis/immunology , Signal Transduction/immunology , Receptor-Interacting Protein Serine-Threonine Kinases/genetics , Gene Expression Regulation/immunology , Sequence Alignment/veterinary , Gene Expression Profiling/veterinary , Amino Acid Sequence , Immunity, Innate/genetics , MAP Kinase Kinase Kinases/genetics , MAP Kinase Kinase Kinases/immunology , Staphylococcus aureus/physiology , Dinoflagellida/physiology , Dinoflagellida/genetics
7.
Fish Shellfish Immunol ; 151: 109705, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38885801

ABSTRACT

DNA methylation, an essential epigenetic alteration, is tightly linked to a variety of biological processes, such as immune response. To identify the epigenetic regulatory mechanism in Pacific oyster (Crassostrea gigas), whole-genome bisulfite sequencing (WGBS) was conducted on C. gigas at 0 h, 6 h, and 48 h after infection with Vibrio alginolyticus. At 6 h and 48 h, a total of 11,502 and 14,196 differentially methylated regions (DMRs) were identified (p<0.05, FDR<0.001) compared to 0 h, respectively. Gene ontology (GO) analysis showed that differentially methylated genes (DMGs) were significantly enriched in various biological pathways including immunity, cytoskeleton, epigenetic modification, and metabolic processes. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis showed that transcription machinery (ko03021) is one of the most important pathways. Integrated transcriptome and methylome analyses allowed the identification of 167 and 379 DMG-related DEGs at 6 h and 48 h, respectively. These genes were significantly enriched in immune-related pathways, including nuclear factor kappa B (NF-κB) signaling pathway (ko04064) and tumor necrosis factor (TNF) signaling pathway (ko04668). Interestingly, it's observed that the NF-κB pathway could be activated jointly by TNF Receptor Associated Factor 2 (TRAF2) and Baculoviral IAP Repeat Containing 3 (BIRC3, the homolog of human BIRC2) which were regulated by DNA methylation in response to the challenge posed by V. alginolyticus infection. Through this study, we provided insightful information about the epigenetic regulation of immunity-related genes in the C. gigas, which will be valuable for the understanding of the innate immune system modulation and defense mechanism against bacterial infection in invertebrates.


Subject(s)
Crassostrea , DNA Methylation , Epigenesis, Genetic , NF-kappa B , Signal Transduction , Vibrio alginolyticus , Animals , Crassostrea/genetics , Crassostrea/immunology , Crassostrea/microbiology , Vibrio alginolyticus/physiology , NF-kappa B/genetics , NF-kappa B/metabolism , NF-kappa B/immunology , Signal Transduction/genetics , Immunity, Innate/genetics , Vibrio Infections/immunology , Vibrio Infections/veterinary , Vibrio Infections/genetics
8.
Fish Shellfish Immunol ; 151: 109702, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38897309

ABSTRACT

CD49d, encoded by the gene Integrin α4, is a significant member of cell adhesion receptors, which is widely expressed in various immune cells to trigger immune responses against invading pathogens. In the present study, the expression of CgCD49d and its regulatory role in TNF expression were investigated in the Pacific oyster Crassostrea gigas. There were five Int-alpha domains, an Integrin_alpha2 region and a unique FG-GAP repeat region inserted identified in CgCD49d. CgCD49d transcript was specifically expressed in haemocytes, and its mRNA expression level in haemocytes increased after LPS and Vibrio splendidus stimulation. After CgCD49d was blocked by using its antibody, the phosphorylation level of CgJNK in the MAPK signaling pathway and CgTNF transcripts decreased significantly post V. splendidus stimulation. After phosphorylation level of CgJNK was inhibited by using its inhibitor, the nuclear translocation of CgRel was restrained and CgTNF transcripts also decreased significantly post V. splendidus stimulation. Furthermore, CgCD49d was found to be mainly expressed in the agranulocyte subpopulation, and Alexa Fluor 488-conjugated CgCD49d antibody labeled agranulocytes with a circle of green fluorescence signals on CgCD49d+ agranulocyte surface under Confocal microscopy, which accounted for 24.9 ± 4.53% of total haemocytes. Collectively, these results suggested that CgCD49d promoted TNF expression in oyster haemocytes against bacterial invasion by mediating MAPK pathway, and it could be used as a surface marker to type and sort a subset of agranulocyte subpopulation among haemocytes.


Subject(s)
Crassostrea , Hemocytes , MAP Kinase Signaling System , Vibrio , Animals , Crassostrea/immunology , Crassostrea/genetics , Hemocytes/immunology , Vibrio/physiology , MAP Kinase Signaling System/immunology , Lipopolysaccharides/pharmacology , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/immunology , Tumor Necrosis Factor-alpha/metabolism , Gene Expression Regulation/immunology , Immunity, Innate/genetics , Amino Acid Sequence , Phylogeny , Sequence Alignment/veterinary
9.
Cell Stress Chaperones ; 29(4): 589-602, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38908469

ABSTRACT

Heat shock protein 70 (HSP70), the most prominent and well-characterized stress protein in animals, plays an important role in assisting animals in responding to various adverse conditions. In the present study, a total of 113 HSP70 gene family members were identified in the updated genome of Magallana gigas (designated MgHSP70) (previously known as Crassostrea gigas). There were 75, 12, 11, and 8 HSP70s located in the cytoplasm, nucleus, mitochondria, and endoplasmic reticulum, respectively, and 7 HSP70s were located in both the nucleus and cytoplasm. Among 113 MgHSP70 genes, 107 were unevenly distributed in 8 chromosomes of M. gigas with the greatest number in chromosome 07 (61 genes, 57.01%). The MgHSP70 gene family members were mainly assigned into five clusters, among which the HSPa12 subfamily underwent lineage-specific expansion, consisting of 89 members. A total of 68 MgHSP70 genes (60.18%) were tandemly duplicated and formed 30 gene pairs, among which 14 gene pairs were under strong positive selection. In general, the expression of MgHSP70s was tissue-specific, with the highest expression in labial palp and gill and the lowest expression in adductor muscle and hemocytes. There were 35, 31, and 47 significantly upregulated genes at 6, 12, and 24 h after heat shock treatment (28 °C), respectively. The expression patterns of different tandemly duplicated genes exhibited distinct characteristics after shock treatment, indicating that these genes may have different functions. Nevertheless, genes within the same tandemly duplicated group exhibit similar expression patterns. Most of the tandemly duplicated HSP70 gene pairs showed the highest expression levels at 24 h. This study provides a comprehensive description of the MgHSP70 gene family in M. gigas and offers valuable insights into the functions of HSP70 in the mollusc adaptation of oysters to environmental stress.


Subject(s)
HSP70 Heat-Shock Proteins , Heat-Shock Response , Animals , HSP70 Heat-Shock Proteins/genetics , HSP70 Heat-Shock Proteins/metabolism , Heat-Shock Response/genetics , Phylogeny , Ostreidae/genetics , Ostreidae/metabolism , Crassostrea/genetics , Crassostrea/metabolism , Multigene Family , Genome
10.
Fish Shellfish Immunol ; 151: 109709, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38901684

ABSTRACT

Metabotropic glutamate receptors (mGluRs) play a pivotal role in the neuroendocrine-immune regulation. In this study, eight mGluRs were identified in the Pacific Oyster Crassostrea gigas, which were classified into three subfamilies based on genetic similarity. All CgmGluRs harbor variable numbers of PBP1 domains at the N-terminus. The sequence and structural features of CgmGluRs are highly similar to mGluRs in other species. A uniformly upregulated expression of CgmGluRs was observed during D-shaped larval stage compared to early D-shaped larval stage. The transcripts of CgmGluRs were detectable in various tissues of oyster. Different CgmGluR exhibited diverse expression patterns response against different PAMP stimulations, among which CgmGluR5 was significantly downregulated under these stimulations, reflecting its sensitivity and broad-spectrum responsiveness to microbes. Following LPS stimulation, the mRNA expression of CgmGluR5 and CgCALM1 in haemocytes was suppressed within 6 h and returned to normal levels by 12 h. Inhibition of CgmGluR5 activity resulted in a significant reduction in CgCALM1 expression after 12 h. Further KEGG enrichment analysis suggested that CgmGluR5 might modulate calcium ion homeostasis and metabolic pathways by regulating CgCALM1. This research delivers the systematic analysis of mGluR in the Pacific Oyster, offering insights into evolutionary characteristics and immunoregulatory function of mGluR in mollusks.


Subject(s)
Crassostrea , Gene Expression Regulation , Immunity, Innate , Receptors, Metabotropic Glutamate , Animals , Crassostrea/immunology , Crassostrea/genetics , Receptors, Metabotropic Glutamate/genetics , Receptors, Metabotropic Glutamate/immunology , Receptors, Metabotropic Glutamate/metabolism , Immunity, Innate/genetics , Gene Expression Regulation/immunology , Phylogeny , Gene Expression Profiling/veterinary , Sequence Alignment/veterinary , Amino Acid Sequence , Lipopolysaccharides/pharmacology
11.
BMC Genomics ; 25(1): 591, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38867206

ABSTRACT

BACKGROUND: The Portuguese oyster Crassostrea angulata, a bivalve of significant economic and ecological importance, has faced a decline in both production and natural populations due to pathologies, climate change, and anthropogenic factors. To safeguard its genetic diversity and improve reproductive management, cryopreservation emerges as a valuable strategy. However, the cryopreservation methodologies lead to some damage in structures and functions of the cells and tissues that can affect post-thaw quality. Transcriptomics may help to understand the molecular consequences related to cryopreservation steps and therefore to identify different freezability biomarkers. This study investigates the molecular damage induced by cryopreservation in C. angulata D-larvae, focusing on two critical steps: exposure to cryoprotectant solution and the freezing/thawing process. RESULTS: Expression analysis revealed 3 differentially expressed genes between larvae exposed to cryoprotectant solution and fresh larvae and 611 differentially expressed genes in cryopreserved larvae against fresh larvae. The most significantly enriched gene ontology terms were "carbohydrate metabolic process", "integral component of membrane" and "chitin binding" for biological processes, cellular components and molecular functions, respectively. Kyoto Encyclopedia of Genes and Genomes enrichment analysis identified the "neuroactive ligand receptor interaction", "endocytosis" and "spliceosome" as the most enriched pathways. RNA sequencing results were validate by quantitative RT-PCR, once both techniques presented the same gene expression tendency and a group of 11 genes were considered important molecular biomarkers to be used in further studies for the evaluation of cryodamage. CONCLUSIONS: The current work provided valuable insights into the molecular repercussions of cryopreservation on D-larvae of Crassostrea angulata, revealing that the freezing process had a more pronounced impact on larval quality compared to any potential cryoprotectant-induced toxicity. Additionally, was identify 11 genes serving as biomarkers of freezability for D-larvae quality assessment. This research contributes to the development of more effective cryopreservation protocols and detection methods for cryodamage in this species.


Subject(s)
Crassostrea , Cryopreservation , Cryoprotective Agents , Gene Expression Profiling , Larva , Animals , Crassostrea/genetics , Crassostrea/growth & development , Cryoprotective Agents/pharmacology , Cryoprotective Agents/toxicity , Larva/genetics , Larva/drug effects , Larva/growth & development , Transcriptome , Gene Ontology
12.
Molecules ; 29(11)2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38893545

ABSTRACT

Tetraploid oysters are artificially produced oysters that do not exist in nature. The successful breeding of 100% triploid oysters resolved the difficulties of traditional drug-induced triploids, such as the presence of drug residues and a low triploid induction rate. However, little is known concerning the biochemical composition and nutrient contents of such tetraploids. Therefore, we investigated compositional differences among diploid, triploid, and tetraploid Crassostrea gigas as well as between males and females of diploids and tetraploids. The findings indicated that glycogen, EPA, ∑PUFA, and omega-3 contents were significantly higher in triploid oysters than in diploids or tetraploids; tetraploid oysters had a significantly higher protein content, C14:0, essential amino acid, and flavor-presenting amino acid contents than diploids or triploids. For both diploid and tetraploids, females had significantly higher levels of glutamate, methionine, and phenylalanine than males but lower levels of glycine and alanine. In addition, female oysters had significantly more EPA, DHA, omega-3, and total fatty acids, a result that may be due to the fact that gonadal development in male oysters requires more energy to sustain growth, consumes greater amounts of nutrients, and accumulates more proteins. With these results, important information is provided on the production of C. gigas, as well as on the basis and backing for the genetic breeding of oysters.


Subject(s)
Amino Acids , Crassostrea , Diploidy , Fatty Acids , Tetraploidy , Triploidy , Animals , Crassostrea/genetics , Crassostrea/metabolism , Amino Acids/metabolism , Fatty Acids/metabolism , Fatty Acids/analysis , Female , Male
13.
G3 (Bethesda) ; 14(9)2024 Sep 04.
Article in English | MEDLINE | ID: mdl-38869232

ABSTRACT

Maintaining genetic diversity in cultured shellfish can be challenging due to high variance in individual reproductive success, founder effects, and rapid genetic drift, but is important to retain adaptive potential and avoid inbreeding depression. To support broodstock management and selective breeding in cultured Pacific oysters (Crassostrea (Magallana) gigas), we developed an amplicon panel targeting 592 genomic regions and SNP variants with an average of 50 amplicons per chromosome. Target SNPs were selected based on elevated observed heterozygosity or differentiation in Pacific oyster populations in British Columbia, Canada. The use of the panel for parentage applications was evaluated using multiple generations of oysters from a breeding program on Vancouver Island, Canada (n = 181) and families selected for Ostreid herpesvirus-1 resistance from the Molluscan Broodstock Program in Oregon, USA (n = 136). Population characterization was evaluated using wild, naturalized, farmed, or hatchery oysters sampled throughout the Northern Hemisphere (n = 189). Technical replicates showed high genotype concordance (97.5%; n = 68 replicates). Parentage analysis found suspected pedigree and sample handling errors, demonstrating the panel's value for quality control in breeding programs. Suspected null alleles were identified and found to be largely population dependent, suggesting population-specific variation impacting target amplification. Null alleles were identified using existing data without the need for pedigree information, and once they were removed, assignment rates increased to 93.0 and 86.0% of possible assignments in the two breeding program datasets. A pipeline for analyzing the amplicon sequence data from sequencer output, amplitools, is also provided.


Subject(s)
Genotype , Genotyping Techniques , Polymorphism, Single Nucleotide , Animals , Genotyping Techniques/methods , Crassostrea/genetics , Crassostrea/virology , High-Throughput Nucleotide Sequencing/methods , Ostreidae/genetics
14.
Food Res Int ; 186: 114356, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38729722

ABSTRACT

The quality of Pacific oyster (Crassostrea gigas) can be affected by many factors during depuration, in which temperature is the major element. In this study, we aim to determine the quality and plasmalogen changes in C. gigas depurated at different temperatures. The quality was significantly affected by temperature, represented by varying survival rate, glycogen content, total antioxidant capacity, alkaline phosphatase activity between control and stressed groups. Targeted MS analysis demonstrated that plasmalogen profile was significantly changed during depuration with PUFA-containing plasmalogen species being most affected by temperature. Proteomics analysis and gene expression assay further verified that plasmalogen metabolism is regulated by temperature, specifically, the plasmalogen synthesis enzyme EPT1 was significantly downregulated by high temperature and four plasmalogen-related genes (GPDH, PEDS, Pex11, and PLD1) were transcriptionally regulated. The positive correlations between the plasmalogen level and quality characteristics suggested plasmalogen could be regarded as a quality indicator of oysters during depuration.


Subject(s)
Crassostrea , Plasmalogens , Temperature , Animals , Plasmalogens/metabolism , Plasmalogens/analysis , Crassostrea/genetics , Crassostrea/metabolism , Shellfish/analysis , Proteomics/methods , Antioxidants/metabolism , Antioxidants/analysis , Alkaline Phosphatase/metabolism , Food Quality
15.
Fish Shellfish Immunol ; 149: 109612, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38705548

ABSTRACT

SH2 domain containing inositol polyphosphate5-phosphatase-2 (SHIP2) is a member of the 5-phosphatase family, acting as a vital negative regulator of immune response in vertebrates. In the present study, a SHIP2 homologue (designed as CgSHIP2) was identified from Pacific oyster, Crassostrea gigas. There was a SH2 domain, an IPPc domain and a SAM domain in CgSHIP2. The mRNA transcripts of CgSHIP2 were widely expressed in all the tested tissues with the highest expression in haemolymph. The mRNA expressions of CgSHIP2 in haemocytes increased significantly at 6, 12, 48 and 72 h after Vibrio splendidus stimulation. The positive green signals of CgSHIP2 protein were mainly located in cytoplasm of haemocytes. After the expression of CgSHIP2 was inhibited by RNA interference, the mRNA transcripts of interleukin 17s (CgIL-17-1, CgIL-17-2, CgIL-17-3 and CgIL-17-6) in the haemocytes increased significantly at 24 h after V. splendidus stimulation, which were 8.15-fold (p < 0.001), 3.44-fold (p < 0.05), 2.15-fold (p < 0.01) and 4.63-fold (p < 0.05) compared with that in NC-RNAi group, respectively. Obvious branchial swelling and cilium shedding in gills were observed in CgSHIP2-RNAi group at 24 h after V. splendidus stimulation. The results suggested that CgSHIP2 played an important role in controlling inflammatory response induced by bacteria in oysters.


Subject(s)
Crassostrea , Gene Expression Regulation , RNA, Messenger , Vibrio , Animals , Crassostrea/immunology , Crassostrea/genetics , Vibrio/physiology , Gene Expression Regulation/immunology , RNA, Messenger/genetics , RNA, Messenger/metabolism , Immunity, Innate/genetics , Phosphoric Monoester Hydrolases/genetics , Phosphoric Monoester Hydrolases/metabolism , Interleukin-17/genetics , Interleukin-17/immunology , Interleukin-17/metabolism , Phylogeny , Amino Acid Sequence , Gene Expression Profiling/veterinary , Sequence Alignment/veterinary , Hemocytes/immunology
16.
Genes (Basel) ; 15(5)2024 05 19.
Article in English | MEDLINE | ID: mdl-38790273

ABSTRACT

Crassostrea ariakensis (Fujita, 1913) is one of the most important economic and ecological oysters that is naturally distributed along the coast of Asia, separated by the Yangtze River estuary. They are usually compared as different populations, while there is no consensus on whether C. ariakensis in northern and southern areas should be considered as two species or subspecies. Here, we analyzed morphological characteristics, COI, 16s rRNA, mitogenome sequences, and species delimitation analysis (ASAP and PTP) to resolve the intraspecific taxonomic status of the C. ariakensis. Phylogenetic and ASAP analysis highlight that C. ariakensis was divided into N-type and S-type. PTP was unable to differentiate between the two types of C. ariakensis. The divergence time of N-type and S-type C. ariakinsis is estimated to be 1.6 Mya, using the relaxed uncorrelated lognormal clock method. Additionally, significant morphological differences exist between the two groups in terms of the adductor muscle scar color. Despite these differences, the COI (0.6%) and 16S rRNA (0.6%) genetic distance differences between N-type and S-type C. ariakensis has not yet reached the interspecific level. These results suggest that N-type and S-type C. ariakensis should be treated as different subspecies and renamed as C. ariakensis ariakensis subsp. nov and C. ariakensis meridioyangtzensis subsp. nov.


Subject(s)
Crassostrea , Phylogeny , RNA, Ribosomal, 16S , Animals , Crassostrea/genetics , Crassostrea/classification , RNA, Ribosomal, 16S/genetics , Asia , Genome, Mitochondrial , Electron Transport Complex IV/genetics
17.
Article in English | MEDLINE | ID: mdl-38768804

ABSTRACT

The Pacific oyster Crassostrea gigas is renowned for its high zinc content, but the significant variation among individuals diminishes its value as a reliable source of zinc supplementation. The Zrt/Irt-like protein 1 (ZIP1), a pivotal zinc transporter that facilitates zinc uptake in various organisms, plays crucial roles in regulating zinc content. In the present study, polymorphisms of a ZIP1 gene in C. gigas (CgZIP1-II) were investigated, and their association with zinc content was evaluated through preliminary association analysis in 41 oysters and verification analysis in another 200 oysters. A total of 17 single nucleotide polymorphisms (SNPs) were identified in the exonic region of CgZIP1-II gene, with c.503A>G significantly associated with zinc content. Protein sequence and structure prediction showed that c.503A>G caused a p.Met110Val nonsynonymous mutation located in the metal-binding region of CgZIP1-II, which could influence its affinity for zinc ions, thereby modulating its zinc transport functionality. These results indicate the potential influence of CgZIP1-II polymorphisms on zinc content and provide candidate markers for selecting C. gigas with high zinc content.


Subject(s)
Cation Transport Proteins , Crassostrea , Polymorphism, Single Nucleotide , Zinc , Animals , Zinc/metabolism , Crassostrea/genetics , Crassostrea/metabolism , Cation Transport Proteins/genetics , Cation Transport Proteins/metabolism , Cation Transport Proteins/chemistry
18.
Gene ; 924: 148555, 2024 Oct 05.
Article in English | MEDLINE | ID: mdl-38772515

ABSTRACT

The Hong Kong oyster, Crassostrea hongkongensis, is a significant bivalve species with economic importance. It primarily inhabits the estuarine intertidal zones in southern China, making it susceptible to salinity fluctuations. Consequently, investigating the molecular mechanisms governing salinity regulation in C. hongkongensis is essential. In this study, we conducted miRNA-seq on C. hongkongensis to compare miRNA expression differences under varying salinities (5‰, 25‰, and 35‰). The miRNA sequencing revealed 51 known miRNAs and 95 novel miRNAs across nine small RNA libraries (S5, S25, and S35). Among these miRNAs, we identified 6 down-regulated differentially expressed (DE) miRNAs in response to hypo-salinity stress (5‰), while 1 up-regulated DE miRNA and 5 down-regulated DE miRNAs were associated with hyper-salinity stress (35‰). Additionally, we predicted 931 and 768 potential target genes for hypo- and hyper-salinity stress, respectively. Functional gene annotation indicated that the target genes under hypo-salinity stress were linked to vesicle-mediated transport and metal ion binding. Conversely, those under hyper-salinity stress were primarily involved in signal transduction and metabolic processes. These findings have provided insights into the regulatory role of miRNAs, their potential target genes and associated pathways in oyster hypo- and hyper-salinity stress, which establish a foundation for future studies on the roles of miRNAs in salinity acclimation mechanisms in C. hongkongensis.


Subject(s)
Crassostrea , MicroRNAs , Salinity , Animals , Crassostrea/genetics , MicroRNAs/genetics , Acclimatization/genetics , Salt Stress/genetics , Molecular Sequence Annotation , Gene Expression Profiling/methods , RNA-Seq/methods
19.
Article in English | MEDLINE | ID: mdl-38797241

ABSTRACT

Crassostrea angulata, a major shellfish cultivated in Southern China, has experienced a notable surge in commercial value in recent years. Understanding the molecular mechanisms governing their reproductive processes holds significant implications for advancing aquaculture practices. In this study, we cloned the orphan nuclear receptor gene, Fushi Tarazu transcription factor 1 (FTZ-F1), of C. angulata and investigated its functional role in the gonadal development. The full-length cDNA of FTZ-F1 spans 2357 bp and encodes a protein sequence of 530 amino acids. Notably, the amino acid sequence of FTZ-F1 in C. angulata shares remarkable similarity with its homologues in other species, particularly in the DNA-binding region (>90%) and ligand-binding region (>44%). In C. angulata, the highest expression level of FTZ-F1 was observed in the ovary, exhibiting more than a 200-fold increase during the maturation stage compared to the initiation stage (P < 0.001). Specifically, FTZ-F1 was mainly expressed in the follicular cells surrounding the oocytes of C. angulata. Upon inhibiting FTZ-F1 gene expression in C. angulata through RNA interference (RNAi), a substantial reduction in the expression of genes involved in the synthesis of sex steroids in the gonads, including 3ß-HSD, Cyp17, and follistatin, was observed. In addition, estradiol (E2) and testosterone (T) levels also showed a decrease upon FTZ-F1 silencing, resulting in a delayed gonadal development. These results indicate that FTZ-F1 acts as a steroidogenic factor, participating in the synthesis and regulation of steroid hormones and thus playing an important role in the reproductive and endocrine systems within oysters.


Subject(s)
Crassostrea , Gonads , Transcription Factors , Animals , Crassostrea/genetics , Crassostrea/growth & development , Crassostrea/metabolism , Gonads/metabolism , Gonads/growth & development , Transcription Factors/metabolism , Transcription Factors/genetics , Female , Amino Acid Sequence , Gene Expression Regulation, Developmental , Phylogeny , Cloning, Molecular , Gonadal Steroid Hormones/metabolism , Gonadal Steroid Hormones/biosynthesis , Ovary/metabolism , Ovary/growth & development , Steroids/metabolism , Steroids/biosynthesis
20.
Chemosphere ; 361: 142443, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38815811

ABSTRACT

Contamination of aquatic environments has been steadily increasing due to human activities. The Pacific oyster Crassostrea gigas has been used as a key species in studies assessing the impacts of contaminants on human health and the aquatic biome. In this context, cytochrome P450 (CYPs) play a crucial role in xenobiotic metabolism. In vertebrates many of these CYPs are regulated by nuclear receptors (NRs) and little is known about the NRs role in C. gigas. Particularly, the CgNR5A represents a homologue of SF1 and LRH-1 found in vertebrates. Members of this group can regulate genes of CYPs involved in lipid/steroid metabolism, with their activity regulated by other NR, called as DAX-1, generating a NR complex on DNA response elements (REs). As C. gigas does not exhibit steroid biosynthesis pathways, CgNR5A may play other physiological roles. To clarify this issue, we conducted an in silico investigation of the interaction between CgNR5A and DNA to identify potential C. gigas CYP target genes. Using molecular docking and dynamics simulations of the CgNR5A on DNA molecules, we identified a monomeric interaction with extended REs. This RE was found in the promoter region of 30 CYP genes and also the NR CgDAX. When the upstream regulatory region was analyzed, CYP2C39, CYP3A11, CYP4C21, CYP7A1, CYP17A1, and CYP27C1 were mapped as the main genes regulated by CgNR5A. These identified CYPs belong to families known for their involvement in xenobiotic and lipid/steroid metabolism. Furthermore, we reconstructed a trimeric complex, previously proposed for vertebrates, with CgNR5A:CgDAX and subjected it to molecular dynamics simulations analysis. Heterotrimeric complex remained stable during the simulations, suggesting that CgDAX may modulate CgNR5A transcriptional activity. This study provides insights into the potential physiological processes involving these NRs in the regulation of CYPs associated with xenobiotic and steroid/lipid metabolism.


Subject(s)
Crassostrea , Cytochrome P-450 Enzyme System , Receptors, Cytoplasmic and Nuclear , Crassostrea/genetics , Animals , Cytochrome P-450 Enzyme System/genetics , Cytochrome P-450 Enzyme System/metabolism , Receptors, Cytoplasmic and Nuclear/genetics , Receptors, Cytoplasmic and Nuclear/metabolism , Receptors, Cytoplasmic and Nuclear/chemistry , Molecular Docking Simulation , Gene Expression Regulation , Molecular Dynamics Simulation , Xenobiotics/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL