Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 6.420
Filter
1.
Int J Mol Sci ; 25(13)2024 Jun 27.
Article in English | MEDLINE | ID: mdl-39000134

ABSTRACT

Stem cells possess the ability to differentiate into different lineages and the ability to self-renew, thus representing an excellent tool for regenerative medicine. They can be isolated from different tissues, including the adipose tissue. Adipose tissue and human adipose-derived stem cells (hADSCs) are privileged candidates for regenerative medicine procedures or other plastic reconstructive surgeries. The cellular environment is able to influence the fate of stem cells residing in the tissue. In a previous study, we exposed hADSCs to an exhausted medium of a breast cancer cell line (MCF-7) recovered at different days (4, 7, and 10 days). In the same paper, we inferred that the medium was able to influence the behaviour of stem cells. Considering these results, in the present study, we evaluated the expression of the major genes related to adipogenic and osteogenic differentiation. To confirm the gene expression data, oil red and alizarin red colorimetric assays were performed. Lastly, we evaluated the expression of miRNAs influencing the differentiation process and the proliferation rate, maintaining a proliferative state. The data obtained confirmed that cells exposed to the medium maintained a stem and proliferative state that could lead to a risky proliferative phenotype.


Subject(s)
Adipose Tissue , Cell Differentiation , Cell Proliferation , Osteogenesis , Humans , Cell Differentiation/drug effects , MCF-7 Cells , Cell Proliferation/drug effects , Adipose Tissue/cytology , Adipose Tissue/metabolism , Osteogenesis/drug effects , Osteogenesis/genetics , Female , MicroRNAs/genetics , MicroRNAs/metabolism , Adipogenesis/genetics , Stem Cells/metabolism , Stem Cells/cytology , Stem Cells/drug effects , Culture Media/pharmacology , Culture Media/chemistry
2.
Int J Mol Sci ; 25(13)2024 Jun 28.
Article in English | MEDLINE | ID: mdl-39000222

ABSTRACT

Persisters are antibiotic-tolerant bacteria, playing a role in the recalcitrance and relapse of many bacterial infections, including P. aeruginosa pulmonary infections in Cystic Fibrosis (CF) patients. Among novel antimicrobial strategies, the use of probiotics and their products is emerging as a particularly promising approach. The aim of this study was to evaluate the anti-persisters activity of culture filtrate supernatants of Lacticaseibacillus rhamnosus (LRM-CFS) against P. aeruginosa in artificial sputum medium (ASM), which resembles the CF lung environment. Planktonic persisters of two clinical strains of P. aeruginosa (PaCF1 and PaCF4) were obtained following two different procedures: (i) exposing stationary-phase cultures to cyanide m-chlorophenylhydrazone (CCCP) in LB medium; (ii) incubating stationary-phase cultures with high doses of tobramycin (128-fold MIC) in ASM. In addition, persisters from biofilm were obtained by exposing 48 h old biofilm of P. aeruginosa to 128 x MIC of ciprofloxacin. LRM-CFS at dilutions of 1:6 and 1:4 resulted in being bactericidal in ASM against both PaCF1 and PaCF4 persisters obtained after CCCP or tobramycin treatment. Moreover, LRM-CFS at dilution 1:4 caused a reduction of antibiotic-tolerant bacteria in the biofilm of both P. aeruginosa strains. Overall, LRM-CFS represents a promising adjuvant therapeutic strategy against P. aeruginosa recalcitrant infections in CF patients.


Subject(s)
Anti-Bacterial Agents , Biofilms , Lacticaseibacillus rhamnosus , Microbial Sensitivity Tests , Pseudomonas aeruginosa , Sputum , Pseudomonas aeruginosa/drug effects , Sputum/microbiology , Biofilms/drug effects , Biofilms/growth & development , Humans , Lacticaseibacillus rhamnosus/physiology , Anti-Bacterial Agents/pharmacology , Cystic Fibrosis/microbiology , Culture Media/pharmacology , Culture Media/chemistry , Culture Media, Conditioned/pharmacology , Pseudomonas Infections/drug therapy , Pseudomonas Infections/microbiology , Tobramycin/pharmacology
3.
Int J Mol Sci ; 25(13)2024 Jul 04.
Article in English | MEDLINE | ID: mdl-39000465

ABSTRACT

The complexification of in vitro models requires the compatibility of cells with the same medium. Since immune cells are the most sensitive to growth conditions, growing intestinal epithelial cells in their usual medium seems to be necessary. This work was aimed at comparing the sensitivity of these epithelial cells to pro-inflammatory stimuli but also to dietary polyphenols in both DMEM and RPMI-1640 media. Co-cultures of Caco-2 and HT29-MTX cells were grown for 21 days in the two media before their stimulation with a cocktail of TNF-α (20 ng/mL), IL-1ß (1 ng/mL), and IFN-γ (10 ng/mL) or with LPS (10 ng/mL) from E. coli (O111:B4). The role of catechins (15 µM), a dietary polyphenol, was evaluated after its incubation with the cells before their stimulation for 6 h. The RPMI-1640 medium did not alter the intensity of the inflammatory response observed with the cytokines. By contrast, LPS failed to stimulate the co-culture in inserts regardless of the medium used. Lastly, catechins were unable to prevent the pro-inflammatory response observed with the cytokines in the two media. The preservation of the response of this model of intestinal epithelium in RPMI-1640 medium is promising when considering its complexification to evaluate the complex cellular crosstalk leading to intestinal homeostasis.


Subject(s)
Coculture Techniques , Intestinal Mucosa , Lipopolysaccharides , Polyphenols , Humans , Coculture Techniques/methods , Polyphenols/pharmacology , Caco-2 Cells , Intestinal Mucosa/metabolism , Intestinal Mucosa/cytology , Intestinal Mucosa/drug effects , Lipopolysaccharides/pharmacology , HT29 Cells , Culture Media/chemistry , Culture Media/pharmacology , Cytokines/metabolism , Catechin/pharmacology , Epithelial Cells/metabolism , Epithelial Cells/drug effects , Tumor Necrosis Factor-alpha/metabolism , Tumor Necrosis Factor-alpha/pharmacology , Inflammation/metabolism , Inflammation/pathology
4.
Biotechnol J ; 19(7): e2400068, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38987218

ABSTRACT

SH-SY5Y is a human neuroblastoma cell line that can be differentiated into several neuronal phenotypes, depending on culture conditions. For this reason, this cell line has been widely used as an in vitro model of neurodegenerative conditions, such as Parkinson's disease (PD). However, most studies published to date used fetal bovine serum (FBS) as culture medium supplement for SH-SY5Y cell differentiation. We report on the testing of human platelet lysate (hPL) as a culture medium supplement to support SH-SY5Y cell culture. Both standard hPL and a fibrinogen-depleted hPL (FD-hPL) formulation, which does not require the addition of anticoagulants to culture media, promoted an increase in SH-SY5Y cell proliferation in comparison to FBS, without compromising metabolic activity. SH-SY5Y cells cultured in hPL or FD-hPL also displayed a higher number of neurite extensions and stained positive for MAP2 and synaptophysin, in the absence of differentiation stimuli; reducing hPL or FD-hPL concentration to 1% v/v did not affect cell proliferation or metabolic activity. Furthermore, following treatment with retinoic acid (RA) and further stimulation with brain-derived neurotrophic factor (BDNF) and nerve growth factor beta (NGF-ß), the percentage of SH-SY5Y cells stained positive for dopaminergic neuronal differentiation markers (tyrosine hydroxylase [TH] and Dopamine Transporter [DAT]) was higher in hPL or FD-hPL than in FBS, and gene expression of dopaminergic markers TH, DAT, and DR2 was also detected. Overall, the data herein presented supports the use of hPL to differentiate SH-SY5Y cells into a neuronal phenotype with dopaminergic features, and the adoption of FD-hPL as a fully xenogeneic free alternative to FBS to support the use of SH-SY5Y cells as a neurodegeneration model.


Subject(s)
Blood Platelets , Cell Culture Techniques , Cell Differentiation , Cell Proliferation , Dopaminergic Neurons , Neuroblastoma , Humans , Cell Proliferation/drug effects , Cell Differentiation/drug effects , Neuroblastoma/metabolism , Neuroblastoma/pathology , Cell Line, Tumor , Blood Platelets/metabolism , Dopaminergic Neurons/metabolism , Dopaminergic Neurons/drug effects , Dopaminergic Neurons/cytology , Cell Culture Techniques/methods , Culture Media/chemistry , Culture Media/pharmacology , Tretinoin/pharmacology , Phenotype
5.
BMC Vet Res ; 20(1): 272, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38918770

ABSTRACT

BACKGROUND: In vitro embryo production is a highly demanded reproductive technology in horses, which requires the recovery (in vivo or post-mortem) and in vitro maturation (IVM) of oocytes. Oocytes subjected to IVM exhibit poor developmental competence compared to their in vivo counterparts, being this related to a suboptimal composition of commercial maturation media. The objective of this work was to study the effect of different concentrations of secretome obtained from equine preovulatory follicular fluid (FF) on cumulus-oocyte complexes (COCs) during IVM. COCs retrieved in vivo by ovum pick up (OPU) or post-mortem from a slaughterhouse (SLA) were subjected to IVM in the presence or absence of secretome (Control: 0 µg/ml, S20: 20 µg/ml or S40: 40 µg/ml). After IVM, the metabolome of the medium used for oocyte maturation prior (Pre-IVM) and after IVM (Post-IVM), COCs mRNA expression, and oocyte meiotic competence were analysed. RESULTS: IVM leads to lactic acid production and an acetic acid consumption in COCs obtained from OPU and SLA. However, glucose consumption after IVM was higher in COCs from OPU when S40 was added (Control Pre-IVM vs. S40 Post-IVM: 117.24 ± 7.72 vs. 82.69 ± 4.24; Mean µM ± SEM; p < 0.05), while this was not observed in COCs from SLA. Likewise, secretome enhanced uptake of threonine (Control Pre-IVM vs. S20 Post-IVM vs. S40 Post-IVM: 4.93 ± 0.33 vs. 3.04 ± 0.25 vs. 2.84 ± 0.27; Mean µM ± SEM; p < 0.05) in COCs recovered by OPU. Regarding the relative mRNA expression of candidate genes related to metabolism, Lactate dehydrogenase A (LDHA) expression was significantly downregulated when secretome was added during IVM at 20-40 µg/ml in OPU-derived COCs (Control vs. S20 vs. S40: 1.77 ± 0.14 vs. 1 ± 0.25 vs. 1.23 ± 0.14; fold change ± SEM; p < 0.05), but not in SLA COCs. CONCLUSIONS: The addition of secretome during in vitro maturation (IVM) affects the gene expression of LDHA, glucose metabolism, and amino acid turnover in equine cumulus-oocyte complexes (COCs), with diverging outcomes observed between COCs retrieved using ovum pick up (OPU) and slaughterhouse-derived COCs (SLA).


Subject(s)
Culture Media , Cumulus Cells , Follicular Fluid , In Vitro Oocyte Maturation Techniques , Oocytes , Animals , Horses , Oocytes/drug effects , Oocytes/metabolism , Follicular Fluid/metabolism , Follicular Fluid/chemistry , In Vitro Oocyte Maturation Techniques/veterinary , Cumulus Cells/metabolism , Cumulus Cells/drug effects , Female , Culture Media/pharmacology , Secretome/metabolism
6.
Int J Mol Sci ; 25(9)2024 May 01.
Article in English | MEDLINE | ID: mdl-38732164

ABSTRACT

Cold atmospheric pressure plasma (CAP) offers a variety of therapeutic possibilities and induces the formation of reactive chemical species associated with oxidative stress. Mesenchymal stem/stromal cells (MSCs) play a central role in tissue regeneration, partly because of their antioxidant properties and ability to migrate into regenerating areas. During the therapeutic application, MSCs are directly exposed to the reactive species of CAP. Therefore, the investigation of CAP-induced effects on MSCs is essential. In this study, we quantified the amount of ROS due to the CAP activation of the culture medium. In addition, cell number, metabolic activity, stress signals, and migration were analyzed after the treatment of MSCs with a CAP-activated medium. CAP-activated media induced a significant increase in ROS but did not cause cytotoxic effects on MSCs when the treatment was singular and short-term (one day). This single treatment led to increased cell migration, an essential process in wound healing. In parallel, there was an increase in various cell stress proteins, indicating an adaptation to oxidative stress. Repeated treatments with the CAP-activated medium impaired the viability of the MSCs. The results shown here provide information on the influence of treatment frequency and intensity, which could be necessary for the therapeutic application of CAP.


Subject(s)
Atmospheric Pressure , Cell Movement , Culture Media , Mesenchymal Stem Cells , Oxidative Stress , Plasma Gases , Reactive Oxygen Species , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/cytology , Humans , Plasma Gases/pharmacology , Cell Movement/drug effects , Reactive Oxygen Species/metabolism , Culture Media/chemistry , Culture Media/pharmacology , Oxidative Stress/drug effects , Cells, Cultured , Cell Survival/drug effects , Cell Proliferation/drug effects
7.
Front Immunol ; 15: 1404228, 2024.
Article in English | MEDLINE | ID: mdl-38812519

ABSTRACT

Introduction: Adipose tissue mesenchymal stem/stromal cells (ASC) can be used as advanced therapy medicinal product in regenerative and cancer medicine. We previously demonstrated Supernatant Rich in Growth Factors (SRGF) can replace fetal bovine serum (FBS) to expand ASC by a clinical grade compliant protocol. The therapeutic potential of ASC is based also on their homing capacity toward inflammatory/cancer sites: oriented cell migration is a fundamental process in this scenario. We investigated the impact of SRGF on ASC migration properties. Methods: The motility/migration potential of ASC expanded in 5% SRGF was analyzed, in comparison to 10% FBS, by standard wound healing, bidimensional chemotaxis and transwell assays, and by millifluidic transwell tests. Mechanisms involved in the migration process were investigated by transient protein overexpression. Results: In comparison to standard 10% FBS, supplementation of the cell culture medium with 5% SRGF, strongly increased migration properties of ASC along the chemotactic gradient and toward cancer cell derived soluble factors, both in static and millifluidic conditions. We showed that, independently from applied migratory stimulus, SRGF expanded ASC were characterized by far lower expression of α-smooth muscle actin (αSMA), a protein involved in the cell migration machinery. Overexpression of αSMA induced a significant and marked decrease in migration capacity of SRGF expanded ASC. Discussion: In conclusion, 5% SRGF addition in the cell culture medium increases the migration potential of ASC, reasonably through appropriate downregulation of αSMA. Thus, SRGF could potentially improve the therapeutic impact of ASC, both as modulators of the immune microenviroment or as targeted drug delivery vehicles in oncology.


Subject(s)
Adipose Tissue , Blood Platelets , Cell Movement , Intercellular Signaling Peptides and Proteins , Mesenchymal Stem Cells , Humans , Cell Movement/drug effects , Intercellular Signaling Peptides and Proteins/metabolism , Intercellular Signaling Peptides and Proteins/pharmacology , Adipose Tissue/cytology , Adipose Tissue/metabolism , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Blood Platelets/metabolism , Cells, Cultured , Culture Media/pharmacology , Actins/metabolism , Female
8.
Cells ; 13(10)2024 May 16.
Article in English | MEDLINE | ID: mdl-38786069

ABSTRACT

In recent years, there has been a surge in demand for and research focus on cell therapy, driven by the tissue-regenerative and disease-treating potentials of stem cells. Among the candidates, dental pulp stem cells (DPSCs) or human exfoliated deciduous teeth (SHED) have garnered significant attention due to their easy accessibility (non-invasive), multi-lineage differentiation capability (especially neurogenesis), and low immunogenicity. Utilizing these stem cells for clinical purposes requires careful culture techniques such as excluding animal-derived supplements. Human platelet lysate (hPL) has emerged as a safer alternative to fetal bovine serum (FBS) for cell culture. In our study, we assessed the impact of hPL as a growth factor supplement for culture medium, also conducting a characterization of SHED cultured in hPL-supplemented medium (hPL-SHED). The results showed that hPL has effects in enhancing cell proliferation and migration and increasing cell survivability in oxidative stress conditions induced by H2O2. The morphology of hPL-SHED exhibited reduced size and elongation, with a differentiation capacity comparable to or even exceeding that of SHED cultured in a medium supplemented with fetal bovine serum (FBS-SHED). Moreover, no evidence of chromosome abnormalities or tumor formation was detected. In conclusion, hPL-SHED emerges as a promising candidate for cell therapy, exhibiting considerable potential for clinical investigation.


Subject(s)
Blood Platelets , Cell Differentiation , Cell Proliferation , Stem Cells , Tooth, Deciduous , Humans , Tooth, Deciduous/cytology , Stem Cells/cytology , Stem Cells/metabolism , Blood Platelets/metabolism , Cattle , Cell Differentiation/drug effects , Animals , Cell Proliferation/drug effects , Dental Pulp/cytology , Cell Movement/drug effects , Culture Media/pharmacology , Cells, Cultured , Cell Extracts/pharmacology , Hydrogen Peroxide/pharmacology , Oxidative Stress/drug effects , Cell Survival/drug effects
9.
Jt Dis Relat Surg ; 35(2): 299-304, 2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38727108

ABSTRACT

OBJECTIVES: This study aimed to investigate whether adding tissue samples directly into thioglycolate (TG) broth yielded a greater number of anaerobic organisms than freshly sampled tissue in suspected hip and knee prosthetic joint infections (PJIs). PATIENTS AND METHODS: Between January 2017 and December 2020, a total of 90 patients (46 males, 44 females; median age: 71.7 years; range, 50.8 and 87.8 years) who underwent revision hip or knee arthroplasty were included. Intraoperative samples were taken, with five placed in TG broth and five in standard containers (PC) with subsequent aerobic and anaerobic culturing conducted. Demographic and baseline data of the patients were recorded. The primary outcome was positive bacterial growth from a PJI specimen inoculated directly into TG broth at the time of collection or standard PJI specimen processing. Secondary outcomes investigated were the presence of Cutibacterium acnes (C. acnes) and the curative success of revision procedure. RESULTS: A total of 900 samples (450 PC and 450 TG) were taken from 90 revision arthroplasty patients (47 knees and 43 hips). There was no statistically significant difference in the number of positive bacterial growth samples between TG broth and standard processing (p=0.742). This was consistent with subgroup analysis analyzing C. acnes (p=0.666). CONCLUSION: In hip and knee arthroplasty, there is no benefit in substituting or adding TG broth as a culture medium to better identify both general bacterial species and C. acnes infections specifically. However, the use of TG may be useful in confirming a true positive result for infection.


Subject(s)
Arthroplasty, Replacement, Hip , Arthroplasty, Replacement, Knee , Prosthesis-Related Infections , Thioglycolates , Humans , Prosthesis-Related Infections/diagnosis , Prosthesis-Related Infections/microbiology , Prosthesis-Related Infections/drug therapy , Female , Male , Aged , Middle Aged , Aged, 80 and over , Arthroplasty, Replacement, Knee/adverse effects , Arthroplasty, Replacement, Hip/adverse effects , Thioglycolates/pharmacology , Knee Prosthesis/adverse effects , Knee Prosthesis/microbiology , Culture Media/chemistry , Culture Media/pharmacology , Reoperation , Hip Prosthesis/adverse effects , Hip Prosthesis/microbiology , Specimen Handling/methods , Retrospective Studies
10.
Int J Mol Sci ; 25(8)2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38673767

ABSTRACT

The MC3T3-E1 preosteoblastic cell line is widely utilised as a reliable in vitro system to assess bone formation. However, the experimental growth conditions for these cells hugely diverge, and, particularly, the osteogenic medium (OSM)'s composition varies in research studies. Therefore, we aimed to define the ideal culture conditions for MC3T3-E1 subclone 4 cells with regard to their mineralization capacity and explore if oxidative stress or the cellular metabolism processes are implicated. Cells were treated with nine different combinations of long-lasting ascorbate (Asc) and ß-glycerophosphate (ßGP), and osteogenesis/calcification was evaluated at three different time-points by qPCR, Western blotting, and bone nodule staining. Key molecules of the oxidative and metabolic pathways were also assessed. It was found that sufficient mineral deposition was achieved only in the 150 µg.mL-1/2 mM Asc/ßGP combination on day 21 in OSM, and this was supported by Runx2, Alpl, Bglap, and Col1a1 expression level increases. NOX2 and SOD2 as well as PGC1α and Tfam were also monitored as indicators of redox and metabolic processes, respectively, where no differences were observed. Elevation in OCN protein levels and ALP activity showed that mineralisation comes as a result of these differences. This work defines the most appropriate culture conditions for MC3T3-E1 cells and could be used by other research laboratories in this field.


Subject(s)
Energy Metabolism , Osteoblasts , Osteogenesis , Oxidative Stress , Animals , Mice , Osteogenesis/drug effects , Osteoblasts/metabolism , Osteoblasts/cytology , Cell Line , Glycerophosphates/metabolism , Glycerophosphates/pharmacology , Calcification, Physiologic , Cell Differentiation , Cell Culture Techniques/methods , Ascorbic Acid/pharmacology , Ascorbic Acid/metabolism , Culture Media/chemistry , Culture Media/pharmacology
11.
Cell Mol Biol (Noisy-le-grand) ; 70(4): 35-39, 2024 Apr 28.
Article in English | MEDLINE | ID: mdl-38678630

ABSTRACT

Preparing a suitable cell culture medium that supports the biological needs of the growing cells is crucial to enhancing the success rate of any in vitro and in vivo experiments and minimizing undesirable interferences.  Mesenchymal stem cells ( MSCs) which are powerful regenerative stem cells require being grown in proper culture media to preserve their stemness and therapeutic properties. MSCs are usually grown in Dulbecco's Modified Eagle low glucose Medium (DMEM low glucose) which contains 5.6 mmol/L of glucose and is supplemented with Fetal Bovine Serum (FBS), antibiotics, and 2-Mercaptoethanol. The addition of 2-Mercaptoethanol to the cell culture medium was proposed long ago and has continued to be used until now. Despite the positive effects of adding 2-Mercaptoethanol in the cell culture medium, its use is still controversial and needs continuous updates to limit its interference with experimental treatments. Herein, we found that 2-Mercaptoethanol is beneficial to enhancing the proliferation and survival of MSCs at higher passage numbers while its effect is negligible for earlier passages. This concise study provides updates regarding the suitable time to add 2-Mercaptoethanol which can minimize its intermeddling with the experimental design and treatments.


Subject(s)
Cell Proliferation , Culture Media , Mercaptoethanol , Mesenchymal Stem Cells , Mercaptoethanol/pharmacology , Mercaptoethanol/chemistry , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/metabolism , Humans , Culture Media/chemistry , Culture Media/pharmacology , Cell Proliferation/drug effects , Cells, Cultured , Cell Culture Techniques/methods , Cell Survival/drug effects
12.
Biomolecules ; 14(4)2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38672430

ABSTRACT

Bovine serum albumin (BSA) plays a crucial role in cell culture media, influencing cellular processes such as proliferation and differentiation. Although it is commonly included in chondrogenic differentiation media, its specific function remains unclear. This study explores the effect of different BSA concentrations on the chondrogenic differentiation of human adipose-derived stromal/stem cells (hASCs). hASC pellets from six donors were cultured under chondrogenic conditions with three BSA concentrations. Surprisingly, a lower BSA concentration led to enhanced chondrogenesis. The degree of this effect was donor-dependent, classifying them into two groups: (1) high responders, forming at least 35% larger, differentiated pellets with low BSA in comparison to high BSA; (2) low responders, which benefitted only slightly from low BSA doses with a decrease in pellet size and marginal differentiation, indicative of low intrinsic differentiation potential. In all cases, increased chondrogenesis was accompanied by hypertrophy under low BSA concentrations. To the best of our knowledge, this is the first study showing improved chondrogenicity and the tendency for hypertrophy with low BSA concentration compared to standard levels. Once the tendency for hypertrophy is understood, the determination of BSA concentration might be used to tune hASC chondrogenic or osteogenic differentiation.


Subject(s)
Cell Differentiation , Chondrogenesis , Mesenchymal Stem Cells , Serum Albumin, Bovine , Humans , Adipose Tissue/drug effects , Adipose Tissue/metabolism , Cell Culture Techniques/methods , Cell Differentiation/drug effects , Cells, Cultured , Chondrogenesis/drug effects , Culture Media/chemistry , Culture Media/pharmacology , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/metabolism , Serum Albumin, Bovine/pharmacology , Serum Albumin, Bovine/chemistry , Stromal Cells/drug effects , Stromal Cells/metabolism
13.
In Vitro Cell Dev Biol Anim ; 60(3): 300-306, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38506940

ABSTRACT

The culture of preimplantation embryos in vitro is an important method for human and mouse reproductive technology. This study aims to investigate the influence of different conditions of culture media on the preimplantation stage of mouse embryos cultured in vitro, and monitor the post-implantation development of new mice after embryo transfer to surrogate females. We demonstrated here that mouse embryos cultured in vitro in fresh M16, KSOM, Global, and HTF embryo culture media from one cell to the blastocyst stage and the subsequent embryo transfer to surrogate females are able to proceed through post-implantation development and, after birth, develop into healthy mice. However, culture of embryos in differently aged media shows various (often unpredictable) results. To find the optimal storage conditions of culture media, we suggest that the freezing and long-term storage of these media at - 80°C will not influence the quality of the media. To test this hypothesis, we grew embryos from one cell to blastocysts in vitro in the selected media after thawing and subsequently transferring them to surrogate females. Embryo culture in these four media after thawing does not affect preimplantation and postnatal mouse development. Thus, we have shown that storage of embryo culture media at low temperature (- 80°C) does not impact the quality of the media, and subsequently, it can be used for the culture of embryos for the full preimplantation period, the same as in fresh media.


Subject(s)
Embryo Culture Techniques , Embryo Transfer , Female , Mice , Humans , Animals , Culture Media/pharmacology , Embryo Culture Techniques/methods , Embryo Transfer/methods , Embryo, Mammalian , Embryonic Development , Blastocyst
14.
PLoS One ; 19(3): e0298262, 2024.
Article in English | MEDLINE | ID: mdl-38547234

ABSTRACT

MCF7 cells have been used as an experimental model for breast cancer for decades. Typically, a culture medium is designed to supply cells with the nutrients essential for their continuous proliferation. Each medium has a specific nutritional composition. Therefore, cells cultured in different media may exhibit differences in their metabolism. However, only a few studies have investigated the effects of media on cells. In this study, we compared the effects of Dulbecco's modified Eagle medium (DMEM) and minimum essential medium alpha modification (αMEM) on MCF7 cells. The two media differentially affected the morphology, cell cycle, and proliferation of MCF7 cells, but had no effect on cell death. Replacement of DMEM with αMEM led to a decrease in ATP production and an increase in reactive oxygen species production, but did not affect the cell viability. RNA-sequencing and bioinformatic analyses revealed 721 significantly upregulated and 1247 downregulated genes in cells cultured in αMEM for 48 h compared with that in cells cultured in DMEM. The enriched gene ontology terms were related to mitosis and cell proliferation. Kyoto encyclopedia of genes and genomes analysis revealed cell cycle and DNA replication as the top two significant pathways. MCF7 cells were hypoxic when cultured in αMEM. These results show that the culture medium considerably affects cultured cells. Thus, the stability of the culture system in a study is very important to obtain reliable results.


Subject(s)
Transcriptome , Humans , MCF-7 Cells , Cells, Cultured , Cell Proliferation , Cell Survival , Culture Media/pharmacology
15.
Sci Rep ; 14(1): 7081, 2024 03 25.
Article in English | MEDLINE | ID: mdl-38528099

ABSTRACT

In this article, we focused on the impact of precisely chemically modified FLI maturation medium enriched with fibroblast growth factor 2 (FGF2), leukemia inhibitory factor (LIF), insulin-like growth factor 1 (IGF1), and polyvinyl alcohol (PVA) and its potential to improve the efficiency of in vitro production of porcine embryos. We hypothesized that enhancing the composition of the maturation medium could result in an elevated production of embryos in vitro and can affect EGA. FLI medium resulted in a significantly higher rate of oocyte blastocyst maturation and formation compared to the control DMEM medium. In addition, immunocytochemical labelling confirmed the detection of UBF in 4-cell FLI parthenogenic embryos, suggesting similarities with natural embryo development. Through RNAseq analysis, upregulated genes present in 4-cell FLI embryos were found to play key roles in important biological processes such as cell proliferation, cell differentiation, and transcriptional regulation. Based on our findings, we demonstrated the positive influence of FLI medium in the evaluation of in vitro embryo production, EGA detection, transcriptomic and proteomic profile, which was confirmed by the positive activation of the embryonal genome in the 4-cell stage of parthenogenetically activated embryos.


Subject(s)
Culture Media , Fibroblast Growth Factor 2 , Insulin-Like Growth Factor I , Leukemia Inhibitory Factor , Animals , Blastocyst/drug effects , Blastocyst/metabolism , Culture Media/chemistry , Culture Media/pharmacology , Fertilization in Vitro , Fibroblast Growth Factor 2/pharmacology , Leukemia Inhibitory Factor/pharmacology , Oocytes , Proteomics , Swine/embryology , Swine/genetics , Insulin-Like Growth Factor I/pharmacology
16.
Plant Dis ; 108(7): 2027-2033, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38319628

ABSTRACT

Based on our previous finding that polysaccharide peptide (PSP) has substantial antiviral activity, we cultured strawberry plants infected with strawberry mild yellow edge virus (SMYEV) or strawberry vein banding virus (SVBV) in Murashige and Skoog (MS) media supplemented with PSP to test its ability to eliminate these viruses. PSP not only improved the elimination of SMYEV and SVBV but also promoted the growth and rooting of strawberry plants in tissue culture. On the 45th day, the average height of the 'Ningyu' strawberry plants in the 1-mg/ml PSP treatment group was 1.91 cm, whereas that of the plants in the control group was 1.51 cm. After the same time point, the number of new leaves on the tissue culture media supplemented with 1 mg/ml and 500 µg/ml of PSP and without PSP were 4.92, 4.41, and 3.53, respectively. PSP also promoted strawberry rooting and significantly increased both the length and number of roots. In addition, after treatment with the 1-mg/ml PSP treatment in tissue culture for 45 days followed by meristem-shoot-tip culture, the elimination rates of SMYEV and SVBV in regenerated 'Ningyu' strawberry plants ranged from 60 to 100%. This study investigated the use of the antiviral agent PSP for virus elimination. PSP has a low production cost and thus has great application potential for virus elimination in crop plants.


Subject(s)
Fragaria , Plant Diseases , Plant Viruses , Fragaria/virology , Fragaria/drug effects , Fragaria/growth & development , Plant Diseases/virology , Plant Diseases/prevention & control , Plant Viruses/drug effects , Plant Viruses/physiology , Plant Roots/virology , Plant Roots/drug effects , Plant Roots/growth & development , Polysaccharides/pharmacology , Peptides/pharmacology , Culture Media/chemistry , Culture Media/pharmacology , Antiviral Agents/pharmacology , Tissue Culture Techniques , Plant Leaves/virology
17.
Sci Rep ; 14(1): 4775, 2024 02 27.
Article in English | MEDLINE | ID: mdl-38413790

ABSTRACT

In the quest to unravel the mysteries of neurological diseases, comprehending the underlying mechanisms is supreme. The SH-SY5Y human neuroblastoma cell line serves as a crucial tool in this endeavor; however, the cells are known for its sensitivity and slow proliferation rates. Typically, this cell line is cultured with 10% Fetal Bovine Serum (FBS) supplement. Nu-Serum (NuS), a low-protein alternative to FBS, is promising to advance cell culture practices. Herein, we evaluated the substitution of NuS for FBS to test the hypothesis that an alternative serum supplement can aid and promote SH-SY5Y cell proliferation and differentiation. Our findings revealed that the NuS-supplemented group exhibited a notable increase in adhered cells compared to both the FBS and serum-free (SF) groups. Importantly, cell viability remained high in both sera treated groups, with the NuS-supplemented cells displaying significantly larger cell sizes compared to the SF-treated group. Furthermore, cell proliferation rates were higher in the NuS-treated group, and neuroblast-like morphology was observed earlier than FBS group. Notably, both FBS and NuS supported the differentiation of these cells into mature neurons. Our data supports NuS as an alternative for SH-SY5Y cell culture, with the potential to elevate the quality of research in the neuroscience field.


Subject(s)
Neuroblastoma , Humans , Neuroblastoma/metabolism , Cell Culture Techniques , Cell Line , Cell Differentiation , Cell Proliferation , Culture Media/pharmacology
18.
J R Soc Interface ; 21(210): 20230603, 2024 01.
Article in English | MEDLINE | ID: mdl-38228184

ABSTRACT

Methodologies for culturing muscle tissue are currently lacking in terms of quality and quantity of mature cells produced. We analyse images from in vitro experiments to quantify the effects of culture media composition on mouse-derived myoblast behaviour and myotube quality. Metrics of early indicators of cell quality were defined. Images of muscle cell differentiation reveal that altering culture media significantly affects quality indicators and myoblast migratory behaviours. To study the effects of early-stage cell behaviours on mature cell quality, metrics drawn from experimental images or inferred by approximate Bayesian computation (ABC) were applied as inputs to an agent-based model (ABM) of skeletal muscle cell differentiation with quality indicator metrics as outputs. Computational modelling was used to inform further in vitro experiments to predict the optimum media composition for culturing muscle cells. Our results suggest that myonuclei production in myotubes is inversely related to early-stage nuclei fusion index and that myonuclei density and spatial distribution are correlated with residence time of fusing myoblasts, the age at which myotube-myotube fusion ends and the repulsion force between myonuclei. Culture media with 5% serum was found to produce the optimum cell quality and to make muscle cells cultured in a neuron differentiation medium viable.


Subject(s)
Muscle Fibers, Skeletal , Myoblasts , Mice , Animals , Bayes Theorem , Muscle Fibers, Skeletal/physiology , Cell Differentiation , Culture Media/pharmacology , Muscle, Skeletal/physiology , Cells, Cultured
19.
Cells ; 13(2)2024 01 16.
Article in English | MEDLINE | ID: mdl-38247858

ABSTRACT

Among the available therapeutics for the conservative treatment of osteoarthritis (OA), mesenchymal stromal cells (MSCs)-based products appear to be the most promising. Alongside minimally manipulated cell-based orthobiologics, where MSCs are the engine of the bioactive properties, cell expansion under good manufacturing practice (GMP) settings is actively studied to obtain clinical-grade pure populations able to concentrate the biological activity. One of the main characteristics of GMP protocols is the use of clinical-grade reagents, including the recently released serum-free/xeno-free (SFM/XFM) synthetic media, which differ significantly from the traditional reagents like those based on fetal bovine serum (FBS). As SFM/XFM are still poorly characterized, a main lack is the notion of reliable housekeeping genes (HKGs) for molecular studies, either standalone or in combination with standard conditions. Indeed, the aim of this work was to test the stability of five commonly used HKGs (ACTB, EF1A, GAPDH, RPLP0, and TBP) in adipose-derived MSCs (ASCs) cultivated in two commercially available SFM/XFM and to compare outcomes with those obtained in FBS. Four different applets widely recognized by the scientific community (NormFinder, geNorm, comparative ΔCt method, and BestKeeper) were used and data were merged to obtain a final stability order. The analysis showed that cells cultured in both synthetic media had a similar ranking for HKGs stability (GAPDH being best), albeit divergent from FBS expanded products (EF1A at top). Moreover, it was possible to identify specific HKGs for side by side studies, with EF1A/TBP being the most reliable normalizers for single SFM/XFM vs. FBS cultured cells and TBP the best one for a comprehensive analysis of all samples. In addition, stability of HKGs was donor-dependent. The normalization effect on selected genes coding for factors known to be involved in OA pathology, and whose amount should be carefully considered for the selection of the most appropriate MSC-based treatment, showed how HKGs choice might affect the perceived amount for the different media or donor. Overall, this work confirms the impact of SFM/XFM conditions on HKGs stability performance, which resulted similarly for both synthetic media analyzed in the study.


Subject(s)
Mesenchymal Stem Cells , Osteoarthritis , Humans , Genes, Essential , Culture Media, Serum-Free , Adiposity , Obesity , Culture Media/pharmacology , Osteoarthritis/genetics , Osteoarthritis/therapy
20.
Int J Mol Sci ; 25(2)2024 Jan 06.
Article in English | MEDLINE | ID: mdl-38255823

ABSTRACT

The implantation of good-quality embryos to the receptive endometrium is essential for successful live birth through in vitro fertilization (IVF). The higher the quality of embryos, the higher the live birth rate per cycle, and so efforts have been made to obtain as many high-quality embryos as possible after fertilization. In addition to an effective controlled ovarian stimulation process to obtain high-quality embryos, the composition of the embryo culture medium in direct contact with embryos in vitro is also important. During embryonic development, under the control of female sex hormones, the fallopian tubes and endometrium create a microenvironment that supplies the nutrients and substances necessary for embryos at each stage. During this process, the development of the embryo is finely regulated by signaling molecules, such as growth factors and cytokines secreted from the epithelial cells of the fallopian tube and uterine endometrium. The development of embryo culture media has continued since the first successful human birth through IVF in 1978. However, there are still limitations to mimicking a microenvironment similar to the reproductive organs of women suitable for embryo development in vitro. Efforts have been made to overcome the harsh in vitro culture environment and obtain high-quality embryos by adding various supplements, such as antioxidants and growth factors, to the embryo culture medium. Recently, there has been an increase in the number of studies on the effect of supplementation in different clinical situations such as old age, recurrent implantation failure (RIF), and unexplained infertility; in addition, anticipation of the potential benefits from individuation is rising. This article reviews the effects of representative supplements in culture media on embryo development.


Subject(s)
Granulocyte-Macrophage Colony-Stimulating Factor , Melatonin , Female , Humans , Pregnancy , Culture Media/chemistry , Culture Media/pharmacology , Cytokines , Insulin-Like Growth Factor I , Melatonin/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...