Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Language
Publication year range
1.
Genet Mol Res ; 14(3): 10422-32, 2015 Sep 08.
Article in English | MEDLINE | ID: mdl-26400273

ABSTRACT

Curcuma wenyujin is an important multifunctional medicinal herb in China. Currently, populations of C. wenyujin are decreasing, and wild individuals have almost disappeared from their natural habitats. Moreover, little is known regarding the molecular characteristics of this plant. In this study, we investigated the genetic diversity and variation of five populations of C. wenyujin, using ran-dom amplified polymorphic DNA (RAPD) and inter-simple sequence repeat (ISSR) markers. We found that the percentages of polymorphic loci (PPL) at the species level (98.25% by RAPD and 100% by ISSR) were significantly higher than those at the population level (66.32% by RAPD and 67.14% by ISSR). The highest values of PPL, expected heterozygosity, and Shannon's information index were in Pop1, while the lowest values were in Pop2. Both DNA markers revealed a short genetic distance between Pop1 and Pop2 (0.1424 by RAPD and 0.1904 by ISSR). Phylogenetic trees produced similar results, with Pop1, Pop2, and Pop5 in one group and Pop3 and Pop4 in another. There were no significant correlations between their genetic distances and their geographical distances. The highest genetic diversity was in Pop1 and the lowest was in Pop2, and genetic diversity at the species level was relatively low, but much higher than that at the population level. We recommended the establishment of a germplasm bank, in situ con-servation, and propagation of wild individuals. The present study will improve the evaluation, protection, and utilization of the population resources of C. wenyujin.


Subject(s)
Curcuma/genetics , Genetics, Population , Phylogeny , Plant Dispersal/genetics , Polymorphism, Genetic , China , Conservation of Natural Resources , Curcuma/classification , Genetic Loci , Genetic Markers , Heterozygote , Microsatellite Repeats , Phylogeography , Plants, Medicinal , Random Amplified Polymorphic DNA Technique , Seed Bank/organization & administration
2.
Genet Mol Res ; 13(3): 7339-46, 2014 Sep 05.
Article in English | MEDLINE | ID: mdl-25222232

ABSTRACT

The genus Curcuma is a member of the ginger family (Zingiberaceae) that has recently become popular for use as flowering pot plants, both indoors and as patio and landscape plants. We used PCR-based molecular markers (SSRs) to elucidate genetic variation and relationships between five varieties of Curcuma (Curcuma alismatifolia) cultivated in Malaysia. Of the primers tested, 8 (of 17) SSR primers were selected for their reproducibility and high rates of polymorphism. The number of presumed alleles revealed by the SSR analysis ranged from two to six alleles, with a mean value of 3.25 alleles per locus. The values of HO and HE ranged from 0 to 0.8 (mean value of 0.2) and 0.1837 to 0.7755 (mean value of 0.5102), respectively. Eight SSR primers yielded 26 total amplified fragments and revealed high rates of polymorphism among the varieties studied. The polymorphic information content varied from 0.26 to 0.73. Dice's similarity coefficient was calculated for all pairwise comparisons and used to construct an unweighted pair group method with arithmetic average (UPGMA) dendrogram. Similarity coefficient values from 0.2105 to 0.6667 (with an average of 0.4386) were found among the five varieties examined. A cluster analysis of data using a UPGMA algorithm divided the five varieties/hybrids into 2 groups.


Subject(s)
Curcuma/classification , Curcuma/genetics , Genetic Variation , Microsatellite Repeats , Phylogeny , Alleles , Genetic Loci , Polymorphism, Genetic
3.
Genet Mol Res ; 11(3): 3069-76, 2012 Aug 31.
Article in English | MEDLINE | ID: mdl-23007984

ABSTRACT

The genus Curcuma is a member of the ginger family (Zingiberaceae) that has recently become popular for use as flowering pot plants, both indoors and as patio and landscape plants. We used PCR-based molecular markers (ISSRs) to assess genetic variation and relationships between five varieties of curcuma (Curcuma alismatifolia) cultivated in Malaysia. Sixteen ISSR primers generated 139 amplified fragments, of which 77% had high polymorphism among these varieties. These markers were used to estimate genetic similarity among the varieties using Jaccard's similarity coefficient. The similarity matrix was used to construct a dendrogram, and a principal component plot was developed to examine genetic relationships among varieties. Similarity coefficient values ranged from 0.40 to 0.58 (with a mean of 0.5) among the five varieties. The mean value of number of observed alleles, number of effective alleles, mean Nei's gene diversity, and Shannon's information index were 8.69, 1.48, 0.29, and 0.43, respectively.


Subject(s)
Curcuma/genetics , Genetic Variation , Microsatellite Repeats/genetics , Genetic Markers , Phylogeny , Polymerase Chain Reaction , Polymorphism, Genetic , Principal Component Analysis
4.
Genet Mol Res ; 10(1): 419-28, 2011 Mar 09.
Article in English | MEDLINE | ID: mdl-21425092

ABSTRACT

Turmeric (Curcuma longa) is a triploid, vegetatively propagated crop introduced early during the colonization of Brazil. Turmeric rhizomes are ground into a powder used as a natural dye in the food industry, although recent research suggests a greater potential for the development of drugs and cosmetics. In Brazil, little is known about the genetic variability available for crop improvement. We examined the genetic diversity among turmeric accessions from a Brazilian germplasm collection comprising 39 accessions collected from the States of Goiás, Mato Grosso do Sul, Minas Gerais, São Paulo, and Pará. For comparison, 18 additional genotypes were analyzed, including samples from India and Puerto Rico. Total DNA was extracted from lyophilized leaf tissue and genetic analysis was performed using 17 microsatellite markers (single-sequence repeats). Shannon-Weiner indexes ranged from 0.017 (Minas Gerais) to 0.316 (São Paulo). Analyses of molecular variance (AMOVA) demonstrated major differences between countries (63.4%) and that most of the genetic diversity in Brazil is found within states (75.3%). Genotypes from São Paulo State were the most divergent and potentially useful for crop improvement. Structure analysis indicated two main groups of accessions. These results can help target future collecting efforts for introduction of new materials needed to develop more productive and better adapted cultivars.


Subject(s)
Curcuma/genetics , Genetic Variation/genetics , Microsatellite Repeats/genetics , Curcuma/classification , DNA, Plant/genetics
5.
Electron. j. biotechnol ; Electron. j. biotechnol;13(6): 4-5, Nov. 2010. ilus, tab
Article in English | LILACS | ID: lil-591908

ABSTRACT

A preliminary characterization was undertaken to describe genetic structure of mango ginger (Curcuma amada) acquired from farmers and ex situ genebank in Myanmar using neutral (rice SSR based RAPDs) and functional genomic (P450 based analog) markers. The high polymorphism (> 91 percent) depicted has displayed existence of genetic variability in the germplasm investigated. Large number of source-specific alleles (neutral-markers = 78, functional-markers = 63) was amplified which revealed that neutral regions of the mango ginger were more variable compared with the functional regions. The major fraction of the molecular variance (neutral-markers = 85 percent, functional-markers = 93 percent) was explained within germplasm acquisition sources and this tendency was also supported by the estimate of gene diversity. The genebank accessions have shown comparatively more genetic variability than farmers' accessions. The variability observed in mango ginger may possibly be associated with the long history of its cultivation under diverse ecological conditions. The two marker systems elucidated their high resolving power which detected variability even in fewer genotypes assayed. As the target sites of these markers are different, therefore, the variability detected is believed to cover diverse part of the genome together with neutral and functional regions. We found the concurrent use of the different types of molecular markers valuable to comprehend a dependable variability pattern in the germplasm assayed.


Subject(s)
Curcuma/genetics , Zingiber officinale/genetics , DNA, Plant/genetics , Genetic Markers , Genetic Variation , Myanmar , Polymorphism, Genetic , Random Amplified Polymorphic DNA Technique
6.
Genet Mol Res ; 9(3): 1796-806, 2010 Sep 08.
Article in English | MEDLINE | ID: mdl-20830672

ABSTRACT

Turmeric (Curcuma longa), an important asexually reproducing spice crop of the family Zingiberaceae is highly susceptible to bacterial and fungal pathogens. The identification of resistance gene analogs holds great promise for development of resistant turmeric cultivars. Degenerate primers designed based on known resistance genes (R-genes) were used in combinations to elucidate resistance gene analogs from Curcuma longa cultivar surama. The three primers resulted in amplicons with expected sizes of 450-600 bp. The nucleotide sequence of these amplicons was obtained through sequencing; their predicted amino acid sequences compared to each other and to the amino acid sequences of known R-genes revealed significant sequence similarity. The finding of conserved domains, viz., kinase-1a, kinase-2 and hydrophobic motif, provided evidence that the sequences belong to the NBS-LRR class gene family. The presence of tryptophan as the last residue of kinase-2 motif further qualified them to be in the non-TIR-NBS-LRR subfamily of resistance genes. A cluster analysis based on the neighbor-joining method was carried out using Curcuma NBS analogs together with several resistance gene analogs and known R-genes, which classified them into two distinct subclasses, corresponding to clades N3 and N4 of non-TIR-NBS sequences described in plants. The NBS analogs that we isolated can be used as guidelines to eventually isolate numerous R-genes in turmeric.


Subject(s)
Curcuma/metabolism , Plant Proteins/chemistry , Plant Proteins/genetics , Amino Acid Sequence , Curcuma/genetics , Curcuma/microbiology , Molecular Sequence Data , Phylogeny , Plant Diseases/genetics , Plant Diseases/microbiology , Plant Proteins/metabolism , Sequence Homology, Amino Acid
SELECTION OF CITATIONS
SEARCH DETAIL