Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.659
Filter
1.
Eur J Med Chem ; 276: 116716, 2024 Oct 05.
Article in English | MEDLINE | ID: mdl-39088997

ABSTRACT

In the current study, to discover novel antibacterial agents, we designed and synthesized 72 carvacrol and thymol derivatives by biomimicking the structure and function of cationic antimicrobial peptides (AMPs). Many of the derivatives showed good antibacterial activity, and compound thy2I exhibited the most potent antibacterial activity with minimum inhibitory concentration (MIC) values ranging from 0.5 µg/mL to 8 µg/mL. Compound thy2I could kill both gram-positive and gram-negative bacteria via a membrane-targeting mechanism of action with a low frequency of resistance. In addition, thy2I had the advantages of good membrane selectivity, low toxicity in vitro and in vivo, and good plasma stability. The in vivo activity results revealed that thy2I exhibited a positive therapeutic effect in a mouse skin abscess model induced by Staphylococcus aureus ATCC29213. After thy2I treatment (10 mg/kg), the bacterial load of the S. aureus-infected abscesses was reduced by approximately 99.65 %. Our study suggests that thy2I may serve as an antibacterial lead for further clinical evaluation.


Subject(s)
Anti-Bacterial Agents , Cymenes , Microbial Sensitivity Tests , Staphylococcus aureus , Thymol , Cymenes/pharmacology , Cymenes/chemistry , Thymol/pharmacology , Thymol/chemistry , Thymol/chemical synthesis , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Animals , Mice , Structure-Activity Relationship , Staphylococcus aureus/drug effects , Molecular Structure , Dose-Response Relationship, Drug , Gram-Negative Bacteria/drug effects
2.
Molecules ; 29(15)2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39125013

ABSTRACT

Carvacrol and thymol are broad-spectrum natural antimicrobial agents. To reduce their volatility and improve their antimicrobial performance, synergistic systems were prepared loading the active molecules in zinc-modified clays. Montmorillonite (MMT) and zeolite (ZEO) were modified with zinc ions (ZnMMT and ZnZEO), with well-known antimicrobial properties, and then with carvacrol or thymol, reaching the 26 ± 3% and 33 ± 2% w/w of loading, respectively. The resulting hybrid materials were characterized by FT-IR, XPS, XRD, TGA, and GC-MS to evaluate carvacrol/thymol release in simulating food matrices. Antimicrobial assays carried out using spoiler and pathogenic bacterial strains showed that the antimicrobial activity of both thymol and carvacrol was largely preserved once they were loaded into Zn-modified clays. However, MMT hybrids showed an antibacterial activity significantly higher than ZEO hybrids at 50 mg/mL of thymol and carvacrol. For this reason, deeper antimicrobial evaluations were carried out only for ZnMMT composites. ZnMMT loaded with thymol or carvacrol produced inhibition zones against most of the target strains, also at 3.12 mg/mL, while the positive controls represented by the single molecule thymol or carvacrol were not active. The hybrid materials can be useful for applications in which the antimicrobial activity of natural molecules need to be displayed over time as requested for the control of microbial pathogens and spoilage bacteria in different applications, such as active packaging, biomaterials, and medical devices.


Subject(s)
Anti-Infective Agents , Clay , Cymenes , Microbial Sensitivity Tests , Thymol , Zinc , Cymenes/chemistry , Cymenes/pharmacology , Thymol/chemistry , Thymol/pharmacology , Zinc/chemistry , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Clay/chemistry , Spectroscopy, Fourier Transform Infrared , Bacteria/drug effects , Bentonite/chemistry
3.
Turkiye Parazitol Derg ; 48(2): 72-76, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38958374

ABSTRACT

Objective: Trichomonas vaginalis is a sexually transmitted protozoan parasite that usually causes infections in women. Metronidazole is used as the first choice in the treatment of this parasitic disease, but there is a need for new drugs since 1980's with increasing numbers of reported resistance. In this study, it was aimed to determine the antitrichomonal activity of the major components of Cinnamomum zeylanicum (cinnamon) and Thymus vulgaris (thyme) essential oils, cinnamaldehyde, carvacrol and thymol against metronidazole resistant and susceptible T. vaginalis strains, and to determine their interaction with metronidazole by checkerboard method. Methods: Cinnamaldehyde, carvacrol, thymol and metronidazole were obtained commercially. Two clinical isolates and one metronidazole resistant T. vaginalis reference strain were used in the study. MIC50 and MLC values of essential oil components and metronidazole were determined by broth microdilution method. The combinations of essential oil components with metronidazole were determined by the checkerboard method. Results: According to in vitro activity tests, cinnamaldehyde was determined to be most effective essential oil component. Clinical isolates were susceptible to metronidazole. In combination study, metronidazole showed synergy with cinnamaldehyde and carvacrol, and partial synergy with thymol. Conclusion: It was determined that cinnamaldehyde, carvacrol and thymol, which are known to have high antimicrobial activity, also have strong activity against T. vaginalis isolates and show a synergistic interaction with metronidazole. The use of metronidazole at lower doses in the synergistic interaction may contribute to the literature in terms of reducing drug side effects, creating a versatile antimicrobial target, and reducing the rate of resistance development.


Subject(s)
Acrolein , Cymenes , Drug Synergism , Metronidazole , Monoterpenes , Oils, Volatile , Thymol , Thymus Plant , Trichomonas vaginalis , Acrolein/analogs & derivatives , Acrolein/pharmacology , Thymol/pharmacology , Cymenes/pharmacology , Metronidazole/pharmacology , Humans , Oils, Volatile/pharmacology , Thymus Plant/chemistry , Trichomonas vaginalis/drug effects , Monoterpenes/pharmacology , Female , Cinnamomum zeylanicum/chemistry , Antiprotozoal Agents/pharmacology , Microbial Sensitivity Tests , Drug Resistance
4.
BMC Complement Med Ther ; 24(1): 265, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38992651

ABSTRACT

BACKGROUND: Origanum species have been used in various commercial constructions as a remedy against burns and wounds, agriculture, alcoholic drinks, fragrance, and flavoring substances of food products. The essential oil of Origanum onites L. (EOOO) and its component carvacrol (CV) possesses a wide range of biological activities including anti-cancer activity. PURPOSE: The purpose of this study was to investigate the growth inhibitory activity of the essential oil and its major component CV and then hepatotoxicity pathway-related genes in HepG2 cells. METHODS: The effects of the EOOO and CV on cell growth and mRNA expressions of 84 hepatotoxicity pathway-related genes were investigated in HepG2, using trypan blue exclusion/ bromodeoxyuridine (BrdU) incorporation tests and real-time-polymerase chain reaction (RT-PCR) array, respectively. RESULTS: The EOOO and CV inhibited cell growth with IC50 values of 0.08 µg/mL and 45 µg/mL, respectively, after 24 h. Real-time, reverse-transcription-polymerase chain reaction (RT2-PCR) array analysis revealed that expressions of 32 genes out of 84 were changed at least 2-fold or more in the EOOO-treated cells. Among them, expression levels of 17 genes were elevated, while expression levels of 15 genes were diminished. Furthermore, after exposure of cells to 45 µg/mL of CV, the expression of 8 genes was increased while the other 8 genes were decreased. Both the EOOO and carvacrol affected the expression of 48 genes of HepG2 cells which are involved in the hepatotoxicity pathway, indicating their hepatoprotective and possible anti-hepatocarcinogenic effects. CONCLUSION: The present study demonstrates that the essential oil of Origanum onites and carvacrol can be used in various applications such as anticancer or herbal drugs, since its non-hepatotoxicity.


Subject(s)
Cymenes , Monoterpenes , Oils, Volatile , Origanum , Humans , Cymenes/pharmacology , Oils, Volatile/pharmacology , Origanum/chemistry , Hep G2 Cells , Monoterpenes/pharmacology , Cell Proliferation/drug effects
5.
Phytopathology ; 114(7): 1502-1514, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39023506

ABSTRACT

Late blight, caused by the notorious pathogen Phytophthora infestans, poses a significant threat to potato (Solanum tuberosum) crops worldwide, impacting their quality as well as yield. Here, we aimed to investigate the potential use of cinnamaldehyde, carvacrol, and eugenol as control agents against P. infestans and to elucidate their underlying mechanisms of action. To determine the pathogen-inhibiting concentrations of these three plant essential oils (PEOs), a comprehensive evaluation of their effects using gradient dilution, mycelial growth rate, and spore germination methods was carried out. Cinnamaldehyde, carvacrol, and eugenol were capable of significantly inhibiting P. infestans by hindering its mycelial radial growth, zoospore release, and sporangium germination; the median effective inhibitory concentration of the three PEOs was 23.87, 8.66, and 89.65 µl/liter, respectively. Scanning electron microscopy revealed that PEOs caused the irreversible deformation of P. infestans, resulting in hyphal shrinkage, distortion, and breakage. Moreover, propidium iodide staining and extracellular conductivity measurements demonstrated that all three PEOs significantly impaired the integrity and permeability of the pathogen's cell membrane in a time- and dose-dependent manner. In vivo experiments confirmed the dose-dependent efficacy of PEOs in reducing the lesion diameter of potato late blight. Altogether, these findings provide valuable insight into the antifungal mechanisms of PEOs vis-à-vis late blight-causing P. infestans. By utilizing the inherent capabilities of these natural compounds, we could effectively limit the harmful impacts of late blight on potato crops, thereby enhancing agricultural practices and ensuring the resilience of global potato food production.


Subject(s)
Cymenes , Eugenol , Oils, Volatile , Phytophthora infestans , Plant Diseases , Solanum tuberosum , Phytophthora infestans/drug effects , Phytophthora infestans/physiology , Solanum tuberosum/microbiology , Oils, Volatile/pharmacology , Plant Diseases/microbiology , Plant Diseases/prevention & control , Eugenol/pharmacology , Cymenes/pharmacology , Monoterpenes/pharmacology , Mycelium/drug effects , Mycelium/growth & development , Plant Oils/pharmacology , Hyphae/drug effects , Hyphae/growth & development , Spores/drug effects , Spores/physiology , Acrolein/analogs & derivatives
6.
Colloids Surf B Biointerfaces ; 241: 114068, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38954940

ABSTRACT

Inspired by glycyrrhizin's strong pharmacological activities and the directed self-assembly into hydrogels, we created a novel carrier-free, injectable hydrogel (CAR@glycygel) by combining glycyrrhizin with carvacrol (CAR), without any other chemical crosslinkers, to promote wound healing on bacteria-infected skin. CAR appeared to readily dissolve and load into CAR@glycygel. CAR@glycygel had a dense, porous, sponge structure and strong antioxidant characteristics. In vitro, it showed better antibacterial ability than free CAR. For methicillin-resistant Staphylococcus aureus (MRSA), Staphylococcus aureus, and Escherichia coli, the diameter of inhibition zone values of CAR@glycygel were 3.80 ± 0.04, 3.31 ± 0.20 and 3.12 ± 0.24 times greater, respectively, than those of free CAR. The MICs for CAR@glycygel was 156.25 µg/mL while it was 1250.00 µg/mL for free CAR to these three bacteria. Its antibacterial mechanism appeared to involve destruction of the integrity of the bacterial cell wall and biomembrane, leading to a leakage of AKP and inhibition of biofilm formation. In vivo, CAR@glycygel effectively stopped bleeding. When applied to skin wounds on rats infected with MRSA, CAR@glycygel had strong bactericidal activity and improved wound healing. The wound healing rates for CAR@glycygel were 49.59 ± 15.78 %, 93.02 ± 3.09 % and 99.02 ± 0.55 % on day 3, day 7, and day 11, respectively, which were much better than blank control and positive control groups. Mechanisms of CAR@glycygel accelerating wound healing involved facilitating epidermis remolding, promoting the growth of hair follicles, stimulating collagen deposition, mitigating inflammation, and promoting angiogenesis. Overall, CAR@glycygel showed great potential as wound dressing for infected skin wounds.


Subject(s)
Anti-Bacterial Agents , Cymenes , Glycyrrhizic Acid , Hydrogels , Methicillin-Resistant Staphylococcus aureus , Microbial Sensitivity Tests , Wound Healing , Wound Healing/drug effects , Methicillin-Resistant Staphylococcus aureus/drug effects , Hydrogels/chemistry , Hydrogels/pharmacology , Animals , Glycyrrhizic Acid/pharmacology , Glycyrrhizic Acid/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Cymenes/pharmacology , Cymenes/chemistry , Rats , Rats, Sprague-Dawley , Male , Escherichia coli/drug effects , Staphylococcal Infections/drug therapy , Staphylococcal Infections/microbiology , Staphylococcal Infections/pathology
7.
Dalton Trans ; 53(30): 12620-12626, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39010726

ABSTRACT

The Ru(II)-nitrite complex, Ru4, is explored to release nitric oxide (NO) under acidic conditions and selectively induce a cytotoxic effect towards SK-MEL-28 cisplatin-resistant malignant melanoma cells. These findings suggest that targeting the tumor-associated pHe level could be an effective strategy for the drug function of Ru(II)-nitrite compounds.


Subject(s)
Antineoplastic Agents , Cisplatin , Coordination Complexes , Cymenes , Drug Resistance, Neoplasm , Melanoma , Nitric Oxide , Nitrites , Ruthenium , Cisplatin/pharmacology , Cisplatin/chemistry , Humans , Ruthenium/chemistry , Ruthenium/pharmacology , Melanoma/drug therapy , Melanoma/pathology , Melanoma/metabolism , Drug Resistance, Neoplasm/drug effects , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Cymenes/pharmacology , Cymenes/chemistry , Nitrites/chemistry , Nitrites/pharmacology , Coordination Complexes/chemistry , Coordination Complexes/pharmacology , Coordination Complexes/chemical synthesis , Cell Line, Tumor , Nitric Oxide/metabolism , Monoterpenes/pharmacology , Monoterpenes/chemistry , Cell Death/drug effects
8.
Molecules ; 29(13)2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38999167

ABSTRACT

Organometallic complexes of the formula [Ru(N^N)(p-cymene)Cl][X] (N^N = bidentate polypyridyl ligands, p-cymene = 1-methyl-4-(1-methylethyl)-benzene, X = counter anion), are currently studied as possible candidates for the potential treatment of cancer. Searching for new organometallic compounds with good to moderate cytotoxic activities, a series of mononuclear water-soluble ruthenium(II)-arene complexes incorporating substituted pyridine-quinoline ligands, with pending -CH2OH, -CO2H and -CO2Me groups in the 4-position of quinoline ring, were synthesized, for the first time, to study their possible effect to modulate the activity of the ruthenium p-cymene complexes. These include the [Ru(η6-p-cymene)(pqhyme)Cl][X] (X = Cl- (1-Cl), PF6- (1-PF6), pqhyme = 4-hydroxymethyl-2-(pyridin-2-yl)quinoline), [Ru(η6-p-cymene)(pqca)Cl][Cl] ((2-Cl), pqca = 4-carboxy-2-(pyridin-2-yl)quinoline), and [Ru(η6-p-cymene)(pqcame)Cl][X] (X = Cl- (3-Cl), PF6- (3-PF6), pqcame = 4-carboxymethyl-2-(pyridin-2-yl)quinoline) complexes, respectively. Identification of the complexes was based on multinuclear NMR and ATR-IR spectroscopic methods, elemental analysis, conductivity measurements, UV-Vis spectroscopic, and ESI-HRMS techniques. The solid-state structures of 1-PF6 and 3-PF6 have been elucidated by single-crystal X-ray diffraction revealing a three-legged piano stool geometry. This is the first time that the in vitro cytotoxic activities of these complexes are studied. These were conducted in HEK293T (human embryonic kidney cells) and HeLa cells (cervical cancer cells) via the MTT assay. The results show poor in vitro anticancer activities for the HeLa cancer cell lines and 3-Cl proved to be the most potent (IC50 > 80 µΜ). In both cell lines, the cytotoxicity of the ligand precursor pqhyme is significantly higher than that of cisplatin.


Subject(s)
Antineoplastic Agents , Coordination Complexes , Cymenes , Pyridines , Quinolines , Ruthenium , Humans , Ruthenium/chemistry , Quinolines/chemistry , Quinolines/chemical synthesis , Quinolines/pharmacology , Ligands , Cymenes/chemistry , Cymenes/pharmacology , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Pyridines/chemistry , Pyridines/chemical synthesis , Pyridines/pharmacology , Coordination Complexes/chemistry , Coordination Complexes/pharmacology , Coordination Complexes/chemical synthesis , Molecular Structure , Cell Line, Tumor , Crystallography, X-Ray , Cell Survival/drug effects
9.
Int J Mol Sci ; 25(13)2024 Jun 29.
Article in English | MEDLINE | ID: mdl-39000327

ABSTRACT

Microbial biofilms pose severe problems in the medical field and food industry, as they are the cause of many serious infections and food-borne diseases. The extreme biofilms' resistance to conventional anti-microbial treatments presents a major challenge to their elimination. In this study, the difference in resistance between Staphylococcus aureus DSMZ 12463 biofilms, biofilm-detached cells, and planktonic cells against microcapsules containing carvacrol was assessed. The antimicrobial/antibiofilm activity of low pH disinfection medium containing the microencapsulated carvacrol was also studied. In addition, the effect of low pH on the in vitro carvacrol release from microcapsules was investigated. The minimum inhibitory concentration of microencapsulated carvacrol was 0.625 mg mL-1. The results showed that biofilms exhibited greater resistance to microencapsulated carvacrol than the biofilm-detached cells and planktonic cells. Low pH treatment alone, by hydrochloric acid addition, showed no bactericidal effect on any of the three states of S. aureus strain. However, microencapsulated carvacrol was able to significantly reduce the planktonic cells and biofilm-detached cells below the detection limit (no bacterial counts), and the biofilm by approximatively 3 log CFU mL-1. In addition, results showed that microencapsulated carvacrol combined with low pH treatment reduced biofilm by more than 5 log CFU mL-1. Thus, the use of microencapsulated carvacrol in acidic environment could be a promising approach to combat biofilms from abiotic surfaces.


Subject(s)
Anti-Bacterial Agents , Biofilms , Cymenes , Microbial Sensitivity Tests , Staphylococcus aureus , Biofilms/drug effects , Staphylococcus aureus/drug effects , Staphylococcus aureus/physiology , Cymenes/pharmacology , Hydrogen-Ion Concentration , Anti-Bacterial Agents/pharmacology , Plankton/drug effects , Capsules , Drug Compounding/methods , Drug Resistance, Bacterial/drug effects
10.
ACS Appl Mater Interfaces ; 16(28): 36017-36029, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-38975983

ABSTRACT

Oral infectious diseases have a significant impact on the health of oral and maxillofacial regions, as well as the overall well-being of individuals. Carvacrol and thymol, two isomers known for their effective antibacterial and anti-inflammatory properties, have gained considerable attention in the treatment of oral infectious diseases. However, their application as topical drugs for oral use is limited due to their poor physical and chemical stability. UiO-66, a metal-organic framework based on zirconium ion (Zr4+), exhibits high drug loading capability. Carvacrol and thymol were efficiently loaded onto UiO-66 with loading rates of 79.60 ± 0.71% and 79.65 ± 0.76%, respectively. The release rates of carvacrol and thymol were 77.82 ± 0.87% and 76.51 ± 0.58%, respectively, after a period of 72 h. Moreover, Car@UiO-66 and Thy@UiO-66 demonstrated excellent antibacterial properties against Candida albicans, Escherichia coli, and Staphylococcus aureus with minimum bactericidal concentrations (MBC) of 0.313 mg/mL, 0.313 mg/mL, and 1.25 mg/mL, respectively. Furthermore, based on the results of the CCK8 cytotoxicity assay, even at concentrations as high as 1.25 mg/mL, Car@UiO-66 and Thy@UiO-66 exhibited excellent biocompatibility with a relative cell survival rate above 50%. These findings suggest that Car@UiO-66 and Thy@UiO-66 possess favorable biocompatibility properties without significant toxicity towards periodontal membrane cells. Additionally, in vivo studies confirmed the efficacy of Car@UiO-66and Thy@UiO-66 in reducing inflammation, promoting bone formation through inhibition of TNF-a and IL6 expression, enhancement of IL10 expression, and acceleration of bone defect healing. Therefore, the unique combination of antibacterial, anti-inflammatory, and osteogenic properties make Car@UiO-66 and Thy@Ui O-66 promising candidates for the treatment of oral infectious diseases and repairing bone defects.


Subject(s)
Anti-Bacterial Agents , Anti-Inflammatory Agents , Candida albicans , Cymenes , Escherichia coli , Metal-Organic Frameworks , Staphylococcus aureus , Thymol , Thymol/chemistry , Thymol/pharmacology , Cymenes/chemistry , Cymenes/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Animals , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/pharmacology , Staphylococcus aureus/drug effects , Escherichia coli/drug effects , Candida albicans/drug effects , Metal-Organic Frameworks/chemistry , Metal-Organic Frameworks/pharmacology , Mice , Microbial Sensitivity Tests , Rats , Osteogenesis/drug effects , Humans
11.
Behav Brain Res ; 472: 115135, 2024 Aug 24.
Article in English | MEDLINE | ID: mdl-38964616

ABSTRACT

The present study aimed to evaluate the protective potential of carvacrol against depressive-like behavior and cognitive impairment prompted by chronic unpredictable mild stress (CUMS) in mice. The animals were divided into six groups: Control (non-stressed), CARV (carvacrol at 50 mg/kg, p.o.), FLU (fluoxetine at 10 mg/kg, p.o.), CUMS (stressed), CUMS + CARV and CUMS + FLU, and the groups with CUMS were subjected to different stressors for 28 days. After treatment, mice underwent behavioral testing (open field, forced swimming, sucrose preference, social interaction, novel object recognition and Y-maze) and brain areas were removed for oxidative stress (MDA, nitrite/nitrate and GSH levels) and cytokine (IL-1ß and TNF-α) content assays. The results revealed that CARV administration reversed depressive-like behavior and significantly ameliorated the cognitive deficit induced by CUMS, as well as was able to attenuate oxidative stress (decreased MDA and nitrite/nitrate levels and increased GSH levels). In addition, a significant reduction in hippocampal IL-1ß and TNF-α levels was observed, demonstrating a potential anti-neuroinflammatory activity. Taken together, the antioxidant and anti-inflammatory activities observed in this study indicate that CARV is a promising drug for antidepressant treatment.


Subject(s)
Behavior, Animal , Cognitive Dysfunction , Cymenes , Depression , Disease Models, Animal , Neuroinflammatory Diseases , Oxidative Stress , Stress, Psychological , Animals , Oxidative Stress/drug effects , Mice , Cognitive Dysfunction/drug therapy , Cognitive Dysfunction/etiology , Cognitive Dysfunction/metabolism , Depression/drug therapy , Depression/metabolism , Depression/etiology , Male , Stress, Psychological/drug therapy , Stress, Psychological/complications , Stress, Psychological/metabolism , Cymenes/pharmacology , Cymenes/administration & dosage , Behavior, Animal/drug effects , Neuroinflammatory Diseases/drug therapy , Neuroinflammatory Diseases/metabolism , Antidepressive Agents/pharmacology , Antidepressive Agents/administration & dosage , Antioxidants/pharmacology , Fluoxetine/pharmacology , Fluoxetine/administration & dosage , Hippocampus/drug effects , Hippocampus/metabolism , Interleukin-1beta/metabolism
12.
Clin Oral Investig ; 28(7): 413, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38965139

ABSTRACT

OBJECTIVES: This study compares the biofilm inhibition effects of denture cleaning tablets, carvacrol, and their combined use against Candida albicans on denture bases produced with different techniques. Additionally, the surface roughness and contact angles of these denture bases were evaluated. MATERIALS AND METHODS: Test samples were prepared from four different denture base materials (cold-polymerized, heat-polymerized, CAD/CAM milling, and 3D-printed). The surface roughness and contact angles of the test samples were measured using a profilometer and goniometer, respectively. For the evaluation of biofilm inhibition, samples were divided into 5 subgroups: Corega and carvacrol, separately and combined treatments, positive (inoculated with C. albicans) and negative control (non-inoculated with C. albicans, only medium). Biofilm mass was determined using the crystal violet method. An additional prepared test sample for each subgroup was examined under scanning electron microscopy (SEM). RESULTS: The surface roughness values of the 3D-printed test samples were found to be statistically higher than the other groups (P < .001). The water contact angle of all test materials was not statistically different from each other (P > .001). Corega and carvacrol, separately and combined, significantly decreased the amount of biofilm on all surfaces (P < .0001). Treatment of corega alone and in combination with carvacrol to the 3D-printed material caused less C. albicans inhibition than the other groups (P < .001; P < .05). CONCLUSIONS: The surface roughness values of all test groups were within the clinically acceptable threshold. Although Corega and carvacrol inhibited C. albicans biofilms, their combined use did not show a synergistic effect. CLINICAL RELEVANCE: Carvacrol may be used as one of the disinfectant agents for denture cleaning due to its biofilm inhibition property.


Subject(s)
Biofilms , Candida albicans , Cymenes , Denture Bases , Denture Cleansers , Materials Testing , Microscopy, Electron, Scanning , Surface Properties , Biofilms/drug effects , Candida albicans/drug effects , Denture Bases/microbiology , Cymenes/pharmacology , Denture Cleansers/pharmacology , Printing, Three-Dimensional , Tablets
13.
ACS Appl Mater Interfaces ; 16(29): 37613-37622, 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39007413

ABSTRACT

Biofilms, intricate microbial communities entrenched in extracellular polymeric substance (EPS) matrices, pose formidable challenges in infectious disease treatment, especially in the context of interkingdom biofilms prevalent in the oral environment. This study investigates the potential of carvacrol-loaded biodegradable nanoemulsions (NEs) with systematically varied surface charges─cationic guanidinium (GMT-NE) and anionic carboxylate (CMT-NE). Zeta potentials of +25 mV (GMT-NE) and -33 mV (CMT-NE) underscore successful nanoemulsion fabrication (∼250 nm). Fluorescent labeling and dynamic tracking across three dimensions expose GMT-NE's superior diffusion into oral biofilms, yielding a robust antimicrobial effect with 99.99% killing for both streptococcal and Candida species and marked reductions in bacterial cell viability compared to CMT-NE (∼4-log reduction). Oral mucosa tissue cultures affirm the biocompatibility of both NEs with no morphological or structural changes, showcasing their potential for combating intractable biofilm infections in oral environment. This study advances our understanding of NE surface charges and their interactions within interkingdom biofilms, providing insights crucial for addressing complex infections involving bacteria and fungi in the demanding oral context.


Subject(s)
Biofilms , Candida , Cymenes , Emulsions , Biofilms/drug effects , Cymenes/chemistry , Cymenes/pharmacology , Emulsions/chemistry , Candida/drug effects , Candida/physiology , Humans , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Polymers/chemistry , Polymers/pharmacology , Microbial Sensitivity Tests , Nanoparticles/chemistry , Surface Properties , Mouth Mucosa/microbiology , Mouth Mucosa/drug effects
14.
Carbohydr Polym ; 342: 122352, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-39048217

ABSTRACT

Inspired by the citrus oil gland and cuticular wax, a multifunctional material that stably and continuously released the carvacrol and provided physical defenses was developed to address issues of fresh-cut fruits to microbial infestation and moisture loss. The results confirmed that low molecular weight and loose structure of starch nanoparticles prepared by the ultrasound-assisted Fenton system were preferable for octenyl succinic anhydride modification compared to native starch, achieving a higher degree of substitution (increased by 18.59 %), utilizing in preparing nanoemulsions (NEs) for encapsulating carvacrol (at 5 % level: 81.58 %). Furthermore, the NEs-based gelatin (G) film improved with surface hydrophobic modification by myristic acid (MA) successfully replicated the citrus oil gland and cuticular wax, providing superior antioxidant (enhanced by 3-4 times) and antimicrobial properties (95.99 % and 84.97 % against Staphylococcus aureus and Escherichia coli respectively), as well as the exceptional UV shielding (nearly 0 transmittance in the UV region), mechanical (72 % increase in tensile strength), and hydrophobic (WCA 133.63°). Moreover, the 5%NE-G@MA film inhibited foodborne microbial growth (reduced by 50 %) and water loss (controlled below 15 %), extending the shelf life of fresh-cut navel orange and kiwi. Thus, the multifunctional film was a potential shield for preserving perishable fresh-cut products.


Subject(s)
Citrus , Emulsions , Escherichia coli , Fruit , Gelatin , Nanoparticles , Staphylococcus aureus , Starch , Waxes , Gelatin/chemistry , Nanoparticles/chemistry , Citrus/chemistry , Emulsions/chemistry , Starch/chemistry , Starch/analogs & derivatives , Staphylococcus aureus/drug effects , Escherichia coli/drug effects , Fruit/chemistry , Waxes/chemistry , Antioxidants/chemistry , Antioxidants/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Hydrophobic and Hydrophilic Interactions , Cymenes/chemistry , Cymenes/pharmacology , Plant Oils/chemistry , Plant Oils/pharmacology , Myristic Acid/chemistry , Myristic Acid/pharmacology , Food Preservation/methods
15.
Molecules ; 29(14)2024 Jul 10.
Article in English | MEDLINE | ID: mdl-39064843

ABSTRACT

Ajowan (Trachyspermum ammi L.) is considered a valuable spice and medicinal herb. In this study, the essential oil content and composition of the aerial parts of ajowan were investigated under different drying treatments (sun, shade, oven at 45 °C, oven at 65 °C, microwave, and freeze drying). Moreover, the phenolic content, flavonoid content, and antioxidant capacity of samples were also assessed. Fresh samples produced the highest essential oil content (1.05%), followed by those treated under sun (0.7%) and shade drying (0.95%). Based on gas chromatography-mass spectrometry (GC-MS), thirty compounds were determined in which thymol (34.84-83.1%), carvacrol (0.15-32.36%), p-cymene (0.09-13.66%), and γ-terpinene (3.12-22.58%) were the most abundant. Among the drying methods, freeze drying revealed the highest thymol content, followed by drying in a 45 °C oven. The highest TPC (total phenolic content) and TFC (total flavonoid content) were obtained in the fresh sample (38.23 mg TAE g-1 dry weight (DW)) and in the sample oven-dried at 45 °C (7.3 mg QE g-1 DW), respectively. Based on the HPLC results, caffeic acid (18.04-21.32 mg/100 gDW) and ferulic acid (13.102-19.436 mg/100 g DW) were the most abundant phenolic acids, while among flavonoids, rutin constituted the highest amount (10.26-19.88 mg/100 gDW). Overall, freeze drying was the most promising method of drying for preserving the phenolic (TPC) and flavonoid (TFC) compounds and oil components.


Subject(s)
Antioxidants , Flavonoids , Oils, Volatile , Phenols , Oils, Volatile/chemistry , Oils, Volatile/analysis , Antioxidants/chemistry , Antioxidants/analysis , Flavonoids/analysis , Flavonoids/chemistry , Phenols/analysis , Phenols/chemistry , Thymol/analysis , Thymol/chemistry , Cymenes/chemistry , Cymenes/analysis , Desiccation/methods , Gas Chromatography-Mass Spectrometry , Plant Extracts/chemistry , Cyclohexane Monoterpenes
16.
Molecules ; 29(12)2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38930892

ABSTRACT

The Lamiaceae family, which includes several well-known aromatic plants, is scientifically relevant due to its essential oils (EOs). In this work, four EOs from Mediterranean species, namely Origanum vulgare L., Rosmarinus officinalis L., Salvia officinalis L., and Thymus vulgaris L., were evaluated for their volatile profiles and the biological activity in vitro to assess their potential use in the food and cosmetic sector. GC/MS analysis revealed dominant compounds, such as carvacrol, thymol, and eucalyptol. Regarding biological action, the samples exhibited antioxidant, cytotoxic, anti-inflammatory, antimicrobial, and antifungal activities, with O. vulgare and T. officinalis standing out. T. vulgaris showed the lowest EC50 in the reducing power assay, and O. vulgare had the lowest EC50 in the DPPH assay. Most EOs also displayed excellent anti-inflammatory responses and antifungal properties, with O. vulgare and T. vulgaris also demonstrating antibacterial activity. All EOs from Mediterranean species showed cytotoxicity against tumoral cell lines. Overall, the selected EOs stood out for their interesting bioactivities, with the obtained results underscoring their potential as natural preservatives and bioactive agents in various industrial applications, including food, pharmaceuticals, and cosmetics.


Subject(s)
Antioxidants , Lamiaceae , Oils, Volatile , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Lamiaceae/chemistry , Antioxidants/pharmacology , Antioxidants/chemistry , Humans , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Gas Chromatography-Mass Spectrometry , Origanum/chemistry , Salvia officinalis/chemistry , Cell Line, Tumor , Thymus Plant/chemistry , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Plants, Edible/chemistry , Plant Oils/chemistry , Plant Oils/pharmacology , Thymol/pharmacology , Thymol/chemistry , Microbial Sensitivity Tests , Cymenes
17.
Molecules ; 29(12)2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38930942

ABSTRACT

Naturally occurring substances and their derivatives function as vital resources for pesticides that can be used in fields, such as insecticide production and fungicide development. As a botanical entity displaying multifaceted biological functions, wormwood has received thorough scrutiny across multiple sectors. The insect repellency potency combined with antibacterial and antifungal activities of wormwood position it as a potential candidate for prospective development into eco-friendly chemical pesticides. In this research, Wormwood essential oil was procured via ethanol water under ultrasonic scenarios and subsequently diluted with PEG 400 to formulate green chemical pesticides. The defensive efficacy of this green pesticide on plants was validated through 2 weeks of clustered plant growth experiments. Active constituents that exerted their effects were scrutinized by GC-MS. Furthermore, this green pesticide also displays efficacious effects on the prevention and management of aphids, exhibiting a dose-dependent relationship. 4-terpenol, eucalyptol, carvacrol, and L-borneol were identified by GC-MS as the predominant active constituents in this green chemical pesticide. Wormwood can be leveraged to develop green chemical pesticides, which can protect plants without contaminating the environment.


Subject(s)
Insecticides , Oils, Volatile , Insecticides/chemistry , Insecticides/pharmacology , Animals , Oils, Volatile/chemistry , Oils, Volatile/pharmacology , Gas Chromatography-Mass Spectrometry , Cymenes/chemistry , Cymenes/pharmacology , Green Chemistry Technology/methods , Aphids/drug effects , Eucalyptol/chemistry , Eucalyptol/pharmacology , Camphanes
18.
Sci Rep ; 14(1): 13951, 2024 06 17.
Article in English | MEDLINE | ID: mdl-38886531

ABSTRACT

The thrust of the study was to determine the chemical composition of the essential oils extracted from Thymus pallescens de Noé and Cymbogon citratus Stapf. as well as to evaluate their efficacy in controlling Sitophilus zeamais Motschulsky and Tribolium castaneum (Herbst) in either single or combined populations. Carvacrol (56.04%) and geraniol (20.86%) were identified as the major constituents of T. pallescens and C. citratus respectively. The tested essential oils showed pronounced insecticidal activity against the pest species in relation with the applied doses. T. pallescens EO had the highest efficacy and S. zeamais was found to be more susceptible to both individual and combined treatments. With reference to the contact and fumigation assessments, T. pallescens EO effectuated corrected mortality rates ranging from 42.5-100% to 25-100% in S. zeamais with corresponding lethal concentration (LC50) values of 17.7 µl/ml and 15µL/L air respectively. Whereas, the T. pallescens EO exhibited corrected mortality rates of 42.5-100% and 20-100% with corresponding LC50 values of 18.1 µl/ml and 15.5 µL/L air against T. castaneum in contact and fumigation assessments, respectively. The corrected mortality rates increased for both insect species when using combination treatments, with significant increases in the LC50 values, ranging from 8.59 to 49.9% for both pest species. Analysis of energy biomarkers in the treated insects indicate significantly increased protein and carbohydrate contents and decreased lipids levels. The study therefore demonstrated the bio-insecticidal toxicity of the EOs from T. pallescens and C. citratus against two important maize post-harvest pests, concurrently revealing significant positive and negative insecticidal activity gradients in relation to single or combined populations.


Subject(s)
Insecticides , Oils, Volatile , Thymus Plant , Tribolium , Animals , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Tribolium/drug effects , Insecticides/pharmacology , Insecticides/chemistry , Thymus Plant/chemistry , Acyclic Monoterpenes/pharmacology , Acyclic Monoterpenes/chemistry , Weevils/drug effects , Cymenes/pharmacology , Cymenes/chemistry
19.
Bioorg Med Chem Lett ; 109: 129826, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38830427

ABSTRACT

Carvacrol, called CA, is a dynamic phytoconstituent characterized by a phenol ring abundantly sourced from various natural reservoirs. This versatile scaffold serves as a pivotal template for the design and synthesis of novel drug molecules, harboring promising biological activities. The active sites positioned at C-4, C-6, and the hydroxyl group (-OH) of CA offer fertile ground for creating potent drug candidates from a pharmacological standpoint. In this comprehensive review, we delve into diverse synthesis pathways and explore the biological activity of CA derivatives. We aim to illuminate the potential of these derivatives in discovering and developing efficacious treatments against a myriad of life-threatening diseases. By scrutinizing the structural modifications and pharmacophore placements that enhance the activity of CA derivatives, we aspire to inspire the innovation of novel therapeutics with heightened potency and effectiveness.


Subject(s)
Cymenes , Drug Discovery , Cymenes/chemistry , Cymenes/pharmacology , Cymenes/chemical synthesis , Humans , Molecular Structure , Animals , Structure-Activity Relationship , Monoterpenes/chemistry , Monoterpenes/pharmacology , Monoterpenes/chemical synthesis
20.
Nat Commun ; 15(1): 4943, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38858372

ABSTRACT

The development of Type I photosensitizers (PSs) is of great importance due to the inherent hypoxic intolerance of photodynamic therapy (PDT) in the hypoxic microenvironment. Compared to Type II PSs, Type I PSs are less reported due to the absence of a general molecular design strategy. Herein, we report that the combination of typical Type II PS and natural substrate carvacrol (CA) can significantly facilitate the Type I pathway to efficiently generate superoxide radical (O2-•). Detailed mechanism study suggests that CA is activated into thymoquinone (TQ) by local singlet oxygen generated from the PS upon light irradiation. With TQ as an efficient electron transfer mediator, it promotes the conversion of O2 to O2-• by PS via electron transfer-based Type I pathway. Notably, three classical Type II PSs are employed to demonstrate the universality of the proposed approach. The Type I PDT against S. aureus has been demonstrated under hypoxic conditions in vitro. Furthermore, this coupled photodynamic agent exhibits significant bactericidal activity with an antibacterial rate of 99.6% for the bacterial-infection female mice in the in vivo experiments. Here, we show a simple, effective, and universal method to endow traditional Type II PSs with hypoxic tolerance.


Subject(s)
Benzoquinones , Photochemotherapy , Photosensitizing Agents , Staphylococcus aureus , Benzoquinones/chemistry , Benzoquinones/pharmacology , Benzoquinones/metabolism , Photosensitizing Agents/pharmacology , Animals , Mice , Female , Photochemotherapy/methods , Electron Transport/drug effects , Staphylococcus aureus/drug effects , Cymenes/pharmacology , Cymenes/chemistry , Anti-Bacterial Agents/pharmacology , Singlet Oxygen/metabolism , Superoxides/metabolism , Staphylococcal Infections/drug therapy , Humans , Light , Mice, Inbred BALB C
SELECTION OF CITATIONS
SEARCH DETAIL