Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 7.649
Filter
1.
J Dermatol Sci ; 115(1): 33-41, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38955622

ABSTRACT

BACKGROUND: Tryptophan metabolism dysregulation has been observed in vitiligo. However, drawing a mechanistic linkage between this metabolic disturbance and vitiligo pathogenesis remains challenging. OBJECTIVE: Aim to reveal the characterization of tryptophan metabolism in vitiligo and investigate the role of tryptophan metabolites in vitiligo pathophysiology. METHODS: LC-MS/MS, dual-luciferase reporter assay, ELISA, qRT-PCR, small interfering RNA, western blotting, and immunohistochemistry were employed. RESULTS: Kynurenine pathway activation and KYAT enzyme-associated deviation to kynurenic acid (KYNA) in the plasma of stable non-segmental vitiligo were determined. Using a public microarray dataset, we next validated the activation of kynurenine pathway was related with inflammatory-related genes expression in skin of vitiligo patients. Furthermore, we found that KYNA induced CXCL10 upregulation in keratinocytes via AhR activation. Moreover, the total activity of AhR agonist was increased while the AhR concentration per se was decreased in the plasma of vitiligo patients. Finally, higher KYAT, CXCL10, CYP1A1 and lower AhR expression in vitiligo lesional skin were observed by immunohistochemistry staining. CONCLUSION: This study depicts the metabolic and genetic characterizations of tryptophan metabolism in vitiligo and proposes that KYNA, a tryptophan-derived AhR ligand, can enhance CXCL10 expression in keratinocytes.


Subject(s)
Chemokine CXCL10 , Keratinocytes , Kynurenic Acid , Receptors, Aryl Hydrocarbon , Skin , Tryptophan , Up-Regulation , Vitiligo , Humans , Vitiligo/metabolism , Vitiligo/genetics , Vitiligo/blood , Chemokine CXCL10/metabolism , Chemokine CXCL10/genetics , Receptors, Aryl Hydrocarbon/metabolism , Receptors, Aryl Hydrocarbon/genetics , Tryptophan/metabolism , Tryptophan/blood , Kynurenic Acid/blood , Kynurenic Acid/metabolism , Male , Keratinocytes/metabolism , Skin/metabolism , Skin/pathology , Adult , Female , Basic Helix-Loop-Helix Transcription Factors/metabolism , Basic Helix-Loop-Helix Transcription Factors/genetics , Kynurenine/metabolism , Kynurenine/blood , Cytochrome P-450 CYP1A1/genetics , Cytochrome P-450 CYP1A1/metabolism , Middle Aged , Case-Control Studies , Signal Transduction , Young Adult
2.
Drug Dev Res ; 85(5): e22232, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38992915

ABSTRACT

The human aryl hydrocarbon receptor (AhR), a ligand-dependent transcription factor, plays a pivotal role in a diverse array of pathways in biological and pathophysiological events. This position AhR as a promising target for both carcinogenesis and antitumor strategies. In this study we utilized computational modeling to screen and identify FDA-approved drugs binding to the allosteric site between α2 of bHLH and PAS-A domains of AhR, with the aim of inhibiting its canonical pathway activity. Our findings indicated that nilotinib effectively fits into the allosteric pocket and forms interactions with crucial residues F82, Y76, and Y137. Binding free energy value of nilotinib is the lowest among top hits and maintains stable within its pocket throughout entire (MD) simulations time. Nilotinib has also substantial interactions with F295 and Q383 when it binds to orthosteric site and activate AhR. Surprisingly, it does not influence AhR nuclear translocation in the presence of AhR agonists; instead, it hinders the formation of the functional AhR-ARNT-DNA heterodimer assembly, preventing the upregulation of regulated enzymes like CYP1A1. Importantly, nilotinib exhibits a dual impact on AhR, modulating AhR activity via the PAS-B domain and working as a noncompetitive allosteric antagonist capable of blocking the canonical AhR signaling pathway in the presence of potent AhR agonists. These findings open a new avenue for the repositioning of nilotinib beyond its current application in diverse diseases mediated via AhR.


Subject(s)
Allosteric Site , Receptors, Aryl Hydrocarbon , Receptors, Aryl Hydrocarbon/metabolism , Receptors, Aryl Hydrocarbon/antagonists & inhibitors , Receptors, Aryl Hydrocarbon/chemistry , Humans , Allosteric Regulation/drug effects , Pyrimidines/pharmacology , Pyrimidines/chemistry , Basic Helix-Loop-Helix Transcription Factors/metabolism , Basic Helix-Loop-Helix Transcription Factors/antagonists & inhibitors , Basic Helix-Loop-Helix Transcription Factors/chemistry , Molecular Dynamics Simulation , Drug Approval , Cytochrome P-450 CYP1A1/metabolism , Cytochrome P-450 CYP1A1/antagonists & inhibitors
3.
Sci Total Environ ; 947: 174721, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-39002591

ABSTRACT

The 7-ethoxyresorufin-O-deethylase (EROD) activity was first time characterized in the neotropical fish Cnesterodon decemmaculatus as a biomarker for assessing environmental health in aquatic ecosystems of the Rio de la Plata Basin impacted by organic pollutants agonist of the aryl-hydrocarbon receptor (AhR). Both laboratory and field studies were conducted. Laboratory experiments were run using ß-naphthoflavone (BNF) as an AhR agonist model. A clear concentration-response relationship was found between 1 and 100 µg/L, with a NOEC and LOEC of 1 and 10 µg/L. A fast time-dependent response was observed with a significant induction after 24 h and a plateau from 24 to 48 h up to 264 h of exposure. Differences in basal activity were found between juveniles, females, and males, but induction levels were similar. Both basal activities and induction levels were distinct in the whole body, liver, gill, muscle, brain, and embryos. Fold-change inductions in the respective tissues were: 20, 114, 3, 5, 1, and 14. Maternal transfer and early cyp1a activation were unveiled by embryonic induction. Clear differences in EROD activity were found among juveniles collected in hydrocarbon-polluted streams, beside the La Plata Petrochemical hub, and a reference stream. Similar EROD activities were observed in laboratory and feral fish, usually with values below or above 1,000 pmol/min x mg protein for unexposed or exposed organisms. The study contributes with original information about EROD activity in C. decemmaculatus that encourages the use of both the response as a robust biomarker of exposure and the species as a good sentinel organism to be included in surveillant programs for assessing aquatic pollution by AhR agonist chemicals within the Rio de la Plata Basin within the One Health paradigm.


Subject(s)
Biomarkers , Cytochrome P-450 CYP1A1 , Environmental Monitoring , Receptors, Aryl Hydrocarbon , Water Pollutants, Chemical , Animals , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/analysis , Cytochrome P-450 CYP1A1/metabolism , Receptors, Aryl Hydrocarbon/metabolism , Environmental Monitoring/methods , Biomarkers/metabolism , Brazil
4.
Neurobiol Dis ; 199: 106603, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39002811

ABSTRACT

Caffeine consumption outcomes on Amyotrophic Lateral Sclerosis (ALS) including progression, survival and cognition remain poorly defined and may depend on its metabolization influenced by genetic variants. 378 ALS patients with a precise evaluation of their regular caffeine consumption were monitored as part of a prospective multicenter study. Demographic, clinical characteristics, functional disability as measured with revised ALS Functional Rating Scale (ALSFRS-R), cognitive deficits measured using Edinburgh Cognitive and Behavioural ALS Screen (ECAS), survival and riluzole treatment were recorded. 282 patients were genotyped for six single nucleotide polymorphisms tagging different genes involved in caffeine intake and/or metabolism: CYP1A1 (rs2472297), CYP1A2 (rs762551), AHR (rs4410790), POR (rs17685), XDH (rs206860) and ADORA2A (rs5751876) genes. Association between caffeine consumption and ALSFRS-R, ALSFRS-R rate, ECAS and survival were statistically analyzed to determine the outcome of regular caffeine consumption on ALS disease progression and cognition. No association was observed between caffeine consumption and survival (p = 0.25), functional disability (ALSFRS-R; p = 0.27) or progression of ALS (p = 0.076). However, a significant association was found with higher caffeine consumption and better cognitive performance on ECAS scores in patients carrying the C/T and T/T genotypes at rs2472297 (p-het = 0.004). Our results support the safety of regular caffeine consumption on ALS disease progression and survival and also show its beneficial impact on cognitive performance in patients carrying the minor allele T of rs2472297, considered as fast metabolizers, that would set the ground for a new pharmacogenetic therapeutic strategy.


Subject(s)
Amyotrophic Lateral Sclerosis , Caffeine , Cytochrome P-450 CYP1A2 , Disease Progression , Polymorphism, Single Nucleotide , Receptor, Adenosine A2A , Humans , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/drug therapy , Female , Male , Middle Aged , Aged , Receptor, Adenosine A2A/genetics , Cytochrome P-450 CYP1A2/genetics , Cognition/physiology , Cognition/drug effects , Prospective Studies , Cytochrome P-450 CYP1A1/genetics , Receptors, Aryl Hydrocarbon/genetics , Adult , Cognitive Dysfunction/genetics , Riluzole/therapeutic use , Central Nervous System Stimulants/therapeutic use , Basic Helix-Loop-Helix Transcription Factors
5.
Int J Mol Sci ; 25(11)2024 May 27.
Article in English | MEDLINE | ID: mdl-38892012

ABSTRACT

A key element for the cost-effective development of cultured meat is a cell line culturable in serum-free conditions to reduce production costs. Heme supplementation in cultured meat mimics the original meat flavor and color. This study introduced a bacterial extract generated from Corynebacterium that was selected for high-heme expression by directed evolution. A normal porcine cell line, PK15, was used to apply the bacterial heme extract as a supplement. Consistent with prior research, we observed the cytotoxicity of PK15 to the heme extract at 10 mM or higher. However, after long-term exposure, PK15 adapted to tolerate up to 40 mM of heme. An RNA-seq analysis of these heme-adapted PK15 cells (PK15H) revealed a set of altered genes, mainly involved in cell proliferation, metabolism, and inflammation. We found that cytochrome P450, family 1, subfamily A, polypeptide 1 (CYP1A1), lactoperoxidase (LPO), and glutathione peroxidase 5 (GPX5) were upregulated in the PK15H heme dose dependently. When we reduced serum serially from 2% to serum free, we derived the PK15H subpopulation that was transiently maintained with 5-10 mM heme extract. Altogether, our study reports a porcine cell culturable in high-heme media that can be maintained in serum-free conditions and proposes a marker gene that plays a critical role in this adaptation process.


Subject(s)
Heme , Animals , Swine , Heme/metabolism , Cell Line , Culture Media, Serum-Free , Cell Proliferation/drug effects , Meat/analysis , Cytochrome P-450 CYP1A1/metabolism , Cytochrome P-450 CYP1A1/genetics , Cell Culture Techniques/methods , In Vitro Meat
6.
J Hazard Mater ; 474: 134850, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-38850947

ABSTRACT

Titanium dioxide nanoparticles (nTiO2) have been considered a possible carcinogen to humans, but most existing studies have overlooked the role of human enzymes in assessing the genotoxicity of nTiO2. Here, a toxicogenomics-based in vitro genotoxicity assay using a GFP-fused yeast reporter library was employed to elucidate the genotoxic potential and mechanisms of nTiO2. Moreover, two new GFP-fused yeast reporter libraries containing either human CYP1A1 or CYP1A2 genes were constructed by transformation to investigate the potential modulation of nTiO2 genotoxicity in the presence of human CYP enzymes. This study found a lack of appreciable nTiO2 genotoxicity as indicated by the yeast reporter library in the absence of CYP expression but a significantly elevated indication of genotoxicity in either CYP1A1- or CYP1A2-expressing yeast. The intracellular reactive oxygen species (ROS) measurement indicated significantly higher ROS in yeast expressing either enzyme. The detected mitochondrial DNA damage suggested mitochondria as one of the target sites for oxidative damage by nTiO2 in the presence of either one of the CYP enzymes. The results thus indicated that the genotoxicity of nTiO2 was enhanced by human CYP1A1 or CYP1A2 enzyme and was associated with elevated oxidative stress, which suggested that the similar mechanisms could occur in human cells.


Subject(s)
Cytochrome P-450 CYP1A1 , DNA Damage , Mutagenicity Tests , Reactive Oxygen Species , Saccharomyces cerevisiae , Titanium , Humans , Titanium/toxicity , Reactive Oxygen Species/metabolism , Saccharomyces cerevisiae/drug effects , Saccharomyces cerevisiae/genetics , Cytochrome P-450 CYP1A1/genetics , Cytochrome P-450 CYP1A1/metabolism , Cytochrome P-450 CYP1A2/genetics , Cytochrome P-450 CYP1A2/metabolism , Mutagens/toxicity , Oxidative Stress/drug effects , Genes, Reporter , Nanoparticles/toxicity , Metal Nanoparticles/toxicity , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism
7.
Sheng Li Xue Bao ; 76(3): 353-364, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38939930

ABSTRACT

The role of the aryl hydrocarbon receptor (AhR) in regulating oxidative stress and immune responses has been increasingly recognized. However, its involvement in depression and the underlying mechanisms remain poorly understood. This study aimed to investigate the effect of 6-formylindolo[3,2-b]carbazole (FICZ), an endogenous AhR ligand, on a lipopolysaccharide (LPS)-induced depression model and the underlying mechanism. After being treated with FICZ (50 mg/kg), male C57BL/6J mice received intraperitoneal injection of LPS and underwent behavioral tests 24 h later. The levels of inflammatory cytokines, including IL-1ß, IL-6, and TNF-α, were measured in the hippocampus and serum using enzyme-linked immunosorbent assay (ELISA). The expression levels of CYP1A1, AhR and NLRP3 were analyzed using qPCR and Western blot. The results showed that, compared with control group, LPS alone significantly down-regulated the expression levels of CYP1A1 mRNA and AhR protein in the hippocampus of mice, reduced glucose preference, prolonged immobility time in forced swimming test, increased IL-6 and IL-1ß levels in the hippocampus, increased serum IL-1ß level, and up-regulated NLRP3 mRNA and protein expression levels in mouse hippocampus, while FICZ significantly reversed the aforementioned effects of LPS. These findings suggest that AhR activation attenuates the inflammatory response associated with depression and modulates the expression of NLRP3. The present study provides novel insights into the role of AhR in the development of depression, and presents AhR as a potential therapeutic target for the treatment of depression.


Subject(s)
Carbazoles , Cytochrome P-450 CYP1A1 , Depression , Hippocampus , Lipopolysaccharides , Mice, Inbred C57BL , NLR Family, Pyrin Domain-Containing 3 Protein , Receptors, Aryl Hydrocarbon , Animals , Male , Mice , Behavior, Animal , Carbazoles/pharmacology , Cytochrome P-450 CYP1A1/metabolism , Cytochrome P-450 CYP1A1/genetics , Cytokines/metabolism , Depression/metabolism , Hippocampus/metabolism , Interleukin-1beta/metabolism , Interleukin-6/metabolism , Lipopolysaccharides/adverse effects , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Receptors, Aryl Hydrocarbon/metabolism , Tumor Necrosis Factor-alpha/metabolism
8.
Ecotoxicol Environ Saf ; 281: 116662, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38944008

ABSTRACT

OBJECTIVE: This study aimed to investigate the mechanism that Lactobacillus murinus (L. murinus) alleviated lung inflammation induced by polycyclic aromatic hydrocarbons (PAHs) exposure based on metabolomics. METHODS: Female mice were administrated with PAHs mix, L. murinus and indoleacrylic acid (IA) or indolealdehyde (IAId). Microbial diversity in feces was detected by 16 S rRNA gene sequencing. Non-targeted metabolomics analysis in urine samples and targeted analysis of tryptophan metabolites in serum by UPLC-Orbitrap-MS and short-chain fatty acids (SCFA) in feces by GC-MS were performed, respectively. Flow cytometry was used to determine T helper immune cell differentiation in gut and lung tissues. The levels of IgE, IL-4 and IL-17A in the bronchoalveolar lavage fluid (BALF) or serum were detected by ELISA. The expressions of aryl hydrocarbon receptor (Ahr), cytochrome P450 1A1 (Cyp1a1) and forkheadbox protein 3 (Foxp3) genes and the histone deacetylation activity were detected by qPCR and by ELISA in lung tissues, respectively. RESULTS: PAHs exposure induced lung inflammation and microbial composition shifts and tryptophan metabolism disturbance in mice. L. murinus alleviated PAHs-induced lung inflammation and inhibited T helper cell 17 (Th17) cell differentiation and promoted regulatory T cells (Treg) cell differentiation. L. murinus increased the levels of IA and IAId in the serum and regulated Th17/Treg imbalance by activating AhR. Additionally, L. murinus restored PAHs-induced decrease of butyric acid and valeric acid which can reduce the histone deacetylase (HDAC) level in the lung tissues, enhancing the expression of the Foxp3 gene and promoting Treg cell differentiation. CONCLUSION: our study illustrated that L. murinus alleviated PAHs-induced lung inflammation and regulated Th17/Treg cell differentiation by regulating host tryptophan metabolism and SCFA levels. The study provided new insights into the reciprocal influence between gut microbiota, host metabolism and the immune system, suggesting that L. murinus might have the potential as a novel therapeutic strategy for lung diseases caused by environmental pollution in the future.


Subject(s)
Lactobacillus , Pneumonia , Polycyclic Aromatic Hydrocarbons , Animals , Mice , Female , Polycyclic Aromatic Hydrocarbons/toxicity , Pneumonia/chemically induced , Pneumonia/drug therapy , Receptors, Aryl Hydrocarbon/metabolism , Lung/drug effects , Lung/pathology , Lung/immunology , Tryptophan , Th17 Cells/drug effects , Th17 Cells/immunology , Probiotics/pharmacology , Probiotics/therapeutic use , Gastrointestinal Microbiome/drug effects , Bronchoalveolar Lavage Fluid/cytology , Bronchoalveolar Lavage Fluid/chemistry , Metabolomics , Cytochrome P-450 CYP1A1/metabolism , Cytochrome P-450 CYP1A1/genetics
9.
Bull Exp Biol Med ; 176(6): 796-800, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38890213

ABSTRACT

The allele and genotype frequencies of the polymorphic loci CYP1A1 (rs1048943), GSTP1 (rs1695 and rs1138272), GSTM1, and GSTT1 genes were studied in 517 men: in 389 accumulated mercury pollution liquidators (207 firefighters of the Ministry of the Russian Federation for Civil Defence, Emergencies and Elimination of Consequences of Natural Disasters and 182 employees of the Federal Environmental Operator) and 128 former workers (82 patients in the delayed period of chronic mercury intoxication and 46 individuals contacted with mercury and had no chronic mercury intoxication). We found differences in the frequencies of AA and AG genotypes in groups of former workers (χ2=6.96, p=0.008) for the polymorphic locus rs1048943, while the AG-CYP1A1 genotype was characterized by a 5.5-fold decrease in the odds ratio for the development of chronic mercury intoxication (OR=0.18, p=0.0041). An unfavorable combination of genotypes of the studied polymorphic loci increases the risk of undesirable health effects.


Subject(s)
Cytochrome P-450 CYP1A1 , Glutathione Transferase , Mercury , Occupational Exposure , Xenobiotics , Humans , Male , Glutathione Transferase/genetics , Glutathione Transferase/metabolism , Mercury/toxicity , Occupational Exposure/adverse effects , Adult , Xenobiotics/metabolism , Cytochrome P-450 CYP1A1/genetics , Glutathione S-Transferase pi/genetics , Middle Aged , Mercury Poisoning/genetics , Gene Frequency/genetics , Biotransformation/genetics , Genotype , Polymorphism, Single Nucleotide/genetics , Russia , Firefighters , Alleles
10.
Chem Biol Drug Des ; 103(6): e14572, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38923686

ABSTRACT

The environmental factor aryl hydrocarbon receptor (AhR), a key protein connecting the external environmental signals (e.g., environmental endocrine disruptor TCDD) to internal cellular processes, is involved in the activation of peripheral macrophages and inflammatory response in human body. Thus, there is widespread interest in finding compounds to anti-inflammatory response in macrophages by targeting human AhR. Here, ensemble docking based-virtual screening was first used to screen a library (~200,000 compounds) against human AhR ligand binding domain (LBD) and 25 compounds were identified as potential inhibitors. Then, 9 out of the 25 ligands were found to down-regulate the mRNA expression of CYP1A1 (a downstream gene of AhR signaling) in AhR overexpressing macrophages. The most potent compound AE-411/41415610 was selected for further study and found to reduce both mRNA and protein expressions level of CYP1A1 in mouse peritoneal macrophage. Moreover, protein chip signal pathway analysis indicated that AE-411/41415610 play a role in regulating JAK-STAT and AKT-mTOR pathways. In sum, the discovered hits with novel scaffolds provided a starting point for future design of more effective AhR-targeted lead compounds to regulate CYP1A1 expression of inflammatory peritoneal macrophages.


Subject(s)
Cytochrome P-450 CYP1A1 , Molecular Docking Simulation , Receptors, Aryl Hydrocarbon , Signal Transduction , Receptors, Aryl Hydrocarbon/metabolism , Cytochrome P-450 CYP1A1/metabolism , Cytochrome P-450 CYP1A1/genetics , Animals , Ligands , Mice , Humans , Signal Transduction/drug effects , Macrophages/metabolism , Macrophages/drug effects , Macrophages, Peritoneal/metabolism , Macrophages, Peritoneal/drug effects , Inflammation/metabolism , Inflammation/drug therapy , Proto-Oncogene Proteins c-akt/metabolism , TOR Serine-Threonine Kinases/metabolism , Binding Sites
11.
Sci China Life Sci ; 67(7): 1468-1478, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38703348

ABSTRACT

Dietary exposure to aflatoxin B1 (AFB1) is harmful to the health and performance of domestic animals. The hepatic cytochrome P450s (CYPs), CYP1A1 and CYP2A6, are the primary enzymes responsible for the bioactivation of AFB1 to the highly toxic exo-AFB1-8,9-epoxide (AFBO) in chicks. However, the transcriptional regulation mechanism of these CYP genes in the liver of chicks in AFB1 metabolism remains unknown. Dual-luciferase reporter assay, bioinformatics and site-directed mutation results indicated that specificity protein 1 (SP1) and activator protein-1 (AP-1) motifs were located in the core region -1,063/-948, -606/-541 of the CYP1A1 promoter as well as -636/-595, -503/-462, -147/-1 of the CYP2A6 promoter. Furthermore, overexpression and decoy oligodeoxynucleotide technologies demonstrated that SP1 and AP-1 were pivotal transcriptional activators regulating the promoter activity of CYP1A1 and CYP2A6. Moreover, bioactivation of AFB1 to AFBO could be increased by upregulation of CYP1A1 and CYP2A6 expression, which was trans-activated owing to the upregulalion of AP-1, rather than SP1, stimulated by AFB1-induced reactive oxygen species. Additionally, nano-selenium could reduce ROS, downregulate AP-1 expression and then decrease the expression of CYP1A1 and CYP2A6, thus alleviating the toxicity of AFB1. In conclusion, AP-1 and SP1 played important roles in the transactivation of CYP1A1 and CYP2A6 expression and further bioactivated AFB1 to AFBO in chicken liver, which could provide novel targets for the remediation of aflatoxicosis in chicks.


Subject(s)
Aflatoxin B1 , Chickens , Cytochrome P-450 CYP1A1 , Cytochrome P-450 CYP2A6 , Liver , Promoter Regions, Genetic , Sp1 Transcription Factor , Transcription Factor AP-1 , Animals , Aflatoxin B1/metabolism , Chickens/metabolism , Liver/metabolism , Sp1 Transcription Factor/metabolism , Sp1 Transcription Factor/genetics , Cytochrome P-450 CYP1A1/genetics , Cytochrome P-450 CYP1A1/metabolism , Transcription Factor AP-1/metabolism , Transcription Factor AP-1/genetics , Cytochrome P-450 CYP2A6/metabolism , Cytochrome P-450 CYP2A6/genetics , Transcriptional Activation
12.
Ecotoxicol Environ Saf ; 279: 116463, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38749194

ABSTRACT

The environmental impact of oil spills is a critical concern, particularly pertaining to low sulfur marine diesel (LSMD) and high sulfur fuel oil (HSFO) that are commonly involved in coastal spills. Although transcriptomic biomonitoring of sentinel animals can be a powerful tool for assessing biological effects, conventional methods utilize lethal sampling to examine the liver. As a non-lethal alternative, we have previously shown salmonid caudal fin cyp1a1 is significantly responsive to LSMD-derived toxicants. The present study further investigated the transcriptomic biomonitoring potential of coho salmon smolt caudal fin in comparison to liver tissue in the context of LSMD and HSFO seawater accommodated fraction (seaWAF) exposure in cold-water marine environments. Assessing the toxicity of these seaWAFs involved quantifying polycyclic aromatic hydrocarbon (tPAH50) concentrations and generating gene expression profiles. Initial qPCR analyses revealed significant cyp1a1 response in both liver and caudal fin tissues of both genetic sexes to all seaWAF exposures. RNA-Seq analysis, focusing on the highest LSMD and HSFO seaWAF concentrations (28.4±1.8 and 645.08±146.3 µg/L tPAH50, respectively), revealed distinct tissue-specific and genetic sex-independent transcriptomic responses with an overall enrichment of oxidative stress, cell adhesion, and morphogenesis-related pathways. Remarkably, the caudal fin tissue exhibited transcriptomic response patterns comparable to liver tissue, particularly consistent differential expression of 33 gene transcripts in the liver (independent of sex and oil type) and 44 in the caudal fin. The present work underscores the viability of using the caudal fin as a non-lethal alternative to liver sampling for assessing and tracking oil spill exposure in marine environments.


Subject(s)
Animal Fins , Cytochrome P-450 CYP1A1 , Fuel Oils , Liver , Petroleum Pollution , Transcriptome , Water Pollutants, Chemical , Animals , Liver/drug effects , Liver/metabolism , Water Pollutants, Chemical/toxicity , Petroleum Pollution/adverse effects , Animal Fins/drug effects , Transcriptome/drug effects , Male , Cytochrome P-450 CYP1A1/genetics , Cytochrome P-450 CYP1A1/metabolism , Fuel Oils/toxicity , Female , Sulfur , Environmental Monitoring/methods , Oncorhynchus kisutch/genetics , Gasoline/toxicity , Polycyclic Aromatic Hydrocarbons/toxicity , Polycyclic Aromatic Hydrocarbons/analysis , Seawater/chemistry
13.
Mar Pollut Bull ; 203: 116398, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38723548

ABSTRACT

Anthropogenic pollution poses a threat to marine conservation by causing chronic toxic effects. Seabirds have contact throughout their lives with pollutants like plastic, metals, polychlorinated biphenyls (PCBs), and organochlorine pesticides such as hexachlorocyclohexanes (HCHs). We assessed 155 Manx shearwaters (Puffinus puffinus) stranded along the Brazilian coast, analyzing associations between organic pollutants, plastic ingestion, biomarkers (transcript levels of aryl hydrocarbon receptor, cytochrome P450-1A-5 [CYP1A5], UDP-glucuronosyl-transferase [UGT1], estrogen receptor alpha-1 [ESR1], and heat shock protein-70 genes) and enzymes activity (ethoxy-resorufin O-deethylase and glutathione S-transferase [GST]). Plastic debris was found in 29 % of the birds. The transcription of UGT1 and CYP1A5 was significantly associated with hexachlorobenzene (HCB) and PCBs levels. ESR1 was associated with HCB and Mirex, and GST was associated with Drins and Mirex. While organic pollutants affected shearwaters more than plastic ingestion, reducing plastic availability remains relevant as xenobiotics are also potentially adsorbed onto plastics.


Subject(s)
Biomarkers , Environmental Monitoring , Polychlorinated Biphenyls , Water Pollutants, Chemical , Animals , Biomarkers/metabolism , Water Pollutants, Chemical/toxicity , Birds , Glutathione Transferase/metabolism , Brazil , Plastics , Cytochrome P-450 CYP1A1/metabolism , Cytochrome P-450 CYP1A1/genetics , Pesticides/toxicity , Glucuronosyltransferase/metabolism , Glucuronosyltransferase/genetics , Receptors, Aryl Hydrocarbon/metabolism
14.
Ecotoxicol Environ Saf ; 279: 116466, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38759533

ABSTRACT

Polycyclic aromatic hydrocarbons (PAHs) and dioxins are potential causes of multiple diseases by activating the aryl hydrocarbon receptor (AhR) pathway. Health risk assessment of chemicals primarily relies on the relative potency factor (RPF), although its accuracy may be limited when solely using EC50 values. The induction of cytochrome P4501A1 (CYP1A1) serves as a biomarker for AhR activation and is an integrator of dioxin-like toxicity. Here, we present a method for evaluating the risks associated with AhR activation using mathematical models of dose-CYP1A1 induction. The dose-effect curves for certain PAHs and dioxins, including Ant, BghiP, 1,2,3,4,7,8-HxCDD, and others, exhibited a non-classical S-shaped form. The toxic equivalent factor (TEF) profiles revealed a broad range of toxic equivalent factor values. The TEFs for PAHs ranged from approximately 0.01 to 6, with higher values being observed when the concentration was less than 10-10 M, with the exceptions of Ace, Phe, and BghiP. Most congeners of dioxins got the lowest TEF value at around 10-10 M, ranging from 0.04 to 1.00. The binding affinity of AhR to ligands did not display a strong correlation with the EC50 of CYP1A1 expression, suggesting that the AhR-mediated effects of PAHs and dioxins are not fixed but instead fluctuate with the dose. Air samples acquired from a parking area were used to compare the proficiency of RPF and our current approach. In the current method, naphthalene and chrysene were the primary contributors of PAHs to AhR-mediated risks in parking lots air samples, respectively. However, the contributions of naphthalene and chrysene could be disregarded in the RPF approach.


Subject(s)
Biomarkers , Cytochrome P-450 CYP1A1 , Dioxins , Inhalation Exposure , Polycyclic Aromatic Hydrocarbons , Receptors, Aryl Hydrocarbon , Receptors, Aryl Hydrocarbon/metabolism , Cytochrome P-450 CYP1A1/metabolism , Biomarkers/metabolism , Biomarkers/analysis , Polycyclic Aromatic Hydrocarbons/toxicity , Polycyclic Aromatic Hydrocarbons/analysis , Dioxins/toxicity , Risk Assessment , Humans , Dose-Response Relationship, Drug
15.
Aquat Toxicol ; 272: 106946, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38759525

ABSTRACT

Microplastics are ubiquitous environmental pollutants frequently detected in aquatic environments. Here we used the Atlantic salmon epithelial gill cell line (ASG-10) to investigate the uptake and effects of polystyrene (PS) microplastic. The ASG-10 cell line has phagocytotic/endocytic capacities and can take up clear PS particles at 0.2 and 1.0 µm, while PS at 10 µm was not taken up. As a response to the uptake, the ASG-10 cells increased their lysosomal activity. Furthermore, no effects on the mitochondria were found, neither on the mitochondrial membrane potential nor the mitochondria morphology (branch length and diameter). Interestingly, even a very high concentration of PS (200 µg/ml) with all tested particle sizes had no effects on cell viability or cell cycle. The environmental toxin Benzo(a)pyrene (B(a)P), a known inducer of CYP1A, is highly hydrophobic and thus sticks to the PS particles. However, co-exposure of B(a)P and PS the particles did not increase the induction of CYP1A activity compared to B(a)P alone. Our study contributes to the understanding of the cellular effects of PS particles using a highly relevant Atlantic salmon gill epithelium in vitro model.


Subject(s)
Epithelial Cells , Gills , Microplastics , Salmo salar , Water Pollutants, Chemical , Animals , Gills/drug effects , Gills/cytology , Microplastics/toxicity , Water Pollutants, Chemical/toxicity , Epithelial Cells/drug effects , Cell Line , Polystyrenes/toxicity , Benzo(a)pyrene/toxicity , Cell Survival/drug effects , Cytochrome P-450 CYP1A1/metabolism , Membrane Potential, Mitochondrial/drug effects , Mitochondria/drug effects , Mitochondria/metabolism
16.
Chemosphere ; 358: 142238, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38705413

ABSTRACT

Predicting the metabolic activation mechanism and potential hazardous metabolites of environmental endocrine-disruptors is a challenging and significant task in risk assessment. Here the metabolic activation mechanism of benzophenone-3 catalyzed by P450 1A1 was investigated by using Molecular Dynamics, Quantum Mechanics/Molecular Mechanics and Density Functional Theory approaches. Two elementary reactions involved in the metabolic activation of BP-3 with P450 1A1: electrophilic addition and hydrogen abstraction reactions were both discussed. Further conversion reactions of epoxidation products, ketone products and the formaldehyde formation reaction were investigated in the non-enzymatic environment based on previous experimental reports. Binding affinities analysis of benzophenone-3 and its metabolites to sex hormone binding globulin indirectly demonstrates that they all exhibit endocrine-disrupting property. Toxic analysis shows that the eco-toxicity and bioaccumulation values of the benzophenone-3 metabolites are much lower than those of benzophenone-3. However, the metabolites are found to have skin-sensitization effects. The present study provides a deep insight into the biotransformation process of benzophenone-3 catalyzed by P450 1A1 and alerts us to pay attention to the adverse effects of benzophenone-3 and its metabolites in human livers.


Subject(s)
Benzophenones , Cytochrome P-450 CYP1A1 , Endocrine Disruptors , Benzophenones/metabolism , Endocrine Disruptors/metabolism , Cytochrome P-450 CYP1A1/metabolism , Quantum Theory , Humans , Molecular Dynamics Simulation , Catalysis , Biotransformation
17.
JCI Insight ; 9(10)2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38652558

ABSTRACT

Chronic kidney disease (CKD) causes accumulation of uremic metabolites that negatively affect skeletal muscle. Tryptophan-derived uremic metabolites are agonists of the aryl hydrocarbon receptor (AHR), which has been shown to be activated in CKD. This study investigated the role of the AHR in skeletal muscle pathology of CKD. Compared with controls with normal kidney function, AHR-dependent gene expression (CYP1A1 and CYP1B1) was significantly upregulated in skeletal muscle of patients with CKD, and the magnitude of AHR activation was inversely correlated with mitochondrial respiration. In mice with CKD, muscle mitochondrial oxidative phosphorylation (OXPHOS) was markedly impaired and strongly correlated with the serum level of tryptophan-derived uremic metabolites and AHR activation. Muscle-specific deletion of the AHR substantially improved mitochondrial OXPHOS in male mice with the greatest uremic toxicity (CKD + probenecid) and abolished the relationship between uremic metabolites and OXPHOS. The uremic metabolite/AHR/mitochondrial axis in skeletal muscle was verified using muscle-specific AHR knockdown in C57BL/6J mice harboring a high-affinity AHR allele, as well as ectopic viral expression of constitutively active mutant AHR in mice with normal renal function. Notably, OXPHOS changes in AHRmKO mice were present only when mitochondria were fueled by carbohydrates. Further analyses revealed that AHR activation in mice led to significantly increased pyruvate dehydrogenase kinase 4 (Pdk4) expression and phosphorylation of pyruvate dehydrogenase enzyme. These findings establish a uremic metabolite/AHR/Pdk4 axis in skeletal muscle that governs mitochondrial deficits in carbohydrate oxidation during CKD.


Subject(s)
Mice, Inbred C57BL , Muscle, Skeletal , Oxidative Phosphorylation , Pyruvate Dehydrogenase Acetyl-Transferring Kinase , Receptors, Aryl Hydrocarbon , Renal Insufficiency, Chronic , Tryptophan , Animals , Receptors, Aryl Hydrocarbon/metabolism , Receptors, Aryl Hydrocarbon/genetics , Mice , Male , Renal Insufficiency, Chronic/metabolism , Tryptophan/metabolism , Muscle, Skeletal/metabolism , Humans , Pyruvate Dehydrogenase Acetyl-Transferring Kinase/metabolism , Pyruvate Dehydrogenase Acetyl-Transferring Kinase/genetics , Uremia/metabolism , Mitochondria, Muscle/metabolism , Basic Helix-Loop-Helix Transcription Factors/metabolism , Basic Helix-Loop-Helix Transcription Factors/genetics , Female , Mice, Knockout , Cytochrome P-450 CYP1B1/metabolism , Cytochrome P-450 CYP1B1/genetics , Cytochrome P-450 CYP1A1/metabolism , Cytochrome P-450 CYP1A1/genetics , Middle Aged , Energy Metabolism , Disease Models, Animal
18.
Chemosphere ; 357: 142108, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38657698

ABSTRACT

Numerous studies reported the concentration of agonists of aryl hydrocarbon receptor (AhR) in indoor dust by target chemical analysis or the biological effects of activating the AhR by indoor extracts, but the major AhR agonists identification in indoor dust were rarely researched. In the present study, the indoor dust samples were collected for 7-ethoxyresorufin O-deethylase (EROD) assay and both non-targeted and targeted chemical analysis for AhR agonists by gas chromatography quadrupole time-of-flight mass spectrometry and gas chromatography-mass spectrometry analysis. Coupled with non-targeted analysis and toxicity Forecaster (ToxCast)/Tox21 database, 104 ToxCast chemicals were screened to be able to induce EROD response. The combination of targeted chemical analyses and biological effects evaluation indicated that PAHs, dibutyl phthalate (DBP) and Cypermethrin might be the important AhR-agonists in different indoor dust and mainly contributed in 1.84%-97.56 % (median: 26.62%) of total observed biological effects through comparing toxic equivalency quotient derived from chemical analysis with biological equivalences derived from bioassay. DBP and cypermethrin seldom reported in the analysis of AhR agonists should raise great concern. In addition, the present results in experiment of synthetic solution of 4 selected AhR-agonists pointed out that some unidentified AhR agonists existed in indoor dust.


Subject(s)
Air Pollution, Indoor , Dust , Gas Chromatography-Mass Spectrometry , Receptors, Aryl Hydrocarbon , Dust/analysis , Receptors, Aryl Hydrocarbon/agonists , Receptors, Aryl Hydrocarbon/metabolism , Air Pollution, Indoor/analysis , Air Pollution, Indoor/statistics & numerical data , Polycyclic Aromatic Hydrocarbons/analysis , Polycyclic Aromatic Hydrocarbons/toxicity , Environmental Monitoring/methods , Pyrethrins/analysis , Pyrethrins/toxicity , Cytochrome P-450 CYP1A1/metabolism , Humans , Air Pollutants/analysis , Air Pollutants/toxicity , Databases, Factual
19.
Commun Biol ; 7(1): 442, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38600349

ABSTRACT

Aryl hydrocarbon receptor (AHR) signalling integrates biological processes that sense and respond to environmental, dietary, and metabolic challenges to ensure tissue homeostasis. AHR is a transcription factor that is inactive in the cytosol but upon encounter with ligand translocates to the nucleus and drives the expression of AHR targets, including genes of the cytochrome P4501 family of enzymes such as Cyp1a1. To dynamically visualise AHR activity in vivo, we generated reporter mice in which firefly luciferase (Fluc) was non-disruptively targeted into the endogenous Cyp1a1 locus. Exposure of these animals to FICZ, 3-MC or to dietary I3C induced strong bioluminescence signal and Cyp1a1 expression in many organs including liver, lung and intestine. Longitudinal studies revealed that AHR activity was surprisingly long-lived in the lung, with sustained Cyp1a1 expression evident in discrete populations of cells including columnar epithelia around bronchioles. Our data link diet to lung physiology and also reveal the power of bespoke Cyp1a1-Fluc reporters to longitudinally monitor AHR activity in vivo.


Subject(s)
Cytochrome P-450 CYP1A1 , Receptors, Aryl Hydrocarbon , Mice , Animals , Cytochrome P-450 CYP1A1/genetics , Cytochrome P-450 CYP1A1/metabolism , Receptors, Aryl Hydrocarbon/genetics , Receptors, Aryl Hydrocarbon/metabolism , Luciferases/genetics , Liver/metabolism , Lung/metabolism
20.
Environ Toxicol Pharmacol ; 108: 104433, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38583790

ABSTRACT

We investigated possible associations between the internal concentrations of POPs and correlations between blood and tumor tissue concentrations in patients who underwent surgery for breast cancer and breast reduction as controls. Genetic variations in CYP1A1, GSTP1, GSTM1, and GSTT1 and hOGG1 were evaluated to determine whether they represent risk factors for breast cancer. Certain POPs have been found to be associated with breast cancer development. GST-P1 polymorphism represented a significant risk for breast cancer with unadjusted OR. However, the GSTT1 null polymorphism represented a significant risk for breast cancer when OR adjusted for age and smoking status. CYP1A1 polymorphism was a significant risk factor for breast cancer, regardless of whether the OR was adjusted. These results suggest that exposure to certain POPs, GSTT1 and CYP1A1 polymorphisms, age, and smoking status are risk factors for breast cancer. In addition, the blood concentrations of some POPs represent surrogates for breast tissue concentrations.


Subject(s)
Breast Neoplasms , Cytochrome P-450 CYP1A1 , Genetic Predisposition to Disease , Glutathione Transferase , Persistent Organic Pollutants , Humans , Breast Neoplasms/genetics , Female , Glutathione Transferase/genetics , Cytochrome P-450 CYP1A1/genetics , Middle Aged , Adult , Persistent Organic Pollutants/blood , Polymorphism, Genetic , Aged , Glutathione S-Transferase pi/genetics , Risk Factors , DNA Glycosylases
SELECTION OF CITATIONS
SEARCH DETAIL