Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 6.303
Filter
1.
Cell Mol Biol Lett ; 29(1): 103, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38997648

ABSTRACT

BACKGROUND: Extrachromosomal circular DNA (eccDNA), a kind of circular DNA that originates from chromosomes, carries complete gene information, particularly the oncogenic genes. This study aimed to examine the contributions of FAM84B induced by eccDNA to prostate cancer (PCa) development and the biomolecules involved. METHODS: The presence of eccDNA in PCa cells and the FAM84B transcripts that eccDNA carries were verified by outward and inward PCR. The effect of inhibition of eccDNA synthesis on FAM84B expression in PCa cells was analyzed by knocking down Lig3. The impact of FAM84B on the growth and metastases of PCa cells was verified by Cell Counting Kit-8 (CCK8), EdU, transwell assays, and a xenograft mouse model. Chromatin immunoprecipitation quantitative PCR (ChIP-qPCR) and dual-luciferase reporter assays were carried out to examine the effect of FAM84B/MYC on WWP1 transcription, and a co-immunoprecipitation (Co-IP) assay was conducted to verify the modification of CDKN1B by WWP1. The function of this molecular axis in PCa was explored by rescue assays. RESULTS: The inhibited eccDNA synthesis significantly downregulated FAM84B in PCa cells, thereby attenuating the growth and metastasis of PCa. FAM84B promoted the transcription of WWP1 by MYC by activating the expression of MYC coterminous with the 8q24.21 gene desert in a beta catenin-dependent approach. WWP1 transcription promoted by MYC facilitated the ubiquitination and degradation of CDKN1B protein and inversely attenuated the repressive effect of CDKN1B on MYC expression. Exogenous overexpression of CDKN1B blocked FAM84B-activated MYC/WWP1 expression, thereby inhibiting PCa progression. CONCLUSIONS: FAM84B promoted by eccDNA mediates degradation of CDKN1B via MYC/WWP1, thereby accelerating PCa progression.


Subject(s)
DNA, Circular , Disease Progression , Gene Expression Regulation, Neoplastic , Prostatic Neoplasms , Proto-Oncogene Proteins c-myc , Ubiquitin-Protein Ligases , Male , Humans , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , Prostatic Neoplasms/metabolism , Cell Line, Tumor , Animals , DNA, Circular/genetics , DNA, Circular/metabolism , Proto-Oncogene Proteins c-myc/metabolism , Proto-Oncogene Proteins c-myc/genetics , Mice , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Cell Proliferation/genetics , Mice, Nude , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Cyclin-Dependent Kinase Inhibitor p27
2.
Genes (Basel) ; 15(6)2024 May 24.
Article in English | MEDLINE | ID: mdl-38927614

ABSTRACT

Several years of research into the small circular DNA molecules called SPHINX and BMMF (SPHINX/BMMF) have provided information on several areas of research, medicine, microbiology and nutritional science. But there are still open questions that have not yet been addressed. Due to the unclear classification, evolution and sources of SPHINX/BMMF, a risk assessment is currently not possible. However, risk assessment is necessary as SPHINX/BMMF are suspected to be involved in the development of cancer and neurodegenerative diseases. In order to obtain an overview of the current state of research and to identify research gaps, a review of all the publications on this topic to date was carried out. The focus was primarily on the SPHINX/BMMF group 1 and 2 members, which is the topic of most of the research. It was discovered that the SPHINX/BMMF molecules could be integral components of mammalian cells, and are also inherited. However, their involvement in neurodegenerative and carcinogenic diseases is still unclear. Furthermore, they are probably ubiquitous in food and they resemble bacterial plasmids in parts of their DNA and protein (Rep) sequence. In addition, a connection with bacterial viruses is also suspected. Ultimately, it is still unclear whether SPHINX/BMMF have an infectious capacity and what their host or target is.


Subject(s)
DNA, Circular , Humans , Animals , DNA, Circular/genetics , Neurodegenerative Diseases/genetics , Neoplasms/genetics
3.
Discov Med ; 36(185): 1169-1179, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38926103

ABSTRACT

BACKGROUND: In recent years, a gene-editing technology known as clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 has been developed and is progressively advancing into clinical trials. While current antiviral therapies are unable to eliminate the Hepatitis B virus (HBV), it stands as a prime target for the CRISPR/Cas9 technology. The objective of this study was to enhance the efficacy of CRISPR/Cas9 in suppressing HBV replication, lowering HBsAg and HBeAg levels, and eliminating covalently closed circular DNA (cccDNA). METHODS: To enhance the anti-HBV effectiveness of CRISPR/Cas9, our study delved into a dual-guide RNA (gRNA) strategy. After evaluating the antiviral activities of multiple gRNAs that effectively impeded HBV replication, we identified three specific gRNAs-namely 10, 4, and 21. These gRNAs were selected for their targeting of distinct yet conserved regions within the HBV genome. RESULTS: In HBV-stable cell lines, namely HepAD38, and HBV infection models of HepG2-NTCP cells, our investigation revealed that the co-application of gRNA-10 with either gRNA-4 or gRNA-21 within the CRISPR/Cas9 system demonstrated heightened efficacy in impeding HBV replication, reducing the levels of HBsAg, HBeAg, and cccDNA levels, along with a more pronounced promotion of HBsAg clearance when compared to the use of a single gRNA. CONCLUSIONS: The CRISPR/Cas9 system employing dual gRNAs has proven highly effective in both suppressing HBV replication and facilitating HBsAg clearance. This promising outcome suggests that it holds potential to emerge as a novel approach for achieving the functional cure of patients with HBV infection.


Subject(s)
CRISPR-Cas Systems , Hepatitis B virus , RNA, Guide, CRISPR-Cas Systems , Virus Replication , Hepatitis B virus/genetics , Hepatitis B virus/physiology , Humans , Virus Replication/genetics , CRISPR-Cas Systems/genetics , RNA, Guide, CRISPR-Cas Systems/genetics , Hep G2 Cells , Gene Editing/methods , DNA, Circular/genetics , DNA, Circular/metabolism , DNA, Viral/genetics , Hepatitis B Surface Antigens/genetics , Hepatitis B Surface Antigens/metabolism , Hepatitis B e Antigens/genetics , Hepatitis B e Antigens/metabolism , Antiviral Agents/pharmacology , Hepatitis B/virology , Hepatitis B/genetics , Hepatitis B/therapy
4.
J Med Virol ; 96(5): e29669, 2024 May.
Article in English | MEDLINE | ID: mdl-38773784

ABSTRACT

Chronic hepatitis B virus (HBV) infection remains a significant global health challenge due to its link to severe conditions like HBV-related cirrhosis and hepatocellular carcinoma (HCC). Although current treatments effectively reduce viral levels, they have limited impact on certain HBV elements, namely hepatitis B surface antigen (HBsAg) and covalently closed circular DNA (cccDNA). This highlights the urgent need for innovative pharmaceutical and biological interventions that can disrupt HBsAg production originating from cccDNA. In this study, we identified a natural furanocoumarin compound, Imperatorin, which markedly inhibited the expression of HBsAg from cccDNA, by screening a library of natural compounds derived from Chinese herbal medicines using ELISA assay and qRT-PCR. The pharmacodynamics study of Imperatorin was explored on HBV infected HepG2-NTCP/PHHs and HBV-infected humanized mouse model. Proteome analysis was performed on HBV infected HepG2-NTCP cells following Imperatorin treatment. Molecular docking and bio-layer interferometry (BLI) were used for finding the target of Imperatorin. Our findings demonstrated Imperatorin remarkably reduced the level of HBsAg, HBV RNAs, HBV DNA and transcriptional activity of cccDNA both in vitro and in vivo. Additionally, Imperatorin effectively restrained the actions of HBV promoters responsible for cccDNA transcription. Mechanistic study revealed that Imperatorin directly binds to ERK and subsequently interfering with the activation of CAMP response element-binding protein (CREB), a crucial transcriptional factor for HBV and has been demonstrated to bind to the PreS2/S and X promoter regions of HBV. Importantly, the absence of ERK could nullify the antiviral impact triggered by Imperatorin. Collectively, the natural compound Imperatorin may be an effective candidate agent for inhibiting HBsAg production and cccDNA transcription by impeding the activities of HBV promoters through ERK-CREB axis.


Subject(s)
DNA, Circular , Furocoumarins , Hepatitis B Surface Antigens , Hepatitis B virus , Transcription, Genetic , Furocoumarins/pharmacology , Humans , Animals , Hepatitis B virus/drug effects , Hepatitis B virus/genetics , Hepatitis B Surface Antigens/metabolism , Hepatitis B Surface Antigens/genetics , Hep G2 Cells , Mice , DNA, Circular/genetics , DNA, Circular/metabolism , Transcription, Genetic/drug effects , Antiviral Agents/pharmacology , DNA, Viral , Molecular Docking Simulation , Virus Replication/drug effects , Cyclic AMP Response Element-Binding Protein/metabolism , Hepatitis B, Chronic/drug therapy , Hepatitis B, Chronic/virology , Disease Models, Animal , Promoter Regions, Genetic
5.
Nat Commun ; 15(1): 4635, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38821953

ABSTRACT

Cell-free protein expression (CFE) systems have emerged as a critical platform for synthetic biology research. The vectors for protein expression in CFE systems mainly rely on double-stranded DNA and single-stranded RNA for transcription and translation processing. Here, we introduce a programmable vector - circular single-stranded DNA (CssDNA), which is shown to be processed by DNA and RNA polymerases for gene expression in a yeast-based CFE system. CssDNA is already widely employed in DNA nanotechnology due to its addressability and programmability. To apply above methods in the context of synthetic biology, CssDNA can not only be engineered for gene regulation via the different pathways of sense CssDNA and antisense CssDNA, but also be constructed into several gene regulatory logic gates in CFE systems. Our findings advance the understanding of how CssDNA can be utilized in gene expression and gene regulation, and thus enrich the synthetic biology toolbox.


Subject(s)
Cell-Free System , DNA, Circular , DNA, Single-Stranded , Genetic Vectors , Saccharomyces cerevisiae , Synthetic Biology , DNA, Single-Stranded/metabolism , DNA, Single-Stranded/genetics , Synthetic Biology/methods , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , DNA, Circular/genetics , DNA, Circular/metabolism , Genetic Vectors/metabolism , Genetic Vectors/genetics , Gene Expression Regulation , DNA-Directed RNA Polymerases/metabolism , DNA-Directed RNA Polymerases/genetics
6.
Int J Cancer ; 155(4): 756-765, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38693790

ABSTRACT

Breast cancer (BC) is a complex disease with diverse manifestations, often resulting in lymph node metastasis (LNM) and impacting patient prognosis. Extrachromosomal circular DNA (eccDNA) has emerged as a key player in tumorigenesis, yet its contribution to BC LNM remains elusive. Here, we examined primary tumors and matched LNM tissues from 19 BC patients using the Circle-Seq method. We identified a median count of 44,682 eccDNA in primary tumor tissues and 38,057 in their paired LNM tissues. Furthermore, a ladder-like size distribution is observed in both primary tumor and LNM tissues. Meanwhile, similar repeat sequence distribution and GC content are identified from both primary tissue and LNM tissues. Finally, we found that eccDNA from both groups are flanked with palindromic trinucleotide motifs. These observations indicate that eccDNA of primary tumor and LNM tissues are from similar chromosomal origins. However, a subset of miRNA-associated eccDNA displayed selective enrichment in metastatic lesions, such as miR-6730 and miR-548AA1 genes. This observation implicates the function of miRNA-related eccDNA in the metastatic cascade. Our study uncovers the potential significance of these unique eccDNA molecules, shedding light on their role in cancer metastasis.


Subject(s)
Breast Neoplasms , DNA, Circular , Lymphatic Metastasis , MicroRNAs , Humans , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Female , Lymphatic Metastasis/genetics , DNA, Circular/genetics , MicroRNAs/genetics , Middle Aged , Lymph Nodes/pathology , Aged
7.
Lab Chip ; 24(12): 3101-3111, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38752699

ABSTRACT

Extrachromosomal circular DNA (eccDNA) refers to small circular DNA molecules that are distinct from chromosomal DNA and play diverse roles in various biological processes. They are also explored as potential biomarkers for disease diagnosis and precision medicine. However, isolating eccDNA from tissues and plasma is challenging due to low abundance and the presence of interfering linear DNA, requiring time-consuming processes and expert handling. Our study addresses this by utilizing a microfluidic chip tailored for eccDNA isolation, leveraging microfluidic principles for enzymatic removal of non-circular DNA. Our approach involves integrating restriction enzymes into the microfluidic chip, enabling selective digestion of mitochondrial and linear DNA fragments while preserving eccDNA integrity. This integration is facilitated by an in situ photo-polymerized emulsion inside microchannels, creating a porous monolithic structure suitable for immobilizing restriction and exonuclease enzymes (restriction enzyme MssI and exonuclease ExoV). Evaluation using control DNA mixtures and plasma samples with artificially introduced eccDNA demonstrated that our microfluidic chips reduce linear DNA by over 99%, performing comparable to conventional off-chip methods but with substantially faster digestion times, allowing for a remarkable 76-fold acceleration in overall sample preparation time. This technological advancement holds great promise for enhancing the isolation and analysis of eccDNA from tissue and plasma and the potential for increasing the speed of other molecular methods with multiple enzymatic steps.


Subject(s)
DNA, Circular , Lab-On-A-Chip Devices , Plasmids , DNA, Circular/chemistry , DNA, Circular/isolation & purification , DNA, Circular/metabolism , Plasmids/isolation & purification , Plasmids/metabolism , Enzymes, Immobilized/chemistry , Enzymes, Immobilized/metabolism , Humans , Microfluidic Analytical Techniques/instrumentation , DNA Restriction Enzymes/metabolism , DNA/isolation & purification , DNA/chemistry
8.
J Nanobiotechnology ; 22(1): 237, 2024 May 12.
Article in English | MEDLINE | ID: mdl-38735920

ABSTRACT

BACKGROUND: Myeloid-derived suppressor cells (MDSCs) promote tumor growth, metastasis, and lead to immunotherapy resistance. Studies revealed that miRNAs are also expressed in MDSCs and promote the immunosuppressive function of MDSCs. Currently, few studies have been reported on inducible cellular microvesicle delivery of nucleic acid drugs targeting miRNA in MDSCs for the treatment of malignant tumors. RESULTS AND CONCLUSION: In this study, we designed an artificial DNA named G-quadruplex-enhanced circular single-stranded DNA-9 (G4-CSSD9), that specifically adsorbs the miR-9 sequence. Its advanced DNA folding structure, rich in tandem repeat guanine (G-quadruplex), also provides good stability. Mesenchymal stem cells (MSCs) were prepared into nanostructured vesicles by membrane extrusion. The MSC microvesicles-encapsulated G4-CSSD9 (MVs@G4-CSSD9) was delivered into MDSCs, which affected the downstream transcription and translation process, and reduced the immunosuppressive function of MDSCs, so as to achieve the purpose of treating melanoma. In particular, it provides an idea for the malignant tumor treatment.


Subject(s)
DNA, Single-Stranded , G-Quadruplexes , Mesenchymal Stem Cells , MicroRNAs , Myeloid-Derived Suppressor Cells , Animals , Myeloid-Derived Suppressor Cells/metabolism , Mice , DNA, Single-Stranded/chemistry , Cell Line, Tumor , Mice, Inbred C57BL , Cell-Derived Microparticles/chemistry , Cell-Derived Microparticles/metabolism , DNA, Circular/chemistry , Humans , Melanoma/drug therapy
9.
World J Urol ; 42(1): 328, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38753087

ABSTRACT

BACKGROUND AND PURPOSE: Extrachromosomal circular DNAs (eccDNAs) have been recognized for their significant involvement in numerous biological processes. Nonetheless, the existence and molecular characteristics of eccDNA in the peripheral blood of patients diagnosed with clear cell renal cell carcinoma (ccRCC) have not yet been reported. Our aim was to identify potentially marked plasma eccDNAs in ccRCC patients. METHODS AND MATERIALS: The detection of plasma eccDNA in ccRCC patients and healthy controls was performed using the Tn5-tagmentation and next-generation sequencing (NGS) method. Comparisons were made between ccRCC patients and healthy controls regarding the distribution of length, gene annotation, pattern of junctional nucleotide motif, and expression pattern of plasma eccDNA. RESULTS: We found 8,568 and 8,150 plasma eccDNAs in ccRCC patients and healthy controls, respectively. There were no statistical differences in the length distribution, gene annotation, and motif signature of plasma eccDNAs between the two groups. A total of 701 differentially expressed plasma eccDNAs were identified, and 25 plasma eccDNAs with potential diagnostic value for ccRCC have been successfully screened. These up-regulated plasma eccDNAs also be indicated to originate from the genomic region of the tumor-associated genes. CONCLUSION: This work demonstrates the characterization of plasma eccDNAs in ccRCC and suggests that the up-regulated plasma eccDNAs could be considered as a promising non-invasive biomarker in ccRCC.


Subject(s)
Carcinoma, Renal Cell , DNA, Circular , Kidney Neoplasms , Humans , Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/blood , Carcinoma, Renal Cell/diagnosis , DNA, Circular/blood , DNA, Circular/genetics , Kidney Neoplasms/blood , Kidney Neoplasms/genetics , Male , Middle Aged , Female , Aged
10.
Proc Natl Acad Sci U S A ; 121(19): e2318438121, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38696464

ABSTRACT

Alternative lengthening of telomeres (ALT) is a telomere maintenance mechanism mediated by break-induced replication, evident in approximately 15% of human cancers. A characteristic feature of ALT cancers is the presence of C-circles, circular single-stranded telomeric DNAs composed of C-rich sequences. Despite the fact that extrachromosomal C-rich single-stranded DNAs (ssDNAs), including C-circles, are unique to ALT cells, their generation process remains undefined. Here, we introduce a method to detect single-stranded telomeric DNA, called 4SET (Strand-Specific Southern-blot for Single-stranded Extrachromosomal Telomeres) assay. Utilizing 4SET, we are able to capture C-rich single-stranded DNAs that are near 200 to 1500 nucleotides in size. Both linear C-rich ssDNAs and C-circles are abundant in the fractions of cytoplasm and nucleoplasm, which supports the idea that linear and circular C-rich ssDNAs are generated concurrently. We also found that C-rich ssDNAs originate during Okazaki fragment processing during lagging strand DNA synthesis. The generation of C-rich ssDNA requires CST-PP (CTC1/STN1/TEN1-PRIMASE-Polymerase alpha) complex-mediated priming of the C-strand DNA synthesis and subsequent excessive strand displacement of the C-rich strand mediated by the DNA Polymerase delta and the BLM helicase. Our work proposes a model for the generation of C-rich ssDNAs and C-circles during ALT-mediated telomere elongation.


Subject(s)
DNA, Single-Stranded , Telomere Homeostasis , Telomere , Telomere/genetics , Telomere/metabolism , Humans , DNA, Single-Stranded/metabolism , DNA, Single-Stranded/genetics , DNA Replication , DNA/genetics , DNA/metabolism , DNA, Circular/genetics , DNA, Circular/metabolism , Blotting, Southern , DNA Polymerase III/metabolism , DNA Polymerase III/genetics
11.
J Med Virol ; 96(6): e29692, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38804172

ABSTRACT

To achieve a virological cure for hepatitis B virus (HBV), innovative strategies are required to target the covalently closed circular DNA (cccDNA) genome. Guanine-quadruplexes (G4s) are a secondary structure that can be adopted by DNA and play a significant role in regulating viral replication, transcription, and translation. Antibody-based probes and small molecules have been developed to study the role of G4s in the context of the human genome, but none have been specifically made to target G4s in viral infection. Herein, we describe the development of a humanized single-domain antibody (S10) that can target a G4 located in the PreCore (PreC) promoter of the HBV cccDNA genome. MicroScale Thermophoresis demonstrated that S10 has a strong nanomolar affinity to the PreC G4 in its quadruplex form and a structural electron density envelope of the complex was determined using Small-Angle X-ray Scattering. Lentiviral transduction of S10 into HepG2-NTCP cells shows nuclear localization, and chromatin immunoprecipitation coupled with next-generation sequencing demonstrated that S10 can bind to the HBV PreC G4 present on the cccDNA. This research validates the existence of a G4 in HBV cccDNA and demonstrates that this DNA secondary structure can be targeted with high structural and sequence specificity using S10.


Subject(s)
DNA, Circular , DNA, Viral , G-Quadruplexes , Hepatitis B virus , Single-Domain Antibodies , Humans , Hepatitis B virus/genetics , Hepatitis B virus/immunology , DNA, Circular/genetics , DNA, Viral/genetics , Hep G2 Cells , Single-Domain Antibodies/genetics , Single-Domain Antibodies/immunology , Single-Domain Antibodies/chemistry , Genome, Viral , Promoter Regions, Genetic , Virus Replication , Hepatitis B/virology
12.
Protist ; 175(3): 126033, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38574508

ABSTRACT

Extrachromosomal circular DNA (eccDNA) enhances genomic plasticity, augmenting its coding and regulatory potential. Advances in high-throughput sequencing have enabled the investigation of these structural variants. Although eccDNAs have been investigated in numerous taxa, they remained understudied in euglenids. Therefore, we examined eccDNAs predicted from Illumina sequencing data of Euglena gracilis Z SAG 1224-5/25, grown under optimal photoperiod and exposed to UV irradiation. We identified approximately 1000 unique eccDNA candidates, about 20% of which were shared across conditions. We also observed a significant enrichment of mitochondrially encoded eccDNA in the UV-irradiated sample. Furthermore, we found that the heterogeneity of eccDNA was reduced in UV-exposed samples compared to cells that were grown in optimal conditions. Hence, eccDNA appears to play a role in the response to oxidative stress in Euglena, as it does in other studied organisms. In addition to contributing to the understanding of Euglena genomes, our results contribute to the validation of bioinformatics pipelines on a large, non-model genome.


Subject(s)
DNA, Circular , Euglena gracilis , Euglena gracilis/genetics , DNA, Circular/genetics , DNA, Protozoan/genetics , Ultraviolet Rays , Stress, Physiological
13.
Arch Virol ; 169(5): 88, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38565755

ABSTRACT

Transcription of the covalently closed circular DNA (cccDNA) of hepatitis B virus (HBV) is subject to dual regulation by host factors and viral proteins. MicroRNAs (miRNAs) can regulate the expression of target genes at the post-transcriptional level. Systematic investigation of miRNA expression in HBV infection and the interaction between HBV and miRNAs may deepen our understanding of the transcription mechanisms of HBV cccDNA, thereby providing opportunities for intervention. miRNA sequencing and real-time quantitative PCR (qRT-PCR) were used to analyze miRNA expression after HBV infection of cultured cells. Clinical samples were analyzed for miRNAs and HBV transcription-related indicators, using qRT-PCR, enzyme-linked immunoassay (ELISA), and Western blot. miRNA mimics or inhibitors were used to study their effects on the HBV life cycle. The target genes of miR-3188 and their roles in HBV cccDNA transcription were also identified. The expression of 10 miRNAs, including miR-3188, which was significantly decreased after HBV infection, was measured in clinical samples from patients with chronic HBV infection. Overexpression of miR-3188 inhibited HBV transcription, whereas inhibition of miR-3188 expression promoted HBV transcription. Further investigation confirmed that miR-3188 inhibited HBV transcription by targeting Bcl-2. miR-3188 is a key miRNA that regulates HBV transcription by targeting the host protein Bcl-2. This observation provides insights into the regulation of cccDNA transcription and suggests new targets for anti-HBV treatment.


Subject(s)
Hepatitis B, Chronic , Hepatitis B , MicroRNAs , Humans , DNA, Circular/genetics , DNA, Viral/genetics , DNA, Viral/metabolism , Hepatitis B/genetics , Hepatitis B virus/genetics , Hepatitis B, Chronic/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , Viral Transcription , Virus Replication/genetics
14.
Genes (Basel) ; 15(4)2024 03 26.
Article in English | MEDLINE | ID: mdl-38674347

ABSTRACT

Inflammatory bowel disease (IBD) comprising ulcerative colitis and Crohn's disease is a chronic immune-mediated disease which affects the gastrointestinal tract with a relapsing and remitting course, causing lifelong morbidity. IBD pathogenesis is determined by multiple factors including genetics, immune and microbial factors, and environmental factors. Although therapy options are expanding, remission rates are unsatisfiable, and together with the disease course, response to therapy remains unpredictable. Therefore, the identification of biomarkers that are predictive for the disease course and response to therapy is a significant challenge. Extrachromosomal circular DNA (eccDNA) fragments exist in all tissue tested so far. These fragments, ranging in length from a few hundreds of base pairs to mega base pairs, have recently gained more interest due to technological advances. Until now, eccDNA has mainly been studied in relation to cancer due to its ability to act as an amplification site for oncogenes and drug resistance genes. However, eccDNA could also play an important role in inflammation, expressed both locally in the- involved tissue and at distant sites. Here, we review the current evidence on the molecular mechanisms of eccDNA and its role in inflammation and IBD. Additionally, the potential of eccDNA as a tissue or plasma marker for disease severity and/or response to therapy is evaluated.


Subject(s)
Biomarkers , DNA, Circular , Inflammatory Bowel Diseases , Humans , DNA, Circular/genetics , Inflammatory Bowel Diseases/genetics , Animals
15.
Adv Sci (Weinh) ; 11(24): e2306810, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38647380

ABSTRACT

Persistent transcription of HBV covalently closed circular DNA (cccDNA) is critical for chronic HBV infection. Silencing cccDNA transcription through epigenetic mechanisms offers an effective strategy to control HBV. Long non-coding RNAs (lncRNAs), as important epigenetic regulators, have an unclear role in cccDNA transcription regulation. In this study, lncRNA sequencing (lncRNA seq) is conducted on five pairs of HBV-positive and HBV-negative liver tissue. Through analysis, HOXA-AS2 (HOXA cluster antisense RNA 2) is identified as a significantly upregulated lncRNA in HBV-infected livers. Further experiments demonstrate that HBV DNA polymerase (DNA pol) induces HOXA-AS2 after establishing persistent high-level HBV replication. Functional studies reveal that HOXA-AS2 physically binds to cccDNA and significantly inhibits its transcription. Mechanistically, HOXA-AS2 recruits the MTA1-HDAC1/2 deacetylase complex to cccDNA minichromosome by physically interacting with metastasis associated 1 (MTA1) subunit, resulting in reduced acetylation of histone H3 at lysine 9 (H3K9ac) and lysine 27 (H3K27ac) associated with cccDNA and subsequently suppressing cccDNA transcription. Altogether, the study reveals a mechanism to self-limit HBV replication, wherein the upregulation of lncRNA HOXA-AS2, induced by HBV DNA pol, can epigenetically suppress cccDNA transcription.


Subject(s)
DNA, Circular , Epigenesis, Genetic , Hepatitis B virus , RNA, Long Noncoding , Repressor Proteins , Trans-Activators , Humans , Hepatitis B virus/genetics , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Repressor Proteins/genetics , Repressor Proteins/metabolism , Trans-Activators/genetics , Trans-Activators/metabolism , Epigenesis, Genetic/genetics , DNA, Circular/genetics , DNA, Circular/metabolism , Histone Deacetylases/metabolism , Histone Deacetylases/genetics , Histone Deacetylase 1/metabolism , Histone Deacetylase 1/genetics , Histone Deacetylase 2/genetics , Histone Deacetylase 2/metabolism , Transcription, Genetic/genetics , Hepatitis B, Chronic/genetics , Hepatitis B, Chronic/metabolism , Hepatitis B, Chronic/virology
16.
Genes Cells ; 29(7): 584-588, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38660704

ABSTRACT

Bacillus subtilis was engineered to produce circular subgenomes that are directly transmittable to another B. subtilis. The conjugational plasmid pLS20 integrated into the B. subtilis genome supported not only subgenome replication but also transmission to another B. subtilis species. The subgenome system developed in this study completes a streamlined platform from the synthesis to the transmission of giant DNA by B. subtilis.


Subject(s)
Bacillus subtilis , Genome, Bacterial , Plasmids , Bacillus subtilis/genetics , Bacillus subtilis/metabolism , Plasmids/genetics , DNA, Circular/genetics , DNA, Circular/metabolism , Conjugation, Genetic , DNA Replication/genetics , DNA, Bacterial/genetics , DNA, Bacterial/metabolism
17.
Sci Rep ; 14(1): 9466, 2024 04 24.
Article in English | MEDLINE | ID: mdl-38658614

ABSTRACT

Long extrachromosomal circular DNA (leccDNA) regulates several biological processes such as genomic instability, gene amplification, and oncogenesis. The identification of leccDNA holds significant importance to investigate its potential associations with cancer, autoimmune, cardiovascular, and neurological diseases. In addition, understanding these associations can provide valuable insights about disease mechanisms and potential therapeutic approaches. Conventionally, wet lab-based methods are utilized to identify leccDNA, which are hindered by the need for prior knowledge, and resource-intensive processes, potentially limiting their broader applicability. To empower the process of leccDNA identification across multiple species, the paper in hand presents the very first computational predictor. The proposed iLEC-DNA predictor makes use of SVM classifier along with sequence-derived nucleotide distribution patterns and physicochemical properties-based features. In addition, the study introduces a set of 12 benchmark leccDNA datasets related to three species, namely Homo sapiens (HM), Arabidopsis Thaliana (AT), and Saccharomyces cerevisiae (SC/YS). It performs large-scale experimentation across 12 benchmark datasets under different experimental settings using the proposed predictor, more than 140 baseline predictors, and 858 encoder ensembles. The proposed predictor outperforms baseline predictors and encoder ensembles across diverse leccDNA datasets by producing average performance values of 81.09%, 62.2% and 81.08% in terms of ACC, MCC and AUC-ROC across all the datasets. The source code of the proposed and baseline predictors is available at https://github.com/FAhtisham/Extrachrosmosomal-DNA-Prediction . To facilitate the scientific community, a web application for leccDNA identification is available at https://sds_genetic_analysis.opendfki.de/iLEC_DNA/.


Subject(s)
DNA, Circular , Saccharomyces cerevisiae , DNA, Circular/genetics , Humans , Saccharomyces cerevisiae/genetics , Arabidopsis/genetics , Computational Biology/methods , Nucleotides/genetics , Support Vector Machine
18.
BMC Genomics ; 25(1): 404, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38658857

ABSTRACT

Transposable elements (TEs) are a major force in the evolution of plant genomes. Differences in the transposition activities and landscapes of TEs can vary substantially, even in closely related species. Interspecific hybridization, a widely employed technique in tomato breeding, results in the creation of novel combinations of TEs from distinct species. The implications of this process for TE transposition activity have not been studied in modern cultivars. In this study, we used nanopore sequencing of extrachromosomal circular DNA (eccDNA) and identified two highly active Ty1/Copia LTR retrotransposon families of tomato (Solanum lycopersicum), called Salsa and Ketchup. Elements of these families produce thousands of eccDNAs under controlled conditions and epigenetic stress. EccDNA sequence analysis revealed that the major parts of eccDNA produced by Ketchup and Salsa exhibited low similarity to the S. lycopersicum genomic sequence. To trace the origin of these TEs, whole-genome nanopore sequencing and de novo genome assembly were performed. We found that these TEs occurred in a tomato breeding line via interspecific introgression from S. peruvianum. Our findings collectively show that interspecific introgressions can contribute to both genetic and phenotypic diversity not only by introducing novel genetic variants, but also by importing active transposable elements from other species.


Subject(s)
DNA, Circular , Genome, Plant , Retroelements , Solanum lycopersicum , Terminal Repeat Sequences , Solanum lycopersicum/genetics , DNA, Circular/genetics , Plant Breeding , Nanopore Sequencing/methods , Genetic Introgression , Sequence Analysis, DNA/methods , DNA, Plant/genetics
20.
Respir Res ; 25(1): 181, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38664836

ABSTRACT

BACKGROUND: Extrachromosomal circular DNAs (eccDNAs) have been reported to play a key role in the occurrence and development of various diseases. However, the characterization and role of eccDNAs in pulmonary arterial hypertension (PAH) remain unclear. METHODS: In the discovery cohort, we first explored eccDNA expression profiles by Circle-sequencing analysis. The candidate eccDNAs were validated by routine polymerase chain reaction (PCR), TOPO-TA cloning and Sanger sequencing. In the validation cohort, 30 patients with PAH and 10 healthy controls were recruited for qPCR amplification to detect the candidate eccDNAs. Datas at the baseline were collected, including clinical background, biochemical variables, echocardiography and hemodynamic factors. Receiver operating characteristic curve was used to investigate the diagnostic effect of the eccDNA. RESULTS: We identified a total of 21,741 eccDNAs in plasma samples of 3 IPAH patients and 3 individuals in good health, and the expression frequency, GC content, length distribution, and genome distribution of the eccDNAs were thoroughly characterized and analyzed. In the validation cohort, 687 eccDNAs were differentially expressed in patients with IPAH compared with healthy controls (screening threshold: |FC|≥2 and P < 0.05). Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis showed that the specific eccDNAs in IPAH were significantly enriched in calcium channel activity, the mitogen-activated protein kinase pathway, and the wnt signaling pathway. Verification queue found that the expression of eccDNA-chr2:131208878-131,424,362 in PAH was considerably higher than that in healthy controls and exhibited a high level of accuracy in predicting PAH with a sensitivity of 86.67% and a specificity of 90%. Furthermore, correlation analysis disclosed a significant association between serum eccDNA-chr2:131208878-131,424,362 and mean pulmonary artery pressure (mPAP) (r = 0.396, P = 0.03), 6 min walking distance (6MWD) (r = -0.399, P = 0.029), N-terminal pro-B-type natriuretic peptide (NT-proBNP) (r = 0.685, P < 0.001) and cardiac index (CI) (r = - 0.419, P = 0.021). CONCLUSIONS: This is the first study to identify and characterize eccDNAs in patients with PAH. We revealed that serum eccDNA-chr2:131208878-131,424,362 is significantly overexpressed and can be used in the diagnosis of PAH, indicating its potential as a novel non-invasive biomarker.


Subject(s)
Biomarkers , DNA, Circular , Humans , Male , Female , Middle Aged , Adult , Biomarkers/blood , DNA, Circular/blood , DNA, Circular/genetics , DNA, Circular/analysis , Pulmonary Arterial Hypertension/blood , Pulmonary Arterial Hypertension/genetics , Pulmonary Arterial Hypertension/diagnosis , Cohort Studies , Case-Control Studies
SELECTION OF CITATIONS
SEARCH DETAIL
...