Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters











Publication year range
1.
Chem Biol Drug Des ; 104(1): e14596, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39054402

ABSTRACT

We have conducted an experimental and computational evaluation of new doxorubicin (4a-c) and ß-lapachone (5a-c) analogs. These novel anticancer analogs were previously synthesized, but had not been tested or characterized until now. We have evaluated their antiproliferative and DNA cleavage inhibition properties using breast (MCF-7 and MDA-MB-231) and prostate (PC3) cancer cell lines. Additionally, cell cycle analysis was performed using flow cytometry. Computational studies, including molecular docking, pharmacokinetic properties, and an analysis of DFT and QTAIM chemical descriptors, were performed to gain insights into the electronic structure and elucidate the molecular binding of the new ß-lapachone and doxorubicin analogs with a DNA sequence and Topoisomerase II (Topo II)α. Our results show that 4a analog displays the highest antiproliferative activity in cancer cell lines by inducing cell death. We observed that stacking interactions and hydrogen bonding are essential to stabilize the molecule-DNA-Topo IIα complex. Moreover, 4a and 5a analogs inhibited Topo's DNA cleavage activity. Pharmacodynamic results indicated that studied molecules have favorable adsorption and permeability properties. The calculated chemical descriptors indicate that electron accumulation in quinone rings is relevant to the reactivity and biological activity. Based on our results, 4a is a strong candidate for becoming an anticancer drug.


Subject(s)
Antineoplastic Agents , Cell Proliferation , DNA Topoisomerases, Type II , Doxorubicin , Molecular Docking Simulation , Naphthoquinones , Naphthoquinones/chemistry , Naphthoquinones/pharmacology , Humans , Doxorubicin/pharmacology , Doxorubicin/chemistry , DNA Topoisomerases, Type II/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Cell Line, Tumor , Cell Proliferation/drug effects , MCF-7 Cells , Drug Screening Assays, Antitumor , Topoisomerase II Inhibitors/pharmacology , Topoisomerase II Inhibitors/chemistry , Topoisomerase II Inhibitors/chemical synthesis , Topoisomerase II Inhibitors/metabolism , DNA Cleavage/drug effects
2.
Sci Rep ; 11(1): 24450, 2021 12 27.
Article in English | MEDLINE | ID: mdl-34961767

ABSTRACT

The thin line between efficacy and toxicity has challenged cancer therapy. As copper is an essential micronutrient and is important to tumor biology, CuII complexes emerged as an alternative to chemotherapy; however, its biological properties need to be better understood. Thus, we report in vitro the antitumor effects of two CuII complexes named [Cu(4-fh)(phen)(ClO4)2] (complex 1) and [Cu(4-nh)(phen)(ClO4)2]·H2O (complex 2), in which 4-fh = 4-fluorophenoxyacetic acid hydrazide; 4-nh = 4-nitrobenzoic hydrazide and phen = 1,10-phenanthroline. Both complexes presented cytotoxic activity against tumor cells, but only complex 1 showed significant selectivity. Complex 1 also induced DNA-damage, led to G0/G1 arrest and triggered apoptosis, which was initiated by an autophagy dysfunction. The significant in vitro selectivity and the action mechanism of complex 1 are noteworthy and reveal this prodrug as promising for anticancer therapy.


Subject(s)
Antineoplastic Agents/pharmacology , Coordination Complexes/pharmacology , Copper/pharmacology , Hydrazines/pharmacology , Phenanthrolines/pharmacology , Animals , Antineoplastic Agents/chemistry , Apoptosis/drug effects , Cell Line, Tumor , Coordination Complexes/chemistry , Copper/chemistry , DNA Cleavage/drug effects , Drug Discovery , Humans , Hydrazines/chemistry , Mice , Neoplasms/drug therapy , Neoplasms/genetics , Phenanthrolines/chemistry
3.
J Inorg Biochem ; 203: 110863, 2020 02.
Article in English | MEDLINE | ID: mdl-31683126

ABSTRACT

Two mononuclear copper(II) compounds, [Cu(isad)(H2O)Cl]Cl 1 and [Cu(isah)(H2O)Cl]Cl 2, and its corresponding heterobinuclear species containing also platinum(II), [CuCl(isad)Pt(NH3)Cl2] 3 and [CuCl(isah)Pt(NH3)Cl2] 4 (where isad and isah are oxindolimine ligands, (E)-3-(2-(3-aminopropylamino)ethylimino)indolin-2-one, and (E)-3-(3-amino-2-hydroxypropylimino)indolin-2-one, respectively), have been previously synthesized and characterized by different spectroscopic techniques in our laboratory. Cytotoxicity assays performed with B16F10 murine cancer cells, and MES-SA human uterine sarcoma cells, showed IC50 values lower or in the same order of cisplatin. Herein, in order to better elucidate their probable modes of action, possible interaction and damage to DNA, as well as their effect on the activity of crucial proteins were verified. Both mononuclear complexes and the binuclear compound 4 displayed a significant cleavage activity toward plasmid DNA, while compound 3 tends to protect DNA from oxidative damage, avoiding degradation. Complementary experiments indicated a significant inhibition activity toward cyclin-dependent kinase (CDK1/cyclinB) activity in the phosphorylation of histone H1, and only moderate inhibition concerning alkaline phosphatase. Results also revealed that the reactivity is reliant on the ligand structure and on the nature of the metal present, in a synergistic effect. Simulation studies complemented and supported our results, indicating different bindings of the binuclear compounds to DNA. Therefore, the verified cytotoxicity of these complexes comprises multiple modes of action, including modification of DNA conformation, scission of DNA strands by reactive oxygen species, and inhibition of selected proteins that are crucial to the cellular cycle.


Subject(s)
Alkaline Phosphatase/antagonists & inhibitors , Coordination Complexes/pharmacology , DNA/metabolism , Imines/pharmacology , Oxindoles/pharmacology , Protein Kinase Inhibitors/pharmacology , Animals , Cell Line, Tumor , Coordination Complexes/metabolism , Copper/chemistry , Cyclin-Dependent Kinases/antagonists & inhibitors , DNA Cleavage/drug effects , Humans , Imines/metabolism , Ligands , Mice , Molecular Docking Simulation , Oxindoles/metabolism , Platinum/chemistry , Protein Kinase Inhibitors/metabolism
4.
Inorg Chem ; 58(13): 8800-8819, 2019 Jul 01.
Article in English | MEDLINE | ID: mdl-31247881

ABSTRACT

Very few inorganic antineoplastic drugs have entered the clinic in the last decades, mainly because of toxicity issues. Because copper is an essential trace element of ubiquitous occurrence, decreased side effects could be expected in comparison with the widely used platinum anticancer compounds. In the present work, two novel hydrazonic binucleating ligands and their µ-hydroxo dicopper(II) complexes were prepared and fully characterized. They differ by the nature of the aromatic group present in their aroylhydrazone moieties: while H3L1 and its complex, 1, possess a thiophene ring, H3L2 and 2 contain the more polar furan heterocycle. X-ray diffraction indicates that both coordination compounds are very similar in structural terms and generate dimeric arrangements in the solid state. Positive-ion electrospray ionization mass spectrometry analyses confirmed that the main species present in a 10% dimethyl sulfoxide (DMSO)/water solution should be [Cu2(HL)(OH)]+ and the DMSO-substituted derivative [Cu2(L)(DMSO)]+. Scattering techniques [dynamic light scattering (DLS) and small-angle X-ray scattering] suggest that the complexes and their free ligands interact with bovine serum albumin (BSA) in a reversible manner. The binding constants to BSA were determined for the complexes through fluorescence spectroscopy. Moreover, to gain insight into the mechanism of action of the compounds, calf thymus DNA binding studies by UV-visible and DLS measurements using plasmid pBR322 DNA were also performed. For the complexes, DLS data seem to point to the occurrence of DNA cleavage to Form III (linear). Both ligands and their dicopper(II) complexes display potent antiproliferative activity in a panel of four cancer cell lines, occasionally even in the submicromolar range, with the complexes being more potent than the free ligands. Our data on cellular models correlate quite well with the DNA interaction experiments. The results presented herein show that aroylhydrazone-derived binucleating ligands, as well as their dinuclear µ-hydroxodicopper(II) complexes, may represent a promising structural starting point for the development of a new generation of highly active potential antitumor agents.


Subject(s)
Antineoplastic Agents/pharmacology , Coordination Complexes/pharmacology , Hydrazones/pharmacology , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Antineoplastic Agents/toxicity , Cattle , Cell Line, Tumor , Coordination Complexes/chemical synthesis , Coordination Complexes/chemistry , Coordination Complexes/toxicity , Copper/chemistry , DNA/chemistry , DNA Cleavage/drug effects , Dogs , Humans , Hydrazones/chemical synthesis , Hydrazones/chemistry , Hydrazones/toxicity , Isomerism , Ligands , Madin Darby Canine Kidney Cells , Mice , Plasmids/chemistry , Protein Multimerization/drug effects , Serum Albumin, Bovine/metabolism
5.
J Inorg Biochem ; 187: 85-96, 2018 10.
Article in English | MEDLINE | ID: mdl-30081333

ABSTRACT

The bis-(1,10-phenanthroline)copper(I) complex, [Cu(I)(phen)2]+, was the first copper-based artificial nuclease reported in the literature. The biological and ligand-like properties of sulfonamides make them good candidates for fine-tuning the reactivity of the [Cu(phen)2] motif with biomolecules. In this context, we developed three novel copper(II) complexes containing the sulfonamides sulfameter (smtrH) and sulfadimethoxine (sdmxH) and (N^N)-bidentate ligands (2,2'-biyridine or 1,10-phenantroline). The compounds were characterized by chemical and spectroscopic techniques and single-crystal X-ray crystallography. When targeting plasmid DNA, the phen-containing compounds [Cu(smtr-)2(phen)] (1) and [Cu(sdmx-)2(phen)] (2) demonstrated nuclease activity even in the absence of reducing agents. Addition of ascorbic acid resulted in a complete cleavage of DNA by 1 and 2 at concentrations higher than 10 µM. Experiments designed to evaluate the copper intermediates involved in the nuclease effect after reaction with ascorbic acid identified at least the [Cu(I)(N^N)2]+, [Cu(I)(sulfa)(N^N)]+ and [Cu(I)(sulfa)2]+ species. The compounds interact with DNA via groove binding and intercalation as verified by fluorescence spectroscopy, circular dichroism (CD) and molecular docking. The magnitude and preferred mode of binding are dependent on the nature of both N^N ligand and the sulfonamide. The potent nuclease activity of compounds 1 and 2 are well correlated with their antiproliferative and anti-M. tuberculosis profiles. The results presented here demonstrated the potential for further development of copper(II)-sulfonamide-(N^N) complexes as multipurpose metallodrugs.


Subject(s)
Antitubercular Agents , Cell Proliferation/drug effects , Coordination Complexes , Copper , Deoxyribonucleases , Mycobacterium tuberculosis/growth & development , Sulfonamides , Antitubercular Agents/chemical synthesis , Antitubercular Agents/chemistry , Antitubercular Agents/pharmacology , Coordination Complexes/chemical synthesis , Coordination Complexes/chemistry , Coordination Complexes/pharmacology , Copper/chemistry , Copper/pharmacology , DNA Cleavage/drug effects , Deoxyribonucleases/chemical synthesis , Deoxyribonucleases/chemistry , Deoxyribonucleases/pharmacology , Humans , K562 Cells , MCF-7 Cells , Molecular Docking Simulation , Sulfonamides/chemistry , Sulfonamides/pharmacology
6.
Biochem Biophys Res Commun ; 503(3): 1291-1297, 2018 09 10.
Article in English | MEDLINE | ID: mdl-30017191

ABSTRACT

A novel series of selenylated imidazo[1,2-a]pyridines were designed and synthesized with a view to a promising activity against breast cancer cell. The compounds, 7-methyl-3-(naphthalene-1-ylselanyl)-2-phenylimidazo[1,2-a]pyridine, named IP-Se-05, and 3-((2-methoxyphenyl)selanyl)-7-methyl-2-phenylimidazo[1,2-a]pyridine, named IP-Se-06, showed high cytotoxicity for MCF-7 cells (IC50 = 26.0 µM and 12.5 µM, respectively). Both the compounds inhibited the cell proliferation and caused decrease in the number of cells in the G2/M phase of cell cycle. IP-Se-05 and IP-Se-06 were also evaluated for effects on CT-DNA and DNA of MCF-7 cells. The compounds intercalated into CT-DNA and both treatments caused cleavage of DNA in cells. In addition, the compounds induced cell death by apoptosis. However, the presence of (2-methoxyphenyl) selenyl moiety at the imidazo[1,2-a]pyridine (IP-Se-06) appears to have a better antitumor effect with higher cytotoxicity at a lower concentration and caused less necrosis. Overall, the current study established IP-Se-06 more than IP-Se-05 as a potential prototype compound to be employed as an antiproliferative agent for the treatment of breast cancer.


Subject(s)
Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Breast Neoplasms/drug therapy , DNA Cleavage/drug effects , Proto-Oncogene Proteins c-akt/metabolism , Pyrimidines/pharmacology , Antineoplastic Agents/chemistry , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Cycle Checkpoints/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Female , Humans , Molecular Structure , Pyrimidines/chemistry , Structure-Activity Relationship , Tumor Cells, Cultured
7.
Bioorg Med Chem ; 22(24): 6867-75, 2014 Dec 15.
Article in English | MEDLINE | ID: mdl-25464885

ABSTRACT

A series of novel 1-(substituted phenyl)-3-(2-oxo-1,3,4-oxadiazol-5-yl) ß-carbolines (4a-e) and the corresponding Mannich bases 5-9(a-c) were synthesized and evaluated for their in vitro antitumor activity against seven human cancer cell lines. Compounds of 4a-e series showed a broad spectrum of antitumor activity, with GI50 values lower than 15µM for five cell lines. The derivative 4b, having the N,N-dimethylaminophenyl group at C-1, displayed the highest activity with GI50 in the range of 0.67-3.20µM. A high selectivity and potent activity were observed for some Mannich bases, particularly towards resistant ovarian (NCI-ADR/RES) cell lines (5a, 5b, 6a, 6c and 9b), and ovarian (OVCAR-03) cell lines (5b, 6a, 6c, 9a, 9b and 9c). In addition, the interaction of compound 4b with DNA was investigated by using UV and fluorescence spectroscopic analysis. These studies indicated that 4b interact with ctDNA by intercalation binding.


Subject(s)
Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacology , Carbolines/chemistry , Carbolines/pharmacology , Mannich Bases/chemistry , Animals , Antineoplastic Agents/chemistry , Carbolines/chemical synthesis , Cattle , Cell Line, Tumor , Cell Proliferation/drug effects , DNA/chemistry , DNA/metabolism , DNA Cleavage/drug effects , Humans , Oxadiazoles/chemistry
8.
Redox Rep ; 16(5): 201-7, 2011.
Article in English | MEDLINE | ID: mdl-22005340

ABSTRACT

When mosses are exposed to increased quantities of ultraviolet (UV) radiation, they produce more secondary metabolites. Antarctica moss Sanionia uncinata (Hedw.) Loeske has presented high carotenoid contents in response to an increase in UVB radiation. This moss has been recommended as a potential source of antioxidants. In the present work, the protective and enhancing effects of aqueous (AE) and hydroalcoholic (HE) extracts of S. uncinata on the cleavage of supercoiled DNA were evaluated through topological modifications, quantified by densitometry after agarose gel electrophoresis. Total phenolic contents reached 5.89 mg/g. Our data demonstrated that the extract does not induce DNA cleavage. Furthermore, both extracts showed antioxidant activity that protected the DNA against cleavage induced by (i) O(2)(•-), 89% (AE) and 94% (HE) (P<0.05), and (ii) (.)OH, 17% (AE) and 18% (HE). However, the extracts intensified cleavage induced by Fenton-like reactions: (i) Cu(2+)/H(2)O(2), 94% (AE) and 100% (HE) (P<0.05), and (ii) SnCl(2), 62% (AE) and 56% (HE). DNA damages seem to follow different ways: (i) in the presence of Fenton-like reactions could be via reactive oxygen species generation and (ii) with HE/Cu(2+) could have also been triggered by other mechanisms.


Subject(s)
Antioxidants/pharmacology , Plant Extracts/pharmacology , Plants, Medicinal/chemistry , Reactive Oxygen Species/metabolism , DNA Cleavage/drug effects , DNA Damage/drug effects , Plasmids/drug effects , Plasmids/genetics
10.
Inorg Chem ; 50(14): 6414-24, 2011 Jul 18.
Article in English | MEDLINE | ID: mdl-21692452

ABSTRACT

This paper reports on the synthesis and characterization of two new ternary copper(II) complexes: [Cu(doxycycline)(1,10-phenanthroline)(H(2)O)(ClO(4))](ClO(4)) (1) and [Cu(tetracycline)(1,10-phenanthroline)(H(2)O)(ClO(4))](ClO(4)) (2). These compounds exhibit a distorted tetragonal geometry around copper, which is coordinated to two bidentate ligands, 1,10-phenanthroline and tetracycline or doxycyline, a water molecule, and a perchlorate ion weakly bonded in the axial positions. In both compounds, copper(II) binds to tetracyclines via the oxygen of the hydroxyl group and oxygen of the amide group at ring A and to 1,10-phenanthroline via its two heterocyclic nitrogens. We have evaluated the binding of the new complexes to DNA, their capacity to cleave it, their cytotoxic activity, and uptake in tumoral cells. The complexes bind to DNA preferentially by the major groove, and then cleave its strands by an oxidative mechanism involving the generation of ROS. The cleavage of DNA was inhibited by radical inhibitors and/or trappers such as superoxide dismutase, DMSO, and the copper(I) chelator bathocuproine. The enzyme T4 DNA ligase was not able to relegate the products of DNA cleavage, which indicates that the cleavage does not occur via a hydrolytic mechanism. Both complexes present an expressive plasmid DNA cleavage activity generating single- and double-strand breaks, under mild reaction conditions, and even in the absence of any additional oxidant or reducing agent. In the same experimental conditions, [Cu(phen)(2)](2+) is approximately 100-fold less active than our complexes. These complexes are among the most potent DNA cleavage agents reported so far. Both complexes inhibit the growth of K562 cells with the IC(50) values of 1.93 and 2.59 µmol L(-1) for compounds 1 and 2, respectively. The complexes are more active than the free ligands, and their cytotoxic activity correlates with intracellular copper concentration and the number of Cu-DNA adducts formed inside cells.


Subject(s)
Antineoplastic Agents/pharmacology , Copper/chemistry , DNA Cleavage/drug effects , Doxycycline/chemistry , Organometallic Compounds/pharmacology , Phenanthrolines/chemistry , Tetracycline/chemistry , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Proliferation/drug effects , Cell Survival/drug effects , Cytotoxins/chemical synthesis , Cytotoxins/chemistry , Cytotoxins/pharmacology , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , K562 Cells , Molecular Conformation , Organometallic Compounds/chemical synthesis , Organometallic Compounds/chemistry , Stereoisomerism , Structure-Activity Relationship
11.
J Biol Inorg Chem ; 16(4): 653-68, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21399988

ABSTRACT

A new complex of the oxovanadium(IV) cation with the flavolignan silibinin has been synthesized and characterized. Vanadium compounds show interesting biological and pharmacological properties and some of them display antitumoral actions. Flavonoids are part of a larger group of antioxidant compounds called polyphenols which may inhibit the proliferation and growth of cancer cells. The antioxidant and antitumoral effects of silibinin and its oxovanadium(IV) complex were investigated. Silibinin acted as a very strong antioxidant and its complexation with oxovanadium(IV) improved this behavior. Besides, the generation of reactive oxygen species (ROS) by this compound was favored in tumoral (UMR106) cells and correlated with the deleterious behavior in the proliferation of this cell line. Conversely, silibinin did not exert any effect on the proliferation of normal osteoblasts (MC3T3E1). The cytotoxic action and ROS generation of the oxovanadium(IV) complex was more effective in tumoral cells. This behavior was not consistent with cleaving DNA of plasmid DNA pA1 because no significant cleaving activity was observed in both cases. These results suggest that the main deleterious mechanisms may take place through cytotoxic effects more than genotoxic actions. A comparison with our own findings on the behavior of other flavonoids and their vanadyl(IV) complex has also been performed.


Subject(s)
Antineoplastic Agents/pharmacology , Antioxidants/pharmacology , DNA Cleavage/drug effects , Organometallic Compounds/pharmacology , Silymarin/pharmacology , Vanadates/pharmacology , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Antioxidants/chemical synthesis , Antioxidants/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Electron Spin Resonance Spectroscopy , Molecular Structure , Organometallic Compounds/chemical synthesis , Organometallic Compounds/chemistry , Plasmids/drug effects , Rats , Reactive Oxygen Species/metabolism , Silybin , Silymarin/chemistry , Spectrophotometry, Ultraviolet , Spectroscopy, Fourier Transform Infrared , Structure-Activity Relationship , Vanadates/chemistry
12.
J Inorg Biochem ; 103(10): 1323-30, 2009 Oct.
Article in English | MEDLINE | ID: mdl-19525011

ABSTRACT

We have studied the protonation equilibria of a dicopper(II) complex [Cu(2)(micro-OH)(C(21)H(33)ON(6))](ClO(4))(2).H(2)O, (1), in aqueous solution, its interactions with DNA, its cytotoxic activity, and its uptake in tumoral cells. C(21)H(33)ON(6) corresponds to the ligand 4-methyl-2,6-bis[(6-methyl-1,4-diazepan-6-yl)iminomethyl]phenol. From spectrophotometric data the following pKa values were calculated 3.27, 4.80 and 6.10. Complex 1 effectively promotes the hydrolytic cleavage of double-strand plasmid DNA under anaerobic and aerobic conditions. The following kinetic parameters were calculated k(cat) of 2.73 x 10(-4)s(-1), K(M) of 1.36 x 10(-4)M and catalytic efficiency of 2.01 s(-1)M(-1), a 2.73 x 10(7) fold increase in the rate of the reaction compared to the uncatalyzed hydrolysis rate of DNA. Competition assays with distamycin reveal minor groove binding. Complex 1 inhibited the growth of two tumoral cell lines, GLC4 and K562, with the IC(50) values of 14.83 microM and 34.21 microM, respectively. There is a good correlation between cell growth inhibition and intracellular copper content. When treated with 1, cells accumulate approximately twice as much copper as with CuCl(2). Copper-DNA adducts are formed inside cells when they are exposed to the complex. In addition, at concentrations that compound 1 inhibits tumoral cell growth it does not affect macrophage viability. These results show that complex 1 has a good therapeutic prospect.


Subject(s)
Antineoplastic Agents/pharmacology , Copper , DNA Cleavage/drug effects , Neoplasms/drug therapy , Organometallic Compounds/pharmacology , Animals , Antineoplastic Agents/chemistry , Cell Survival/drug effects , DNA Adducts/chemistry , DNA Adducts/metabolism , Distamycins/pharmacology , Drug Screening Assays, Antitumor/methods , Female , Humans , K562 Cells , Kinetics , Macrophages, Peritoneal/metabolism , Male , Mice , Neoplasms/metabolism , Organometallic Compounds/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL