Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 550
Filter
1.
ACS Synth Biol ; 13(8): 2515-2532, 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-39109796

ABSTRACT

Multipartite bacterial genomes pose challenges for genome engineering and the establishment of additional replicons. We simplified the tripartite genome structure (3.65 Mbp chromosome, 1.35 Mbp megaplasmid pSymA, 1.68 Mbp chromid pSymB) of the nitrogen-fixing plant symbiont Sinorhizobium meliloti. Strains with bi- and monopartite genome configurations were generated by targeted replicon fusions. Our design preserved key genomic features such as replichore ratios, GC skew, KOPS, and coding sequence distribution. Under standard culture conditions, the growth rates of these strains and the wild type were nearly comparable, and the ability for symbiotic nitrogen fixation was maintained. Spatiotemporal replicon organization and segregation were maintained in the triple replicon fusion strain. Deletion of the replication initiator-encoding genes, including the oriVs of pSymA and pSymB from this strain, resulted in a monopartite genome with oriC as the sole origin of replication, a strongly unbalanced replichore ratio, slow growth, aberrant cellular localization of oriC, and deficiency in symbiosis. Suppressor mutation R436H in the cell cycle histidine kinase CckA and a 3.2 Mbp inversion, both individually, largely restored growth, but only the genomic rearrangement recovered the symbiotic capacity. These strains will facilitate the integration of secondary replicons in S. meliloti and thus be useful for genome engineering applications, such as generating hybrid genomes.


Subject(s)
Genome, Bacterial , Plasmids , Replicon , Sinorhizobium meliloti , Symbiosis , Sinorhizobium meliloti/genetics , Replicon/genetics , Genome, Bacterial/genetics , Plasmids/genetics , Symbiosis/genetics , Genetic Engineering/methods , Nitrogen Fixation/genetics , Replication Origin/genetics , Bacterial Proteins/genetics , DNA Replication/genetics
2.
Nat Commun ; 15(1): 7081, 2024 Aug 17.
Article in English | MEDLINE | ID: mdl-39152168

ABSTRACT

DSS1, essential for BRCA2-RAD51 dependent homologous recombination (HR), associates with the helical domain (HD) and OB fold 1 (OB1) of the BRCA2 DSS1/DNA-binding domain (DBD) which is frequently targeted by cancer-associated pathogenic variants. Herein, we reveal robust ss/dsDNA binding abilities in HD-OB1 subdomains and find that DSS1 shuts down HD-OB1's DNA binding to enable ssDNA targeting of the BRCA2-RAD51 complex. We show that C-terminal helix mutations of DSS1, including the cancer-associated R57Q mutation, disrupt this DSS1 regulation and permit dsDNA binding of HD-OB1/BRCA2-DBD. Importantly, these DSS1 mutations impair BRCA2/RAD51 ssDNA loading and focus formation and cause decreased HR efficiency, destabilization of stalled forks and R-loop accumulation, and hypersensitize cells to DNA-damaging agents. We propose that DSS1 restrains the intrinsic dsDNA binding of BRCA2-DBD to ensure BRCA2/RAD51 targeting to ssDNA, thereby promoting optimal execution of HR, and potentially replication fork protection and R-loop suppression.


Subject(s)
BRCA2 Protein , DNA Replication , DNA, Single-Stranded , DNA , Homologous Recombination , Mutation , Rad51 Recombinase , BRCA2 Protein/metabolism , BRCA2 Protein/genetics , BRCA2 Protein/chemistry , Humans , DNA/metabolism , Rad51 Recombinase/metabolism , Rad51 Recombinase/genetics , DNA, Single-Stranded/metabolism , DNA, Single-Stranded/genetics , Homeostasis , Protein Binding , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Protein Domains , Cell Line, Tumor , DNA Damage , Proteasome Endopeptidase Complex
3.
Nat Commun ; 15(1): 7100, 2024 Aug 18.
Article in English | MEDLINE | ID: mdl-39155303

ABSTRACT

The identification of genes involved in replicative stress is key to understanding cancer evolution and to identify therapeutic targets. Here, we show that CDK12 prevents transcription-replication conflicts (TRCs) and the activation of cytotoxic replicative stress upon deregulation of the MYC oncogene. CDK12 was recruited at damaged genes by PARP-dependent DDR-signaling and elongation-competent RNAPII, to repress transcription. Either loss or chemical inhibition of CDK12 led to DDR-resistant transcription of damaged genes. Loss of CDK12 exacerbated TRCs in MYC-overexpressing cells and led to the accumulation of double-strand DNA breaks, occurring between co-directional early-replicating regions and transcribed genes. Overall, our data demonstrate that CDK12 protects genome integrity by repressing transcription of damaged genes, which is required for proper resolution of DSBs at oncogene-induced TRCs. This provides a rationale that explains both how CDK12 deficiency can promote tandem duplications of early-replicated regions during tumor evolution, and how CDK12 targeting can exacerbate replicative-stress in tumors.


Subject(s)
Cyclin-Dependent Kinases , DNA Replication , Transcription, Genetic , Humans , Cyclin-Dependent Kinases/metabolism , Cyclin-Dependent Kinases/genetics , DNA Breaks, Double-Stranded , Proto-Oncogene Proteins c-myc/metabolism , Proto-Oncogene Proteins c-myc/genetics , Cell Line, Tumor , RNA Polymerase II/metabolism , RNA Polymerase II/genetics , DNA Damage
4.
PLoS Genet ; 20(8): e1011366, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39102423

ABSTRACT

In Saccharomyces cerevisiae, the forkhead (Fkh) transcription factor Fkh1 (forkhead homolog) enhances the activity of many DNA replication origins that act in early S-phase (early origins). Current models posit that Fkh1 acts directly to promote these origins' activity by binding to origin-adjacent Fkh1 binding sites (FKH sites). However, the post-DNA binding functions that Fkh1 uses to promote early origin activity are poorly understood. Fkh1 contains a conserved FHA (forkhead associated) domain, a protein-binding module with specificity for phosphothreonine (pT)-containing partner proteins. At a small subset of yeast origins, the Fkh1-FHA domain enhances the ORC (origin recognition complex)-origin binding step, the G1-phase event that initiates the origin cycle. However, the importance of the Fkh1-FHA domain to either chromosomal replication or ORC-origin interactions at genome scale is unclear. Here, S-phase SortSeq experiments were used to compare genome replication in proliferating FKH1 and fkh1-R80A mutant cells. The Fkh1-FHA domain promoted the activity of ≈ 100 origins that act in early to mid- S-phase, including the majority of centromere-associated origins, while simultaneously inhibiting ≈ 100 late origins. Thus, in the absence of a functional Fkh1-FHA domain, the temporal landscape of the yeast genome was flattened. Origins are associated with a positioned nucleosome array that frames a nucleosome depleted region (NDR) over the origin, and ORC-origin binding is necessary but not sufficient for this chromatin organization. To ask whether the Fkh1-FHA domain had an impact on this chromatin architecture at origins, ORC ChIPSeq data generated from proliferating cells and MNaseSeq data generated from G1-arrested and proliferating cell populations were assessed. Origin groups that were differentially regulated by the Fkh1-FHA domain were characterized by distinct effects of this domain on ORC-origin binding and G1-phase chromatin. Thus, the Fkh1-FHA domain controlled the distinct chromatin architecture at early origins in G1-phase and regulated origin activity in S-phase.


Subject(s)
Chromatin , DNA Replication , G1 Phase , Origin Recognition Complex , Replication Origin , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Replication Origin/genetics , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , DNA Replication/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Chromatin/genetics , Chromatin/metabolism , Origin Recognition Complex/genetics , Origin Recognition Complex/metabolism , G1 Phase/genetics , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/metabolism , S Phase/genetics , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Protein Domains/genetics , Binding Sites , Protein Binding , Chromosomes, Fungal/genetics , Chromosomes, Fungal/metabolism , Nucleosomes/metabolism , Nucleosomes/genetics
5.
DNA Repair (Amst) ; 141: 103729, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39089192

ABSTRACT

The Eyes Absent family (EYA1-4) are a group of dual function proteins that act as both tyrosine phosphatases and transcriptional co-activators. EYA proteins play a vital role in development, but are also aberrantly overexpressed in cancers, where they often confer an oncogenic effect. Precisely how the EYAs impact cell biology is of growing interest, fuelled by the therapeutic potential of an expanding repertoire of EYA inhibitors. Recent functional studies suggest that the EYAs are important players in the regulation of genome maintenance pathways including DNA repair, mitosis, and DNA replication. While the characterized molecular mechanisms have predominantly been ascribed to EYA phosphatase activities, EYA co-transcriptional activity has also been found to impact the expression of genes that support these pathways. This indicates functional convergence of EYA phosphatase and co-transcriptional activities, highlighting the emerging importance of the EYA protein family at the intersection of genome maintenance mechanisms. In this review, we discuss recent progress in defining EYA protein substrates and transcriptional effects, specifically in the context of genome maintenance. We then outline future directions relevant to the field and discuss the clinical utility of EYA inhibitors.


Subject(s)
DNA Repair , DNA Replication , Mitosis , Protein Tyrosine Phosphatases , Humans , Protein Tyrosine Phosphatases/metabolism , Protein Tyrosine Phosphatases/genetics , Animals , Intracellular Signaling Peptides and Proteins/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Nuclear Proteins/metabolism , Nuclear Proteins/genetics , Eye Proteins/metabolism , Eye Proteins/genetics , Neoplasms/genetics , Neoplasms/metabolism
6.
DNA Repair (Amst) ; 141: 103733, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39096698

ABSTRACT

Fanconi anemia (FA) is a hereditary disorder characterized by a deficiency in the repair of DNA interstrand crosslinks and the response to replication stress. Endogenous DNA damage, most likely caused by aldehydes, severely affects hematopoietic stem cells in FA, resulting in progressive bone marrow failure and the development of leukemia. Recent studies revealed that expression levels of SLFN11 affect the replication stress response and are a strong determinant in cell killing by DNA-damaging cancer chemotherapy. Because SLFN11 is highly expressed in the hematopoietic system, we speculated that SLFN11 may have a significant role in FA pathophysiology. Indeed, we found that DNA damage sensitivity in FA cells is significantly mitigated by the loss of SLFN11 expression. Mechanistically, we demonstrated that SLFN11 destabilizes the nascent DNA strands upon replication fork stalling. In this review, we summarize our work regarding an interplay between SLFN11 and the FA pathway, and the role of SLFN11 in the response to replication stress.


Subject(s)
DNA Damage , DNA Replication , Fanconi Anemia , Nuclear Proteins , Fanconi Anemia/metabolism , Fanconi Anemia/genetics , Humans , Nuclear Proteins/metabolism , Nuclear Proteins/genetics , Animals , DNA Repair , Fanconi Anemia Complementation Group Proteins/metabolism , Fanconi Anemia Complementation Group Proteins/genetics
7.
DNA Repair (Amst) ; 141: 103740, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39096696

ABSTRACT

An organism's genomic DNA must be accurately duplicated during each cell cycle. DNA synthesis is catalysed by DNA polymerase enzymes, which extend nucleotide polymers in a 5' to 3' direction. This inherent directionality necessitates that one strand is synthesised forwards (leading), while the other is synthesised backwards discontinuously (lagging) to couple synthesis to the unwinding of duplex DNA. Eukaryotic cells possess many diverse polymerases that coordinate to replicate DNA, with the three main replicative polymerases being Pol α, Pol δ and Pol ε. Studies conducted in yeasts and human cells utilising mutant polymerases that incorporate molecular signatures into nascent DNA implicate Pol ε in leading strand synthesis and Pol α and Pol δ in lagging strand replication. Recent structural insights have revealed how the spatial organization of these enzymes around the core helicase facilitates their strand-specific roles. However, various challenging situations during replication require flexibility in the usage of these enzymes, such as during replication initiation or encounters with replication-blocking adducts. This review summarises the roles of the replicative polymerases in bulk DNA replication and explores their flexible and dynamic deployment to complete genome replication. We also examine how polymerase usage patterns can inform our understanding of global replication dynamics by revealing replication fork directionality to identify regions of replication initiation and termination.


Subject(s)
DNA Replication , Humans , DNA/metabolism , DNA/biosynthesis , DNA-Directed DNA Polymerase/metabolism , Animals , DNA Polymerase II/metabolism , Eukaryota/enzymology , Eukaryota/genetics , DNA Polymerase III/metabolism , Eukaryotic Cells/metabolism , Eukaryotic Cells/enzymology , DNA Polymerase I/metabolism
8.
DNA Repair (Amst) ; 141: 103739, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39106540

ABSTRACT

Genomic interstrand crosslinks (ICLs) are formed by reactive species generated during normal cellular metabolism, produced by the microbiome, and employed in cancer chemotherapy. While there are multiple options for replication dependent and independent ICL repair, the crucial step for each is unhooking one DNA strand from the other. Much of our insight into mechanisms of unhooking comes from powerful model systems based on plasmids with defined ICLs introduced into cells or cell free extracts. Here we describe the properties of exogenous and endogenous ICL forming compounds and provide an historical perspective on early work on ICL repair. We discuss the modes of unhooking elucidated in the model systems, the concordance or lack thereof in drug resistant tumors, and the evolving view of DNA adducts, including ICLs, formed by metabolic aldehydes.


Subject(s)
DNA Adducts , DNA Repair , Humans , DNA Adducts/metabolism , DNA/metabolism , DNA Damage , Animals , Cross-Linking Reagents , Neoplasms/genetics , Neoplasms/drug therapy , Neoplasms/metabolism , DNA Replication
9.
PLoS Comput Biol ; 20(8): e1012048, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39093881

ABSTRACT

Budding yeast, Saccharomyces cerevisiae, is widely used as a model organism to study the genetics underlying eukaryotic cellular processes and growth critical to cancer development, such as cell division and cell cycle progression. The budding yeast cell cycle is also one of the best-studied dynamical systems owing to its thoroughly resolved genetics. However, the dynamics underlying the crucial cell cycle decision point called the START transition, at which the cell commits to a new round of DNA replication and cell division, are under-studied. The START machinery involves a central cyclin-dependent kinase; cyclins responsible for starting the transition, bud formation, and initiating DNA synthesis; and their transcriptional regulators. However, evidence has shown that the mechanism is more complicated than a simple irreversible transition switch. Activating a key transcription regulator SBF requires the phosphorylation of its inhibitor, Whi5, or an SBF/MBF monomeric component, Swi6, but not necessarily both. Also, the timing and mechanism of the inhibitor Whi5's nuclear export, while important, are not critical for the timing and execution of START. Therefore, there is a need for a consolidated model for the budding yeast START transition, reconciling regulatory and spatial dynamics. We built a detailed mathematical model (START-BYCC) for the START transition in the budding yeast cell cycle based on established molecular interactions and experimental phenotypes. START-BYCC recapitulates the underlying dynamics and correctly emulates key phenotypic traits of ~150 known START mutants, including regulation of size control, localization of inhibitor/transcription factor complexes, and the nutritional effects on size control. Such a detailed mechanistic understanding of the underlying dynamics gets us closer towards deconvoluting the aberrant cellular development in cancer.


Subject(s)
Cell Cycle , Models, Biological , Saccharomyces cerevisiae , Cell Cycle/physiology , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/physiology , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/genetics , Transcription Factors/metabolism , Transcription Factors/genetics , DNA Replication , Computational Biology , Saccharomycetales/genetics , Saccharomycetales/metabolism , Saccharomycetales/physiology , Cyclin-Dependent Kinases/metabolism , Cyclin-Dependent Kinases/genetics , Phosphorylation , Repressor Proteins
10.
Proc Natl Acad Sci U S A ; 121(33): e2403600121, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39116124

ABSTRACT

Deleterious accumulation of R-loops, a DNA-RNA hybrid structure, contributes to genome instability. They are associated with BRCA1 mutation-related breast cancer, an estrogen receptor α negative (ERα-) tumor type originating from luminal progenitor cells. However, a presumed causality of R-loops in tumorigenesis has not been established in vivo. Here, we overexpress mouse Rnaseh1 (Rh1-OE) in vivo to remove accumulated R-loops in Brca1-deficient mouse mammary epithelium (BKO). R-loop removal exacerbates DNA replication stress in proliferating BKO mammary epithelial cells, with little effect on homology-directed repair of double-strand breaks following ionizing radiation. Compared to their BKO counterparts, BKO-Rh1-OE mammary glands contain fewer luminal progenitor cells but more mature luminal cells. Despite a similar incidence of spontaneous mammary tumors in BKO and BKO-Rh1-OE mice, a significant percentage of BKO-Rh1-OE tumors express ERα and progesterone receptor. Our results suggest that rather than directly elevating the overall tumor incidence, R-loops influence the mammary tumor subtype by shaping the cell of origin for Brca1 tumors.


Subject(s)
BRCA1 Protein , Carcinogenesis , R-Loop Structures , Animals , BRCA1 Protein/metabolism , BRCA1 Protein/genetics , Mice , Female , Carcinogenesis/genetics , Mammary Neoplasms, Animal/genetics , Mammary Neoplasms, Animal/metabolism , Mammary Neoplasms, Animal/pathology , Estrogen Receptor alpha/metabolism , Estrogen Receptor alpha/genetics , Genomic Instability , DNA Replication , Humans , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Breast Neoplasms/metabolism
11.
Sci Rep ; 14(1): 19026, 2024 08 16.
Article in English | MEDLINE | ID: mdl-39152186

ABSTRACT

Condensins play important roles in maintaining bacterial chromatin integrity. In mycobacteria, three types of condensins have been characterized: a homolog of SMC and two MksB-like proteins, the recently identified MksB and EptC. Previous studies suggest that EptC contributes to defending against foreign DNA, while SMC and MksB may play roles in chromosome organization. Here, we report for the first time that the condensins, SMC and MksB, are involved in various DNA transactions during the cell cycle of Mycobacterium smegmatis (currently named Mycolicibacterium smegmatis). SMC appears to be required during the last steps of the cell cycle, where it contributes to sister chromosome separation. Intriguingly, in contrast to other bacteria, mycobacterial MksB follows replication forks during chromosome replication and hence may be involved in organizing newly replicated DNA.


Subject(s)
Adenosine Triphosphatases , Bacterial Proteins , DNA Replication , DNA-Binding Proteins , Multiprotein Complexes , Mycobacterium smegmatis , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Mycobacterium smegmatis/metabolism , Mycobacterium smegmatis/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Adenosine Triphosphatases/metabolism , Multiprotein Complexes/metabolism , Chromosomes, Bacterial/metabolism , Chromosomes, Bacterial/genetics , DNA, Bacterial/metabolism , DNA, Bacterial/genetics , Cell Cycle , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics
12.
Science ; 385(6708): eadk5901, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39088616

ABSTRACT

The proliferating cell nuclear antigen (PCNA) clamp encircles DNA to hold DNA polymerases (Pols) to DNA for processivity. The Ctf18-RFC PCNA loader, a replication factor C (RFC) variant, is specific to the leading-strand Pol (Polε). We reveal here the underlying mechanism of Ctf18-RFC specificity to Polε using cryo-electron microscopy and biochemical studies. We found that both Ctf18-RFC and Polε contain specific structural features that direct PCNA loading onto DNA. Unlike other clamp loaders, Ctf18-RFC has a disordered ATPase associated with a diverse cellular activities (AAA+) motor that requires Polε to bind and stabilize it for efficient PCNA loading. In addition, Ctf18-RFC can pry prebound Polε off of DNA, then load PCNA onto DNA and transfer the PCNA-DNA back to Polε. These elements in both Ctf18-RFC and Polε provide specificity in loading PCNA onto DNA for Polε.


Subject(s)
DNA Replication , Proliferating Cell Nuclear Antigen , Replication Protein C , Humans , ATPases Associated with Diverse Cellular Activities/metabolism , ATPases Associated with Diverse Cellular Activities/chemistry , Cryoelectron Microscopy , DNA/chemistry , DNA/metabolism , DNA Polymerase II/metabolism , DNA Polymerase II/chemistry , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/chemistry , Nuclear Proteins , Proliferating Cell Nuclear Antigen/metabolism , Proliferating Cell Nuclear Antigen/chemistry , Protein Binding , Replication Protein C/metabolism , Replication Protein C/chemistry , Protein Domains
13.
Sci Adv ; 10(34): eadl1150, 2024 Aug 23.
Article in English | MEDLINE | ID: mdl-39167653

ABSTRACT

An outbreak of mpox virus in May 2022 has spread over 110 nonpandemic regions in the world, posing a great threat to global health. Mpox virus E5, a helicase-primase, plays an essential role in DNA replication, but the molecular mechanisms are elusive. Here, we report seven structures of mpox virus E5 in a double hexamer (DH) and six in single hexamer in different conformations, indicating a rotation mechanism for helicase and a coupling action for primase. The DH is formed through the interface of zinc-binding domains, and the central channel density indicates potential double-stranded DNA (dsDNA), which helps to identify dsDNA binding residues Arg249, Lys286, Lys315, and Lys317. Our work is important not only for understanding poxviral DNA replication but also for the development of novel therapeutics for serious poxviral infections including smallpox virus and mpox virus.


Subject(s)
DNA Helicases , DNA Primase , DNA Primase/metabolism , DNA Primase/chemistry , DNA Helicases/metabolism , DNA Helicases/chemistry , Models, Molecular , Viral Proteins/metabolism , Viral Proteins/chemistry , Viral Proteins/genetics , Protein Multimerization , DNA Replication , Protein Binding , DNA, Viral/metabolism
14.
Int J Mol Sci ; 25(15)2024 Jul 28.
Article in English | MEDLINE | ID: mdl-39125800

ABSTRACT

The measurement of dynamic changes in protein level and localization throughout the cell cycle is of major relevance to studies of cellular processes tightly coordinated with the cycle, such as replication, transcription, DNA repair, and checkpoint control. Currently available methods include biochemical assays of cells in bulk following synchronization, which determine protein levels with poor temporal and no spatial resolution. Taking advantage of genetic engineering and live-cell microscopy, we performed time-lapse imaging of cells expressing fluorescently tagged proteins under the control of their endogenous regulatory elements in order to follow their levels throughout the cell cycle. We effectively discern between cell cycle phases and S subphases based on fluorescence intensity and distribution of co-expressed proliferating cell nuclear antigen (PCNA)-mCherry. This allowed us to precisely determine and compare the levels and distribution of multiple replication-associated factors, including Rap1-interacting factor 1 (RIF1), minichromosome maintenance complex component 6 (MCM6), origin recognition complex subunit 1 (ORC1, and Claspin, with high spatiotemporal resolution in HeLa Kyoto cells. Combining these data with available mass spectrometry-based measurements of protein concentrations reveals the changes in the concentration of these proteins throughout the cell cycle. Our approach provides a practical basis for a detailed interrogation of protein dynamics in the context of the cell cycle.


Subject(s)
Cell Cycle , DNA Replication , Humans , HeLa Cells , Proliferating Cell Nuclear Antigen/metabolism , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics , Telomere-Binding Proteins/metabolism , Telomere-Binding Proteins/genetics , Time-Lapse Imaging
15.
Int J Mol Sci ; 25(15)2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39125869

ABSTRACT

Werner syndrome (WS) is an autosomal recessive disease caused by loss of function of WRN. WS is a segmental progeroid disease and shows early onset or increased frequency of many characteristics of normal aging. WRN possesses helicase, annealing, strand exchange, and exonuclease activities and acts on a variety of DNA substrates, even complex replication and recombination intermediates. Here, we review the genetics, biochemistry, and probably physiological functions of the WRN protein. Although its precise role is unclear, evidence suggests WRN plays a role in pathways that respond to replication stress and maintain genome stability particularly in telomeric regions.


Subject(s)
DNA Replication , Genomic Instability , Werner Syndrome Helicase , Werner Syndrome , Werner Syndrome Helicase/metabolism , Werner Syndrome Helicase/genetics , Humans , Werner Syndrome/genetics , Werner Syndrome/metabolism , Animals , Telomere/metabolism , Telomere/genetics
16.
Nat Commun ; 15(1): 6641, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39103378

ABSTRACT

DNA-protein crosslinks (DPCs) are toxic lesions that inhibit DNA related processes. Post-translational modifications (PTMs), including SUMOylation and ubiquitylation, play a central role in DPC resolution, but whether other PTMs are also involved remains elusive. Here, we identify a DPC repair pathway orchestrated by poly-ADP-ribosylation (PARylation). Using Xenopus egg extracts, we show that DPCs on single-stranded DNA gaps can be targeted for degradation via a replication-independent mechanism. During this process, DPCs are initially PARylated by PARP1 and subsequently ubiquitylated and degraded by the proteasome. Notably, PARP1-mediated DPC resolution is required for resolving topoisomerase 1-DNA cleavage complexes (TOP1ccs) induced by camptothecin. Using the Flp-nick system, we further reveal that in the absence of PARP1 activity, the TOP1cc-like lesion persists and induces replisome disassembly when encountered by a DNA replication fork. In summary, our work uncovers a PARP1-mediated DPC repair pathway that may underlie the synergistic toxicity between TOP1 poisons and PARP inhibitors.


Subject(s)
DNA Repair , DNA Replication , DNA Topoisomerases, Type I , Poly (ADP-Ribose) Polymerase-1 , Poly ADP Ribosylation , Animals , Poly (ADP-Ribose) Polymerase-1/metabolism , Poly (ADP-Ribose) Polymerase-1/genetics , DNA Topoisomerases, Type I/metabolism , Xenopus laevis , Ubiquitination , Humans , DNA/metabolism , DNA Damage , Camptothecin/pharmacology , Protein Processing, Post-Translational , DNA, Single-Stranded/metabolism , Xenopus Proteins/metabolism
17.
J Vis Exp ; (209)2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39141566

ABSTRACT

Eukaryotes have one replicative helicase known as CMG, which centrally organizes and drives the replisome, and leads the way at the front of replication forks. Obtaining a deep mechanistic understanding of the dynamics of CMG is critical to elucidating how cells achieve the enormous task of efficiently and accurately replicating their entire genome once per cell cycle. Single-molecule techniques are uniquely suited to quantify the dynamics of CMG due to their unparalleled temporal and spatial resolution. Nevertheless, single-molecule studies of CMG motion have thus far relied on pre-formed CMG purified from cells as a complex, which precludes the study of the steps leading up to its activation. Here, we describe a hybrid ensemble and single-molecule assay that allowed imaging at the single-molecule level of the motion of fluorescently labeled CMG after fully reconstituting its assembly and activation from 36 different purified S. cerevisiae polypeptides. This assay relies on the double functionalization of the ends of a linear DNA substrate with two orthogonal attachment moieties, and can be adapted to study similarly complex DNA-processing mechanisms at the single-molecule level.


Subject(s)
Saccharomyces cerevisiae , Single Molecule Imaging , Saccharomyces cerevisiae/metabolism , Single Molecule Imaging/methods , DNA Helicases/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Fluorescent Dyes/chemistry , DNA Replication , DNA, Fungal/genetics
18.
Proc Natl Acad Sci U S A ; 121(34): e2322938121, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39141351

ABSTRACT

The removal of mis-incorporated nucleotides by proofreading activity ensures DNA replication fidelity. Whereas the ε-exonuclease DnaQ is a well-established proofreader in the model organism Escherichia coli, it has been shown that proofreading in a majority of bacteria relies on the polymerase and histidinol phosphatase (PHP) domain of replicative polymerase, despite the presence of a DnaQ homolog that is structurally and functionally distinct from E. coli DnaQ. However, the biological functions of this type of noncanonical DnaQ remain unclear. Here, we provide independent evidence that noncanonical DnaQ functions as an additional proofreader for mycobacteria. Using the mutation accumulation assay in combination with whole-genome sequencing, we showed that depletion of DnaQ in Mycolicibacterium smegmatis leads to an increased mutation rate, resulting in AT-biased mutagenesis and increased insertions/deletions in the homopolymer tract. Our results showed that mycobacterial DnaQ binds to the ß clamp and functions synergistically with the PHP domain proofreader to correct replication errors. Furthermore, the loss of dnaQ results in replication fork dysfunction, leading to attenuated growth and increased mutagenesis on subinhibitory fluoroquinolones potentially due to increased vulnerability to fork collapse. By analyzing the sequence polymorphism of dnaQ in clinical isolates of Mycobacterium tuberculosis (Mtb), we demonstrated that a naturally evolved DnaQ variant prevalent in Mtb lineage 4.3 may enable hypermutability and is associated with drug resistance. These results establish a coproofreading model and suggest a division of labor between DnaQ and PHP domain proofreader. This study also provides real-world evidence that a mutator-driven evolutionary pathway may exist during the adaptation of Mtb.


Subject(s)
DNA Replication , Mycobacterium smegmatis/genetics , Mycobacterium smegmatis/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , DNA, Bacterial/genetics , DNA, Bacterial/metabolism , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/metabolism , Mutation
19.
Sci Adv ; 10(32): eado1739, 2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39121223

ABSTRACT

During lagging strand chromatin replication, multiple Okazaki fragments (OFs) require processing and nucleosome assembly, but the mechanisms linking these processes remain unclear. Here, using transmission electron microscopy and rapid degradation of DNA ligase Cdc9, we observed flap structures accumulated on lagging strands, controlled by both Pol δ's strand displacement activity and Fen1's nuclease digestion. The distance between neighboring flap structures exhibits a regular pattern, indicative of matured OF length. While fen1Δ or enhanced strand displacement activities by polymerase δ (Pol δ; pol3exo-) minimally affect inter-flap distance, mutants affecting replication-coupled nucleosome assembly, such as cac1Δ and mcm2-3A, do significantly alter it. Deletion of Pol32, a subunit of DNA Pol δ, significantly increases this distance. Mechanistically, Pol32 binds to histone H3-H4 and is critical for nucleosome assembly on the lagging strand. Together, we propose that Pol32 establishes a connection between nucleosome assembly and the processing of OFs on lagging strands.


Subject(s)
DNA Polymerase III , DNA , Histones , Nucleosomes , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Nucleosomes/metabolism , Histones/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/genetics , DNA Polymerase III/metabolism , DNA Polymerase III/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/genetics , DNA/metabolism , DNA Replication , Protein Binding , DNA-Directed DNA Polymerase
20.
Nat Commun ; 15(1): 5604, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38961054

ABSTRACT

The CRL4-DCAF15 E3 ubiquitin ligase complex is targeted by the aryl-sulfonamide molecular glues, leading to neo-substrate recruitment, ubiquitination, and proteasomal degradation. However, the physiological function of DCAF15 remains unknown. Using a domain-focused genetic screening approach, we reveal DCAF15 as an acute myeloid leukemia (AML)-biased dependency. Loss of DCAF15 results in suppression of AML through compromised replication fork integrity and consequent accumulation of DNA damage. Accordingly, DCAF15 loss sensitizes AML to replication stress-inducing therapeutics. Mechanistically, we discover that DCAF15 directly interacts with the SMC1A protein of the cohesin complex and destabilizes the cohesin regulatory factors PDS5A and CDCA5. Loss of PDS5A and CDCA5 removal precludes cohesin acetylation on chromatin, resulting in uncontrolled chromatin loop extrusion, defective DNA replication, and apoptosis. Collectively, our findings uncover an endogenous, cell autonomous function of DCAF15 in sustaining AML proliferation through post-translational control of cohesin dynamics.


Subject(s)
Cell Cycle Proteins , Chromosomal Proteins, Non-Histone , Cohesins , DNA Damage , DNA Replication , Leukemia, Myeloid, Acute , Chromosomal Proteins, Non-Histone/metabolism , Chromosomal Proteins, Non-Histone/genetics , Humans , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics , Leukemia, Myeloid, Acute/metabolism , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/pathology , Cell Line, Tumor , Acetylation , Animals , Nuclear Proteins/metabolism , Nuclear Proteins/genetics , Mice , Chromatin/metabolism , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Apoptosis , Cell Proliferation , HEK293 Cells
SELECTION OF CITATIONS
SEARCH DETAIL