Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 157
Filter
1.
Sci Rep ; 14(1): 15874, 2024 07 10.
Article in English | MEDLINE | ID: mdl-38982265

ABSTRACT

Random mutagenesis, such as error-prone PCR (epPCR), is a technique capable of generating a wide variety of a single gene. However, epPCR can produce a large number of mutated gene variants, posing a challenge in ligating these mutated PCR products into plasmid vectors. Typically, the primers for mutagenic PCRs incorporate artificial restriction enzyme sites compatible with chosen plasmids. Products are cleaved and ligated to linearized plasmids, then recircularized by DNA ligase. However, this cut-and-paste method known as ligation-dependent process cloning (LDCP), has limited efficiency, as the loss of potential mutants is inevitable leading to a significant reduction in the library's breadth. An alternative to LDCP is the circular polymerase extension cloning (CPEC) method. This technique involves a reaction where a high-fidelity DNA polymerase extends the overlapping regions between the insert and vector, forming a circular molecule. In this study, our objective was to compare the traditional cut-and-paste enzymatic method with CPEC in producing a variant library from the gene encoding the red fluorescent protein (DsRed2) obtained by epPCR. Our findings suggest that CPEC can accelerate the cloning process in gene library generation, enabling the acquisition of a greater number of gene variants compared to methods reliant on restriction enzymes.


Subject(s)
Cloning, Molecular , Gene Library , Mutagenesis , Polymerase Chain Reaction , Polymerase Chain Reaction/methods , Cloning, Molecular/methods , Genetic Vectors/genetics , DNA-Directed DNA Polymerase/metabolism , DNA-Directed DNA Polymerase/genetics , Plasmids/genetics
2.
Biosci Rep ; 44(5)2024 May 29.
Article in English | MEDLINE | ID: mdl-38717250

ABSTRACT

Temozolomide (TMZ) is the leading therapeutic agent for combating Glioblastoma Multiforme (GBM). Nonetheless, the persistence of chemotherapy-resistant GBM cells remains an ongoing challenge, attributed to various factors, including the translesion synthesis (TLS) mechanism. TLS enables tumor cells to endure genomic damage by utilizing specialized DNA polymerases to bypass DNA lesions. Specifically, TLS polymerase Kappa (Polκ) has been implicated in facilitating DNA damage tolerance against TMZ-induced damage, contributing to a worse prognosis in GBM patients. To better understand the roles of Polκ in TMZ resistance, we conducted a comprehensive assessment of the cytotoxic, antiproliferative, antimetastatic, and genotoxic effects of TMZ on GBM (U251MG) wild-type (WTE) and TLS Polκ knockout (KO) cells, cultivated as three-dimensional (3D) tumor spheroids in vitro. Initial results revealed that TMZ: (i) induces reductions in GBM spheroid diameter (10-200 µM); (ii) demonstrates significant cytotoxicity (25-200 µM); (iii) exerts antiproliferative effects (≤25 µM) and promotes cell cycle arrest (G2/M phase) in Polκ KO spheroids when compared with WTE counterparts. Furthermore, Polκ KO spheroids exhibit elevated levels of cell death (Caspase 3/7) and display greater genotoxicity (53BP1) than WTE following TMZ exposure. Concerning antimetastatic effects, TMZ impedes invadopodia (3D invasion) more effectively in Polκ KO than in WTE spheroids. Collectively, the results suggest that TLS Polκ plays a vital role in the survival, cell death, genotoxicity, and metastatic potential of GBM spheroids in vitro when subjected to TMZ treatment. While the precise mechanisms underpinning this resistance remain elusive, TLS Polκ emerges as a potential therapeutic target for GBM patients.


Subject(s)
DNA-Directed DNA Polymerase , Drug Resistance, Neoplasm , Glioblastoma , Spheroids, Cellular , Temozolomide , Humans , Glioblastoma/drug therapy , Glioblastoma/pathology , Glioblastoma/genetics , Glioblastoma/enzymology , Temozolomide/pharmacology , Drug Resistance, Neoplasm/drug effects , DNA-Directed DNA Polymerase/metabolism , DNA-Directed DNA Polymerase/genetics , Spheroids, Cellular/drug effects , Spheroids, Cellular/pathology , Cell Line, Tumor , Cell Proliferation/drug effects , DNA Damage/drug effects , Apoptosis/drug effects , Brain Neoplasms/drug therapy , Brain Neoplasms/pathology , Brain Neoplasms/genetics , Brain Neoplasms/enzymology , Antineoplastic Agents, Alkylating/pharmacology
3.
PLoS One ; 19(3): e0299404, 2024.
Article in English | MEDLINE | ID: mdl-38446776

ABSTRACT

Otariid gammaherpesvirus 1 (OtGHV1) is associated with high rates of urogenital carcinoma in free-ranging California sea lions (Zalophus californianus; CSL), and until recently was reported only in the Northern Hemisphere. The objective of this study was to survey free-ranging South American sea lions (Otaria byronia; SASL) and South American fur seals (Arctocephalus australis: SAFS) in Punta San Juan, Peru for OtGHV1 and to determine prevalence characteristics. Twenty-one percent (14/67) of urogenital swabs collected over three years (2011, 2014, 2015) from live pinnipeds of both species tested positive with a pan-herpesvirus conventional PCR. Sequencing of SAFS amplicons revealed 100% homology to OtGHV1 at the DNA polymerase, glycoprotein B, and viral bcl2-like genes. Sequencing of SASL amplicons revealed a novel related virus, herein called Otariid gammaherpesvirus 8 (OtGHV8). For comparison of sample sites, urogenital, conjunctival, and oropharyngeal swabs collected from 136 live pinnipeds of both species at Punta San Juan between 2011-2018 were then assayed using quantitative PCR for a segment of the OtGHV1/8 DNA polymerase gene using a qPCR assay now determined to cross-react between the two viruses. In total, across both species, 38.6% (51/132) of urogenital swabs, 5.6% (4/71) of conjunctival swabs, and 1.1% (1/90) of oropharyngeal swabs were positive for OtGHV1/8, with SASL only positive on urogenital swabs. Results from SASL were complicated by the finding of OtGHV8, necessitating further study to determine prevalence of OtGHV1 versus OtGHV8 using an alternate assay. Results from SAFS suggest a potential relationship between OtGHV1 in SAFS and CSL. Though necropsy surveillance in SAFS is very limited, geographic patterns of OtGHV1-associated urogenital carcinoma in CSL and the tendency of herpesviruses to cause more detrimental disease in aberrant hosts suggests that it is possible that SAFS may be the definitive host of OtGHV1, which gives further insight into the diversity and phyogeography of this clade of related gammaherpesviruses.


Subject(s)
Caniformia , Carcinoma , Fur Seals , Gammaherpesvirinae , Herpesviridae , Sea Lions , Animals , Humans , Prevalence , Gammaherpesvirinae/genetics , Peru/epidemiology , DNA-Directed DNA Polymerase
4.
Pediatr Neurol ; 153: 1-10, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38306744

ABSTRACT

Moebius syndrome (MBS) is a congenital cranial dysinnervation disorder (CCDD) characterized by a bilateral palsy of abducens and facial cranial nerves, which may coexist with other cranial nerves palsies, mostly those found in the dorsal pons and medulla oblongata. MBS is considered a "rare" disease, occurring in only 1:50,000 to 1:500,000 live births, with no gender predominance. Three independent theories have been described to define its etiology: the vascular theory, which talks about a transient blood flow disruption; the genetic theory, which takes place due to mutations related to the facial motor nucleus neurodevelopment; and last, the teratogenic theory, associated with the consumption of agents such as misoprostol during the first trimester of pregnancy. Since the literature has suggested the existence of these theories independently, this review proposes establishing a theory by matching the MBS molecular bases. This review aims to associate the three etiopathogenic theories at a molecular level, thus submitting a combined postulation. MBS is most likely an underdiagnosed disease due to its low prevalence and challenging diagnosis. Researching other elements that may play a key role in the pathogenesis is essential. It is common to assume the difficulty that patients with MBS have in leading an everyday social life. Research by means of PubMed and Google Scholar databases was carried out, same in which 94 articles were collected by using keywords with the likes of "Moebius syndrome," "PLXND1 mutations," "REV3L mutations," "vascular disruption AND teratogens," and "congenital facial nerve palsy." No exclusion criteria were applied.


Subject(s)
Facial Paralysis , Mobius Syndrome , Humans , Mobius Syndrome/genetics , Mobius Syndrome/diagnosis , Teratogens/toxicity , Facial Nerve , Mutation , DNA-Directed DNA Polymerase/genetics , DNA-Binding Proteins/genetics
5.
BMC Plant Biol ; 23(1): 467, 2023 Oct 06.
Article in English | MEDLINE | ID: mdl-37803262

ABSTRACT

BACKGROUND: The mechanisms and regulation for DNA replication in plant organelles are largely unknown, as few proteins involved in replisome assembly have been biochemically studied. A primase-helicase dubbed Twinkle (T7 gp4-like protein with intramitochondrial nucleoid localization) unwinds double-stranded DNA in metazoan mitochondria and plant organelles. Twinkle in plants is a bifunctional enzyme with an active primase module. This contrast with animal Twinkle in which the primase module is inactive. The organellar primase-helicase of Arabidopsis thaliana (AtTwinkle) harbors a primase module (AtPrimase) that consists of an RNA polymerase domain (RPD) and a Zn + + finger domain (ZFD). RESULTS: Herein, we investigate the mechanisms by which AtTwinkle recognizes its templating sequence and how primer synthesis and coupling to the organellar DNA polymerases occurs. Biochemical data show that the ZFD of the AtPrimase module is responsible for template recognition, and this recognition is achieved by residues N163, R166, and K168. The role of the ZFD in template recognition was also corroborated by swapping the RPDs of bacteriophage T7 primase and AtPrimase with their respective ZFDs. A chimeric primase harboring the ZFD of T7 primase and the RPD of AtPrimase synthesizes ribonucleotides from the T7 primase recognition sequence and conversely, a chimeric primase harboring the ZFD of AtPrimase and the RPD of T7 primase synthesizes ribonucleotides from the AtPrimase recognition sequence. A chimera harboring the RPDs of bacteriophage T7 and the ZBD of AtTwinkle efficiently synthesizes primers for the plant organellar DNA polymerase. CONCLUSIONS: We conclude that the ZFD is responsible for recognizing a single-stranded sequence and for primer hand-off into the organellar DNA polymerases active site. The primase activity of plant Twinkle is consistent with phylogeny-based reconstructions that concluded that Twinkle´s last eukaryotic common ancestor (LECA) was an enzyme with primase and helicase activities. In plants, the primase domain is active, whereas the primase activity was lost in metazoans. Our data supports the notion that AtTwinkle synthesizes primers at the lagging-strand of the organellar replication fork.


Subject(s)
Arabidopsis , DNA Primase , Animals , DNA Primase/genetics , DNA Primase/chemistry , DNA Primase/metabolism , DNA Helicases/chemistry , DNA Helicases/genetics , DNA Helicases/metabolism , DNA-Directed DNA Polymerase/genetics , DNA-Directed DNA Polymerase/metabolism , Arabidopsis/metabolism , Mitochondria/metabolism , Zinc Fingers , Ribonucleotides , DNA Replication , Bacteriophage T7/genetics
6.
Sci Adv ; 9(15): eade7997, 2023 04 14.
Article in English | MEDLINE | ID: mdl-37058556

ABSTRACT

Recent studies have described a DNA damage tolerance pathway choice that involves a competition between PrimPol-mediated repriming and fork reversal. Screening different translesion DNA synthesis (TLS) polymerases by the use of tools for their depletion, we identified a unique role of Pol ι in regulating such a pathway choice. Pol ι deficiency unleashes PrimPol-dependent repriming, which accelerates DNA replication in a pathway that is epistatic with ZRANB3 knockdown. In Pol ι-depleted cells, the excess participation of PrimPol in nascent DNA elongation reduces replication stress signals, but thereby also checkpoint activation in S phase, triggering chromosome instability in M phase. This TLS-independent function of Pol ι requires its PCNA-interacting but not its polymerase domain. Our findings unravel an unanticipated role of Pol ι in protecting the genome stability of cells from detrimental changes in DNA replication dynamics caused by PrimPol.


Subject(s)
DNA Replication , DNA-Directed DNA Polymerase , Humans , DNA-Directed DNA Polymerase/genetics , DNA-Directed DNA Polymerase/metabolism , DNA/genetics , DNA/metabolism , DNA Repair , DNA Damage , Chromosomal Instability , DNA Primase/genetics , DNA Primase/metabolism , Multifunctional Enzymes/genetics , Multifunctional Enzymes/metabolism
7.
Viruses ; 15(3)2023 03 14.
Article in English | MEDLINE | ID: mdl-36992459

ABSTRACT

One of the major evolutionary transitions that led to DNA replacing RNA as the primary informational molecule in biological systems is still the subject of an intense debate in the scientific community. DNA polymerases are currently split into various families. Families A, B, and C are the most significant. In bacteria and some types of viruses, enzymes from families A and C predominate, whereas family B enzymes are more common in Archaea, Eukarya, and some types of viruses. A phylogenetic analysis of these three families of DNA polymerase was carried out. We assumed that reverse transcriptase was the ancestor of DNA polymerases. Our findings suggest that families A and C emerged and organized themselves when the earliest bacterial lineages had diverged, and that these earliest lineages had RNA genomes that were in transition-that is, the information was temporally stored in DNA molecules that were continuously being produced by reverse transcription. The origin of DNA and the apparatus for its replication in the mitochondrial ancestors may have occurred independently of DNA and the replication machinery of other bacterial lineages, according to these two alternate modes of genetic material replication. The family C enzymes emerged in a particular bacterial lineage before being passed to viral lineages, which must have functioned by disseminating this machinery to the other lineages of bacteria. Bacterial DNA viruses must have evolved at least twice independently, in addition to the requirement that DNA have arisen twice in bacterial lineages. We offer two possible scenarios based on what we know about bacterial DNA polymerases. One hypothesis contends that family A was initially produced and spread to the other lineages through viral lineages before being supplanted by the emergence of family C and acquisition at that position of the principal replicative polymerase. The evidence points to the independence of these events and suggests that the viral lineage's acquisition of cellular replicative machinery was crucial for the establishment of a DNA genome in the other bacterial lineages, since these viral lineages may have served as a conduit for the machinery's delivery to other bacterial lineages that diverged with the RNA genome. Our data suggest that family B initially established itself in viral lineages and was transferred to ancestral Archaea lineages before the group diversified; thus, the DNA genome must have emerged first in this cellular lineage. Our data point to multiple evolutionary steps in the origins of DNA polymerase, having started off at least twice in the bacterial lineage and once in the archaeal lineage. Given that viral lineages are implicated in a significant portion of the distribution of DNA replication equipment in both bacterial (families A and C) and Archaeal lineages (family A), our data point to a complex scenario.


Subject(s)
Bacteriophages , Viruses , Phylogeny , Evolution, Molecular , DNA-Directed DNA Polymerase/genetics , Viruses/genetics , Bacteria/genetics , DNA , Archaea/genetics , Bacteriophages/genetics , RNA
8.
Viruses ; 14(9)2022 08 23.
Article in English | MEDLINE | ID: mdl-36146656

ABSTRACT

Cetacean poxviruses (CePVs) cause 'tattoo' skin lesions in small and large cetaceans worldwide. Although the disease has been known for decades, genomic data for these poxviruses are very limited, with the exception of CePV-Tursiops aduncus, which was completely sequenced in 2020. Using a newly developed pan-pox real-time PCR system targeting a conserved nucleotide sequence located within the Monkeypox virus D6R gene, we rapidly detected the CePV genome in typical skin lesions collected from two Peruvian common bottlenose dolphins (Tursiops truncatus) by-caught off Peru in 1993. Phylogenetic analyses based on the sequencing of the DNA polymerase and DNA topoisomerase genes showed that the two viruses are very closely related to each other, although the dolphins they infected pertained to different ecotypes. The poxviruses described in this study belong to CePV-1, a heterogeneous clade that infects many species of dolphins (Delphinidae) and porpoises (Phocoenidae). Among this clade, the T. truncatus CePVs from Peru were more related to the viruses infecting Delphinidae than to those detected in Phocoenidae. This is the first time that CePVs were identified in free-ranging odontocetes from the Eastern Pacific, surprisingly in 30-year-old samples. These data further suggest a close and long-standing pathogen-host co-evolution, resulting in different lineages of CePVs.


Subject(s)
Bottle-Nosed Dolphin , Chordopoxvirinae , Porpoises , Poxviridae , Animals , Bottle-Nosed Dolphin/genetics , Cetacea , Chordopoxvirinae/genetics , DNA Topoisomerases/genetics , DNA-Directed DNA Polymerase/genetics , Peru/epidemiology , Phylogeny , Porpoises/genetics , Poxviridae/genetics , Real-Time Polymerase Chain Reaction
9.
Mutat Res Rev Mutat Res ; 790: 108436, 2022.
Article in English | MEDLINE | ID: mdl-35952573

ABSTRACT

POLη, encoded by the POLH gene, is a crucial protein for replicating damaged DNA and the most studied specialized translesion synthesis polymerases. Mutations in POLη are associated with cancer and the human syndrome xeroderma pigmentosum variant, which is characterized by extreme photosensitivity and an increased likelihood of developing skin cancers. The myriad of structural information about POLη is vast, covering dozens of different mutants, numerous crucial residues, domains, and posttranslational modifications that are essential for protein function within cells. Since POLη is key vital enzyme for cell survival, and mutations in this protein are related to aggressive diseases, understanding its structure is crucial for biomedical sciences, primarily due to its similarities with other Y-family polymerases and its potential as a targeted therapy-drug for tumors. This work provides an up-to-date review on structural aspects of the human POLη: from basic knowledge about critical residues and protein domains to its mutant variants, posttranslational modifications, and our current understanding of therapeutic molecules that target POLη. Thus, this review provides lessons about POLη's structure and gathers critical discussions and hypotheses that may contribute to understanding this protein's vital roles within the cells.


Subject(s)
DNA-Directed DNA Polymerase , Xeroderma Pigmentosum , Humans , DNA Damage , DNA Replication , DNA-Directed DNA Polymerase/genetics , Mutation , Xeroderma Pigmentosum/genetics
10.
Article in English | MEDLINE | ID: mdl-35649682

ABSTRACT

Human DNA polymerases can bypass DNA lesions performing translesion synthesis (TLS), a mechanism of DNA damage tolerance. Tumor cells use this mechanism to survive lesions caused by specific chemotherapeutic agents, resulting in treatment relapse. Moreover, TLS polymerases are error-prone and, thus, can lead to mutagenesis, increasing the resistance potential of tumor cells. DNA polymerase eta (pol eta) - a key protein from this group - is responsible for protecting against sunlight-induced tumors. Xeroderma Pigmentosum Variant (XP-V) patients are deficient in pol eta activity, which leads to symptoms related to higher sensitivity and increased incidence of skin cancer. Temozolomide (TMZ) is a chemotherapeutic agent used in glioblastoma and melanoma treatment. TMZ damages cells' genomes, but little is known about the role of TLS in TMZ-induced DNA lesions. This work investigates the effects of TMZ treatment in human XP-V cells, which lack pol eta, and in its complemented counterpart (XP-V comp). Interestingly, TMZ reduces the viability of XP-V cells compared to TLS proficient control cells. Furthermore, XP-V cells treated with TMZ presented increased phosphorylation of H2AX, forming γH2AX, compared to control cells. However, cell cycle assays indicate that XP-V cells treated with TMZ replicate damaged DNA and pass-through S-phase, arresting in the G2/M-phase. DNA fiber assay also fails to show any specific effect of TMZ-induced DNA damage blocking DNA elongation in pol eta deficient cells. These results show that pol eta plays a role in protecting human cells from TMZ-induced DNA damage, but this can be different from its canonical TLS mechanism. The new role opens novel therapeutic possibilities of using pol eta as a target to improve the efficacy of TMZ-based therapies against cancer.


Subject(s)
Antineoplastic Agents , Xeroderma Pigmentosum , Antineoplastic Agents/pharmacology , DNA , DNA Damage , DNA-Directed DNA Polymerase/genetics , DNA-Directed DNA Polymerase/metabolism , Humans , Temozolomide/pharmacology , Xeroderma Pigmentosum/genetics
11.
J Mol Evol ; 90(3-4): 283-295, 2022 08.
Article in English | MEDLINE | ID: mdl-35639164

ABSTRACT

In the past few years, our understanding of the RNA virosphere has changed dramatically due to the growth and spurt of metagenomics, exponentially increasing the number of RNA viral sequences, and providing a better understanding of their range of potential hosts. As of today, the only conserved protein among RNA viruses appears to be the monomeric RNA-dependent RNA polymerase. This enzyme belongs to the right-hand DNA-and RNA polymerases, which also includes reverse transcriptases and eukaryotic replicative DNA polymerases. The ubiquity of this protein in RNA viruses makes it a unique evolutionary marker and an appealing broad-spectrum antiviral target. In this work pairwise structural comparisons of viral RdRps and RTs were performed, including tertiary structures that have been obtained in the last few years. The resulting phylogenetic tree shows that the RdRps from (+)ss- and dsRNA viruses might have been recruited several times throughout the evolution of mobile genetic elements. RTs also display multiple evolutionary routes. We have identified a structural core comprising the entire palm, a large moiety of the fingers and the N-terminal helices of the thumb domain, comprising over 300 conserved residues, including two regions that we have named the "knuckles" and the "hypothenar eminence". The conservation of an helix bundle in the region preceding the polymerase domain confirms that (-)ss and dsRNA Reoviruses' polymerases share a recent ancestor. Finally, the inclusion of DNA polymerases into our structural analyses suggests that monomeric RNA-dependent polymerases might have diverged from B-family polymerases.


Subject(s)
DNA-Directed RNA Polymerases , Evolution, Molecular , Amino Acid Sequence , DNA-Directed DNA Polymerase , DNA-Directed RNA Polymerases/genetics , Phylogeny , RNA/genetics
12.
Genes (Basel) ; 14(1)2022 12 24.
Article in English | MEDLINE | ID: mdl-36672794

ABSTRACT

Due to their continuing geographic isolation, the Amerindian populations of the Brazilian Amazon present a different genetic profile when compared to other continental populations. Few studies have investigated genetic variants present in these populations, especially in the context of next-generation sequencing. Knowledge of the molecular profile of a population is one of the bases for inferences about human evolutionary history, in addition, it has the ability to assist in the validation of molecular biomarkers of susceptibility to complex and rare diseases, and in the improvement of specific precision medicine protocols applied to these populations and to populations with high Amerindian ancestry, such as Brazilians. DNA polymerases play essential roles in DNA replication, repair, recombination, or damage repair, and their influence on various clinical phenotypes has been demonstrated in the specialized literature. Thus, the aim of this study is to characterize the molecular profile of POLA1, POLE, POLG, POLQ, and REV3L genes in Amerindian populations from the Brazilian Amazon, comparing these findings with genomic data from five continental populations described in the gnomAD database, and with data from the Brazilian population described in ABraOM. We performed the whole exome sequencing (WES) of 63 Indigenous individuals. Our study described for the first time the allele frequency of 45 variants already described in the other continental populations, but never before described in the investigated Amerindian populations. Our results also describe eight unique variants of the investigated Amerindians populations, with predictions of moderate, modifier and high clinical impact. Our findings demonstrate the unique genetic profile of the Indigenous population of the Brazilian Amazon, reinforcing the need for further studies on these populations, and may contribute to the creation of public policies that optimize not only the quality of life of this population, but also of the Brazilian population.


Subject(s)
DNA-Directed DNA Polymerase , Quality of Life , Humans , Gene Frequency/genetics , DNA-Directed DNA Polymerase/genetics , Brazil/epidemiology , DNA-Binding Proteins
13.
J Clin Pathol ; 75(2): 85-93, 2022 Feb.
Article in English | MEDLINE | ID: mdl-33234697

ABSTRACT

AIMS: DNA methylation has its distribution influenced by DNA demethylation processes with the catalytic conversion of 5-methylcytosine (5mC) into 5-hydroxymethylcytosine (5hmC). Myelodysplastic syndrome (MDS) has been associated with epigenetic dysregulation of genes related to DNA repair system, chronic immune response and cell cycle. METHODS: We evaluated the tissue DNA methylation/hydroxymethylation in bone marrow trephine biopsies of 73 patients with MDS, trying to correlate with the mRNA expression of 21 genes (POLH, POLL, REV3L, POLN, POLQ, POLI, POLK, IRF-1, IRF-2, IRF-3, IRF-4, IRF-5, IRF6, IRF-7, IRF-8,IRF-9, MAD2, CDC20, AURKA, AURKB and TPX2). RESULTS: The M-score (5mC) was significantly higher in patients with chromosomal abnormalities than patients with normal karyotype (95% CI -27.127779 to -2.368020; p=0.022). We observed a higher 5mC/5hmC ratio in patients classified as high-risk subtypes compared with low-risk subtypes (95% CI -72.922115 to -1.855662; p=0.040) as well as patients with hypercellular bone marrow compared with patients with normocellular/hypocellular bone marrow (95% CI -69.189259 to -0.511828; p=0.047) and with the presence of dyserythropoiesis (95% CI 17.077703 to 51.331388; p=0.001). DNA pols with translesion activity are significantly influenced by methylation. As 5mC immunoexpression increases, the expressions of POLH (r=-0.816; r2 =0.665; p=0.000), POLQ (r=-0.790; r2=0.624; p=0.001), PCNA (r=-0.635; r2=0.403; p=0.020), POLK (r=-0.633; r2=0.400; p=0.036 and REV1 (r=-0.578; r2=0.334; p=0.049) decrease. CONCLUSIONS: Our results confirm that there is an imbalance in the DNA methylation in MDS, influencing the development of chromosomal abnormalities which may be associated with the low expression of DNA polymerases with translesion synthesis polymerases activity.


Subject(s)
Chromosome Aberrations , DNA Methylation , DNA-Directed DNA Polymerase/genetics , Epigenesis, Genetic , Myelodysplastic Syndromes/genetics , 5-Methylcytosine/analogs & derivatives , 5-Methylcytosine/metabolism , Adolescent , Adult , Aged , Aged, 80 and over , Biopsy , DNA-Directed DNA Polymerase/metabolism , Female , Humans , Immunohistochemistry , Karyotyping , Male , Middle Aged , Myelodysplastic Syndromes/enzymology , Real-Time Polymerase Chain Reaction , Young Adult
14.
Viruses ; 13(11)2021 10 30.
Article in English | MEDLINE | ID: mdl-34835000

ABSTRACT

Using a broad-range nested PCR assay targeting the DNA-dependent DNA polymerase (pol) gene, we detected adenoviruses in 17 (20.48%) out of 83 fecal samples from small Indian mongooses (Urva auropunctata) on the Caribbean island of St. Kitts. All 17 PCR amplicons were sequenced for the partial pol gene (~300 bp, hereafter referred to as Mon sequences). Fourteen of the 17 Mon sequences shared maximum homology (98.3-99.6% and 97-98.9% nucleotide (nt) and deduced amino acid (aa) sequence identities, respectively) with that of bovine adenovirus-6 (species Bovine atadenovirus E). Mongoose-associated adenovirus Mon-39 was most closely related (absolute nt and deduced aa identities) to an atadenovirus from a tropical screech owl. Mon-66 shared maximum nt and deduced aa identities of 69% and 71.4% with those of atadenoviruses from a spur-thighed tortoise and a brown anole lizard, respectively. Phylogenetically, Mon-39 and Mon-66 clustered within clades that were predominated by atadenoviruses from reptiles, indicating a reptilian origin of these viruses. Only a single mongoose-associated adenovirus, Mon-34, was related to the genus Mastadenovirus. However, phylogenetically, Mon-34 formed an isolated branch, distinct from other mastadenoviruses. Since the fecal samples were collected from apparently healthy mongooses, we could not determine whether the mongoose-associated adenoviruses infected the host. On the other hand, the phylogenetic clustering patterns of the mongoose-associated atadenoviruses pointed more towards a dietary origin of these viruses. Although the present study was based on partial pol sequences (~90 aa), sequence identities and phylogenetic analysis suggested that Mon-34, Mon-39, and Mon-66 might represent novel adenoviruses. To our knowledge, this is the first report on the detection and molecular characterization of adenoviruses from the mongoose.


Subject(s)
Adenoviridae/classification , Adenoviridae/genetics , Adenoviridae/isolation & purification , Herpestidae/virology , Adenoviridae Infections/veterinary , Adenoviridae Infections/virology , Amino Acid Sequence , Animals , Atadenovirus/classification , Atadenovirus/genetics , Atadenovirus/isolation & purification , DNA-Directed DNA Polymerase , Feces/virology , Lizards/virology , Mastadenovirus/classification , Mastadenovirus/genetics , Mastadenovirus/isolation & purification , Phylogeny , Polymerase Chain Reaction , Turtles/virology , West Indies
15.
Sci Rep ; 11(1): 20582, 2021 10 18.
Article in English | MEDLINE | ID: mdl-34663822

ABSTRACT

PrimPol is a novel Primase-Polymerase that synthesizes RNA and DNA primers de novo and extents from these primers as a DNA polymerase. Animal PrimPol is involved in nuclear and mitochondrial DNA replication by virtue of its translesion DNA synthesis (TLS) and repriming activities. Here we report that the plant model Arabidopsis thaliana encodes a functional PrimPol (AtPrimPol). AtPrimPol is a low fidelity and a TLS polymerase capable to bypass DNA lesions, like thymine glycol and abasic sites, by incorporating directly across these lesions or by skipping them. AtPrimPol is also an efficient primase that preferentially recognizes the single-stranded 3'-GTCG-5' DNA sequence, where the 3'-G is cryptic. AtPrimPol is the first DNA polymerase that localizes in three cellular compartments: nucleus, mitochondria, and chloroplast. In vitro, AtPrimPol synthesizes primers that are extended by the plant organellar DNA polymerases and this reaction is regulated by organellar single-stranded binding proteins. Given the constant exposure of plants to endogenous and exogenous DNA-damaging agents and the enzymatic capabilities of lesion bypass and re-priming of AtPrimPol, we postulate a predominant role of this enzyme in avoiding replication fork collapse in all three plant genomes, both as a primase and as a TLS polymerase.


Subject(s)
Arabidopsis Proteins/metabolism , DNA Primase/metabolism , DNA-Directed DNA Polymerase/metabolism , Arabidopsis/metabolism , Cell Nucleus/metabolism , DNA/metabolism , DNA Damage/physiology , DNA Repair/physiology , DNA Replication/physiology , DNA, Single-Stranded/metabolism , Mitochondria/metabolism , Multifunctional Enzymes/metabolism
16.
Biosystems ; 206: 104442, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33984392

ABSTRACT

Structural relations in an evolutionary context of polymerases is crucial to gain insights into the transition from an RNA world to a Ribonucleoprotein world. Herein, we present a structural proximity tree for the polymerases, from which we observe that the enzymes that have RNA as substrate are more homogeneous than the group with DNA as substrate. The homogeneity observed in enzymes with RNA as a substrate, may be because they performed all steps in information processing. In this sense, the emergence of the DNA molecule posed new challenges to the biological systems, where several parts of the informational flow were individualized by the emergence of enzymes for each step. From the data presented, we propose a polymerase diversification model, in which we have RNA-dependent RNA polymerases as an ancestor and all other polymerases diverged directly from this group by a radiation process.


Subject(s)
DNA-Directed DNA Polymerase/physiology , DNA-Directed RNA Polymerases/physiology , DNA/physiology , Evolution, Molecular , RNA/physiology , Animals , Humans , Models, Molecular
17.
Toxicol In Vitro ; 74: 105158, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33823240

ABSTRACT

BACKGROUND: Leishmaniasis is a parasitosis with a wide incidence in developing countries. The drugs which are indicated for the treatment of this infection usually are able to promote high toxicity. PURPOSE: A combination of limonene and carvacrol, monoterpenes present in plants with antiparasitic activity may constitute an alternative for the treatment of these diseases. METHODS: In this study, the antileishmania activity against Leishmania major, cytotoxicity tests, assessment of synergism, parasite membrane damage tests as well as molecular docking and immunomodulatory activity of limonene-carvacrol (Lim-Car) combination were evaluated. RESULTS: The Lim-Car combination (5:0; 1:1; 1:4; 2:3; 3:2; 4:1 and 0:5) showed potential antileishmania activity, with mean inhibitory concentration (IC50) ranging from 5.8 to 19.0 µg.mL-1. They demonstrated mean cytotoxic concentration (CC50) ranging from 94.1 to 176.0 µg.mL-1, and did not show significant hemolytic effect. In the investigation of synergistic interaction, the 4:1 Lim-Car combination showed better fractional inhibitory concentration (FIC) index as well as better activity on amastigotes and IS. The samples caused considerable damage to the parasite membrane this monoterpene activity seems to be more related to Trypanothione Reductase (TryR) enzyme interaction, demonstrated in the molecular docking assay. In addition, the 4:1 Lim-Car combination stimulated macrophage activation, and showed at was the best association, with reduction of infection and infectivity of parasitized macrophages. CONCLUSION: The 4:1 Lim-Car combination appears to be a promising candidate as a monotherapeutic antileishmania agent.


Subject(s)
Antiprotozoal Agents/toxicity , Cymenes/toxicity , Immunologic Factors/toxicity , Leishmania major/drug effects , Limonene/toxicity , Animals , Cell Survival/drug effects , DNA-Directed DNA Polymerase/metabolism , Drug Combinations , Drug Synergism , Erythrocytes/drug effects , Hemolysis/drug effects , Lysosomes/drug effects , Macrophages/drug effects , Macrophages/parasitology , Molecular Docking Simulation , NADH, NADPH Oxidoreductases/metabolism , Protozoan Proteins/metabolism , Sheep
18.
Genes (Basel) ; 11(11)2020 11 19.
Article in English | MEDLINE | ID: mdl-33228188

ABSTRACT

The majority of DNA polymerases (DNAPs) are specialized enzymes with specific roles in DNA replication, translesion DNA synthesis (TLS), or DNA repair. The enzymatic characteristics to perform accurate DNA replication are in apparent contradiction with TLS or DNA repair abilities. For instance, replicative DNAPs incorporate nucleotides with high fidelity and processivity, whereas TLS DNAPs are low-fidelity polymerases with distributive nucleotide incorporation. Plant organelles (mitochondria and chloroplast) are replicated by family-A DNA polymerases that are both replicative and TLS DNAPs. Furthermore, plant organellar DNA polymerases from the plant model Arabidopsis thaliana (AtPOLIs) execute repair of double-stranded breaks by microhomology-mediated end-joining and perform Base Excision Repair (BER) using lyase and strand-displacement activities. AtPOLIs harbor three unique insertions in their polymerization domain that are associated with TLS, microhomology-mediated end-joining (MMEJ), strand-displacement, and lyase activities. We postulate that AtPOLIs are able to execute those different functions through the acquisition of these novel amino acid insertions, making them multifunctional enzymes able to participate in DNA replication and DNA repair.


Subject(s)
DNA Repair/physiology , DNA-Directed DNA Polymerase/genetics , Organelles/enzymology , Plant Proteins/genetics , Amino Acids/genetics , Amino Acids/metabolism , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , DNA End-Joining Repair/physiology , DNA-Directed DNA Polymerase/metabolism , Evolution, Molecular , Plant Proteins/metabolism
19.
Front Cell Infect Microbiol ; 10: 570493, 2020.
Article in English | MEDLINE | ID: mdl-33117729

ABSTRACT

Leishmaniasis and trypanosomiasis are largely neglected diseases prevailing in tropical and subtropical conditions. These are an arthropod-borne zoonosis that affects humans and some animals and is caused by infection with protozoan of the genera Leishmania and Trypanosoma, respectively. These parasites present high genomic plasticity and are able to adapt themselves to adverse conditions like the attack of host cells or toxicity induced by drug exposure. Different mechanisms allow these adapting responses induced by stress, such as mutation, chromosomal rearrangements, establishment of mosaic ploidies, and gene expansion. Here we describe how a subset of genes encoding for DNA polymerases implied in repairing/translesion (TLS) synthesis are duplicated in some pathogenic species of the Trypanosomatida order and a free-living species from the Bodonida order. These enzymes are both able to repair DNA, but are also error-prone under certain situations. We discuss about the possibility that these enzymes can act as a source of genomic variation promoting adaptation in trypanosomatids.


Subject(s)
Leishmania , Leishmaniasis , Trypanosoma , Trypanosomiasis , Animals , DNA-Directed DNA Polymerase , Humans , Leishmania/genetics , Trypanosoma/genetics
20.
Mol Genet Genomic Med ; 8(11): e1491, 2020 11.
Article in English | MEDLINE | ID: mdl-32935933

ABSTRACT

BACKGROUND: Xeroderma pigmentosum (XP) is a rare, genetically heterogeneous, autosomal recessive disorder caused by defects in the genes involved in repairing DNA damaged by ultraviolet radiation. These defects lead to a propensity to develop skin cancer at early ages as a hallmark, and progressive neurological degeneration can be observed in around 25% of patients. Eight clinically heterogeneous groups have been identified so far (XPA to XPG and XPV). Xeroderma pigmentosum variant type (XPV) is associated with pathogenic variants in POLH on chromosome 6, and no neurological dysfunction has been seen in these cases. However, on the same chromosome, it has been shown that TREM2 is associated with some types of dementia, particularly in patients with a behavioral variant frontotemporal phenotype. METHODS: Gene mutational analysis was performed by whole-exome sequencing. RESULTS: We report a case of a Caucasian woman with XP that developed behavioral and cognitive impairment at age 37. Whole-exome sequencing identified novel homozygous variants in POLH c.638C>G (p.Ser213*) and TREM2 c.154C>T (p.Arg52Cys), classifying the patient as XPV and suggesting that her frontotemporal dementia phenotype could be related to the variant in TREM2. CONCLUSION: This paper describes a rare case of a patient with two novel variants in the same chromosome associated with XPV and early-onset dementia.


Subject(s)
DNA-Directed DNA Polymerase/genetics , Dementia/genetics , Membrane Glycoproteins/genetics , Receptors, Immunologic/genetics , Xeroderma Pigmentosum/genetics , Adult , Dementia/pathology , Female , Homozygote , Humans , Mutation, Missense , Phenotype , Xeroderma Pigmentosum/pathology
SELECTION OF CITATIONS
SEARCH DETAIL