Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 343
Filter
1.
Parasit Vectors ; 17(1): 270, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38926834

ABSTRACT

BACKGROUND: Cache Valley virus (CVV) is an understudied Orthobunyavirus with a high spillover transmission potential due to its wide geographical distribution and large number of associated hosts and vectors. Although CVV is known to be widely distributed throughout North America, no studies have explored its geography or employed computational methods to explore the mammal and mosquito species likely participating in the CVV sylvatic cycle. METHODS: We used a literature review and online databases to compile locality data for CVV and its potential vectors and hosts. We linked location data points with climatic data via ecological niche modeling to estimate the geographical range of CVV and hotspots of transmission risk. We used background similarity tests to identify likely CVV mosquito vectors and mammal hosts to detect ecological signals from CVV sylvatic transmission. RESULTS: CVV distribution maps revealed a widespread potential viral occurrence throughout North America. Ecological niche models identified areas with climate, vectors, and hosts suitable to maintain CVV transmission. Our background similarity tests identified Aedes vexans, Culiseta inornata, and Culex tarsalis as the most likely vectors and Odocoileus virginianus (white-tailed deer) as the most likely host sustaining sylvatic transmission. CONCLUSIONS: CVV has a continental-level, widespread transmission potential. Large areas of North America have suitable climate, vectors, and hosts for CVV emergence, establishment, and spread. We identified geographical hotspots that have no confirmed CVV reports to date and, in view of CVV misdiagnosis or underreporting, can guide future surveillance to specific localities and species.


Subject(s)
Bunyamwera virus , Ecosystem , Mosquito Vectors , Animals , Mosquito Vectors/virology , North America/epidemiology , Culicidae/virology , Bunyaviridae Infections/transmission , Bunyaviridae Infections/epidemiology , Bunyaviridae Infections/virology , Geography , Culex/virology , Aedes/virology , Mammals/virology , Deer/virology , Humans , Ecology
2.
J Wildl Dis ; 60(3): 670-682, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38722548

ABSTRACT

Hemorrhagic disease (HD) of deer is caused by epizootic hemorrhagic disease virus (EHDV) or bluetongue virus (BTV) and is considered one of the most important viral diseases of white-tailed deer (Odocoileus virginianus). Despite evidence of changing patterns of HD in the northeastern and upper midwestern US, the historical and current patterns of HD in the Great Plains remain poorly described. We used results from an annual survey documenting HD mortality to characterize historic and current patterns of HD in the northern and central Great Plains (North Dakota, South Dakota, Nebraska, Kansas, and Oklahoma), US, between 1982 and 2020. Further, we assessed temporal change using linear regression to determine change in annual reporting intensity (percentage of counties in a state with reported HD) and change in reporting frequency (the number of years a county or state reported HD) during each decade between 1982 and 2020. Across the 38-yr study period, HD reports expanded northeast across latitude and longitude. Intensity of HD reports significantly increased during this period for three (North Dakota, South Dakota, Kansas) of five states examined. Frequency of reports also increased for all five states. Such changes in northern latitudes might lead to increased deer mortality in regions where HD epizootics have been historically less frequent. Understanding how patterns of HD are changing on the landscape is important when considering future deer management in the face of other mortality factors.


Subject(s)
Deer , Hemorrhagic Disease Virus, Epizootic , Reoviridae Infections , Animals , Deer/virology , Reoviridae Infections/veterinary , Reoviridae Infections/epidemiology , Reoviridae Infections/mortality , North Dakota/epidemiology , South Dakota/epidemiology
3.
Sci Rep ; 14(1): 11171, 2024 05 15.
Article in English | MEDLINE | ID: mdl-38750049

ABSTRACT

White-tailed deer (Odocoileus virginianus) have emerged as a reservoir host for SARS-CoV-2 given their susceptibility to infection and demonstrated high rates of seroprevalence and infection across the United States. As SARS-CoV-2 circulates within free-ranging white-tailed deer populations, there is the risk of transmission to other wildlife species and even back to the human population. The goal of this study was to determine the susceptibility, shedding, and immune response of North American elk (Cervus elaphus canadensis) to experimental infection with SARS-CoV-2, to determine if another wide-ranging cervid species could potentially serve as a reservoir host for the virus. Here we demonstrate that while North American elk do not develop clinical signs of disease, they do develop a neutralizing antibody response to infection, suggesting the virus is capable of replicating in this mammalian host. Additionally, we demonstrate SARS-CoV-2 RNA presence in the medial retropharyngeal lymph nodes of infected elk three weeks after experimental infection. Consistent with previous observations in humans, these data may highlight a mechanism of viral persistence for SARS-CoV-2 in elk.


Subject(s)
Antibodies, Neutralizing , Antibodies, Viral , COVID-19 , Deer , RNA, Viral , SARS-CoV-2 , Animals , Deer/virology , SARS-CoV-2/genetics , SARS-CoV-2/physiology , COVID-19/virology , RNA, Viral/genetics , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , Antibodies, Viral/immunology , Virus Shedding , Disease Reservoirs/virology , Female
4.
BMC Vet Res ; 20(1): 195, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38741095

ABSTRACT

Small ruminant lentiviruses (SRLVs) are widespread and infect goats and sheep. Several reports also suggest that SRLVs can infect wild ruminants. The presence of specific antibodies against SRLVs has been identified in wild ruminants from Poland, but no studies have been conducted to detect proviral DNA of SRLVs in these animals. Therefore, the purpose of this study was to examine samples from Polish wild ruminants to determine whether these animals can serve as reservoirs of SRLVs under natural conditions. A total of 314 samples were tested from red deer (n = 255), roe deer (n = 52) and fallow deer (n = 7) using nested real-time PCR. DNA from positive real-time PCR samples was subsequently used to amplify a CA fragment (625 bp) of the gag gene, a 1.2 kb fragment of the pol gene and an LTR-gag fragment. Three samples (0.95%) were positive according to nested real-time PCR using primers and probe specific for CAEV (SRLV group B). All the samples were negative for the primers and probe specific for MVV (SRLV A group). Only SRLV LTR-gag sequences were obtained from two red deer. Phylogenetic analysis revealed that these sequences were more closely related to CAEV than to MVV. Our results revealed that deer can carry SRLV proviral sequences and therefore may play a role in the epidemiology of SRLVs. To our knowledge, this is the first study describing SRLV sequences from red deer.


Subject(s)
DNA, Viral , Deer , Lentivirus Infections , Proviruses , Animals , Deer/virology , Poland/epidemiology , Proviruses/genetics , Lentivirus Infections/veterinary , Lentivirus Infections/virology , Lentivirus Infections/epidemiology , DNA, Viral/genetics , Lentivirus/isolation & purification , Lentivirus/genetics , Lentivirus/classification , Phylogeny , Real-Time Polymerase Chain Reaction/veterinary
5.
Viruses ; 16(5)2024 05 11.
Article in English | MEDLINE | ID: mdl-38793647

ABSTRACT

(1) Background: Epizootic hemorrhagic disease virus (EHDV) and bluetongue virus (BTV) are orbiviruses that cause hemorrhagic disease (HD) with significant economic and population health impacts on domestic livestock and wildlife. In the United States, white-tailed deer (Odocoileus virginianus) are particularly susceptible to these viruses and are a frequent blood meal host for various species of Culicoides biting midges (Diptera: Ceratopogonidae) that transmit orbiviruses. The species of Culicoides that transmit EHDV and BTV vary between regions, and larval habitats can differ widely between vector species. Understanding how midges are distributed across landscapes can inform HD virus transmission risk on a local scale, allowing for improved animal management plans to avoid suspected high-risk areas or target these areas for insecticide control. (2) Methods: We used occupancy modeling to estimate the abundance of gravid (egg-laden) and parous (most likely to transmit the virus) females of two putative vector species, C. stellifer and C. venustus, and one species, C. haematopotus, that was not considered a putative vector. We developed a universal model to determine habitat preferences, then mapped a predicted weekly midge abundance during the HD transmission seasons in 2015 (July-October) and 2016 (May-October) in Florida. (3) Results: We found differences in habitat preferences and spatial distribution between the parous and gravid states for C. haematopotus and C. stellifer. Gravid midges preferred areas close to water on the border of well and poorly drained soil. They also preferred mixed bottomland hardwood habitats, whereas parous midges appeared less selective of habitat. (4) Conclusions: If C. stellifer is confirmed as an EHDV vector in this region, the distinct spatial and abundance patterns between species and physiological states suggest that the HD risk is non-random across the study area.


Subject(s)
Animals, Wild , Bluetongue virus , Ceratopogonidae , Deer , Hemorrhagic Disease Virus, Epizootic , Insect Vectors , Reoviridae Infections , Animals , Ceratopogonidae/virology , Ceratopogonidae/physiology , Hemorrhagic Disease Virus, Epizootic/physiology , Deer/virology , Insect Vectors/virology , Insect Vectors/physiology , Bluetongue virus/physiology , Animals, Wild/virology , Reoviridae Infections/transmission , Reoviridae Infections/veterinary , Reoviridae Infections/virology , Ecosystem , Seasons , Farms , Birds/virology
6.
Proc Natl Acad Sci U S A ; 121(19): e2319400121, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38687787

ABSTRACT

During their blood-feeding process, ticks are known to transmit various viruses to vertebrates, including humans. Recent viral metagenomic analyses using next-generation sequencing (NGS) have revealed that blood-feeding arthropods like ticks harbor a large diversity of viruses. However, many of these viruses have not been isolated or cultured, and their basic characteristics remain unknown. This study aimed to present the identification of a difficult-to-culture virus in ticks using NGS and to understand its epidemic dynamics using molecular biology techniques. During routine tick-borne virus surveillance in Japan, an unknown flaviviral sequence was detected via virome analysis of host-questing ticks. Similar viral sequences have been detected in the sera of sika deer and wild boars in Japan, and this virus was tentatively named the Saruyama virus (SAYAV). Because SAYAV did not propagate in any cultured cells tested, single-round infectious virus particles (SRIP) were generated based on its structural protein gene sequence utilizing a yellow fever virus-based replicon system to understand its nationwide endemic status. Seroepidemiological studies using SRIP as antigens have demonstrated the presence of neutralizing antibodies against SAYAV in sika deer and wild boar captured at several locations in Japan, suggesting that SAYAV is endemic throughout Japan. Phylogenetic analyses have revealed that SAYAV forms a sister clade with the Orthoflavivirus genus, which includes important mosquito- and tick-borne pathogenic viruses. This shows that SAYAV evolved into a lineage independent of the known orthoflaviviruses. This study demonstrates a unique approach for understanding the epidemiology of uncultured viruses by combining viral metagenomics and pseudoinfectious viral particles.


Subject(s)
Deer , Flavivirus , Metagenomics , Ticks , Animals , Metagenomics/methods , Japan/epidemiology , Deer/virology , Flavivirus/genetics , Flavivirus/isolation & purification , Flavivirus/classification , Ticks/virology , Phylogeny , Virome/genetics , Virion/genetics , Sus scrofa/virology , High-Throughput Nucleotide Sequencing , Humans , Seroepidemiologic Studies , Genome, Viral
7.
Vector Borne Zoonotic Dis ; 24(6): 390-395, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38386998

ABSTRACT

Retrospective serological and case diagnostic data of endemic bluetongue virus (BTV) and epizootic hemorrhagic disease virus (EHDV) provide evidence of viral transmission among livestock and wildlife from 2016 in Kansas and Nebraska. Serological testing of mature cattle in nine distinct regional zones of Kansas revealed 76% to 100% had detectable antibodies to BTV and/or EHDV. Specimens tested in the Kansas Veterinary Diagnostic Laboratory (55 submissions) were 51% test positive for antibodies to BTV and/or EHDV. Specimens tested in the Nebraska Veterinary Diagnostic Center (283 submissions) were 25% test positive for antibodies to BTV and/or EHDV. Low disease incidence in white-tailed deer and other susceptible wild ungulates was observed during 2016. However, there were no confirmed reports of disease in livestock in either state. The reasons for emergence of significant clinical disease in livestock and wildlife populations remain undefined.


Subject(s)
Cattle Diseases , Reoviridae Infections , Animals , Kansas/epidemiology , Nebraska/epidemiology , Reoviridae Infections/veterinary , Reoviridae Infections/epidemiology , Reoviridae Infections/transmission , Cattle Diseases/transmission , Cattle Diseases/epidemiology , Cattle Diseases/virology , Cattle , Hemorrhagic Disease Virus, Epizootic/isolation & purification , Bluetongue/epidemiology , Bluetongue/transmission , Bluetongue virus , Animals, Wild , Deer/virology , Antibodies, Viral/blood , Retrospective Studies , Orbivirus/isolation & purification
8.
Sci Rep ; 12(1): 12094, 2022 07 15.
Article in English | MEDLINE | ID: mdl-35840592

ABSTRACT

The emergence of a novel pathogen in a susceptible population can cause rapid spread of infection. High prevalence of SARS-CoV-2 infection in white-tailed deer (Odocoileus virginianus) has been reported in multiple locations, likely resulting from several human-to-deer spillover events followed by deer-to-deer transmission. Knowledge of the risk and direction of SARS-CoV-2 transmission between humans and potential reservoir hosts is essential for effective disease control and prioritisation of interventions. Using genomic data, we reconstruct the transmission history of SARS-CoV-2 in humans and deer, estimate the case finding rate and attempt to infer relative rates of transmission between species. We found no evidence of direct or indirect transmission from deer to human. However, with an estimated case finding rate of only 4.2%, spillback to humans cannot be ruled out. The extensive transmission of SARS-CoV-2 within deer populations and the large number of unsampled cases highlights the need for active surveillance at the human-animal interface.


Subject(s)
COVID-19 , Deer , SARS-CoV-2 , Viral Zoonoses , Animals , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19/transmission , COVID-19/veterinary , Deer/virology , Environmental Monitoring , Humans , Risk Assessment , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , Viral Zoonoses/epidemiology , Viral Zoonoses/transmission , Viral Zoonoses/virology
10.
J Virol ; 96(8): e0025022, 2022 04 27.
Article in English | MEDLINE | ID: mdl-35352999

ABSTRACT

In late 2019, a novel coronavirus began circulating within humans in central China. It was designated SARS-CoV-2 because of its genetic similarities to the 2003 SARS coronavirus (SARS-CoV). Now that SARS-CoV-2 has spread worldwide, there is a risk of it establishing new animal reservoirs and recombination with native circulating coronaviruses. To screen local animal populations in the United States for exposure to SARS-like coronaviruses, we developed a serological assay using the receptor binding domain (RBD) from SARS-CoV-2. SARS-CoV-2's RBD is antigenically distinct from common human and animal coronaviruses, allowing us to identify animals previously infected with SARS-CoV or SARS-CoV-2. Using an indirect enzyme-linked immunosorbent assay (ELISA) for SARS-CoV-2's RBD, we screened serum from wild and domestic animals for the presence of antibodies against SARS-CoV-2's RBD. Surprisingly prepandemic feline serum samples submitted to the University of Tennessee Veterinary Hospital were ∼50% positive for anti-SARS RBD antibodies. Some of these samples were serologically negative for feline coronavirus (FCoV), raising the question of the etiological agent generating anti-SARS-CoV-2 RBD cross-reactivity. We also identified several white-tailed deer from South Carolina with anti-SARS-CoV-2 antibodies. These results are intriguing, as cross-reactive antibodies toward SARS-CoV-2 RBD have not been reported to date. The etiological agent responsible for seropositivity was not readily apparent, but finding seropositive cats prior to the current SARS-CoV-2 pandemic highlights our lack of information about circulating coronaviruses in other species. IMPORTANCE We report cross-reactive antibodies from prepandemic cats and postpandemic South Carolina white-tailed deer that are specific for that SARS-CoV RBD. There are several potential explanations for this cross-reactivity, each with important implications to coronavirus disease surveillance. Perhaps the most intriguing possibility is the existence and transmission of an etiological agent (such as another coronavirus) with similarity to SARS-CoV-2's RBD region. However, we lack conclusive evidence of prepandemic transmission of a SARS-like virus. Our findings provide impetus for the adoption of a One Health Initiative focusing on infectious disease surveillance of multiple animal species to predict the next zoonotic transmission to humans and future pandemics.


Subject(s)
Antibodies, Viral , Cats , Deer , Spike Glycoprotein, Coronavirus , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/diagnosis , COVID-19/veterinary , Cats/virology , Cross Reactions/immunology , Deer/virology , Severe acute respiratory syndrome-related coronavirus/immunology , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/metabolism , Viral Zoonoses/diagnosis , Viral Zoonoses/virology
11.
Viruses ; 14(2)2022 01 27.
Article in English | MEDLINE | ID: mdl-35215845

ABSTRACT

Endogenous retroviruses (ERVs) are the remnants of past retroviral infections that once invaded the host's germline and were vertically transmitted. ERV sequences have been reported in mammals, but their distribution and diversity in cervids are unclear. Using next-generation sequencing, we identified a nearly complete genome of an endogenous betaretrovirus in fallow deer (Dama dama). Further genomic analysis showed that this provirus, tentatively named cervid endogenous betaretrovirus 1 (CERV ß1), has typical betaretroviral genome features (gag-pro-pol-env) and the betaretrovirus-specific dUTPase domain. In addition, CERV ß1 pol sequences were detected by PCR in the six non-native deer species with wild populations in Australia. Phylogenetic analyses demonstrated that CERV ß1 sequences from subfamily Cervinae clustered as sister taxa to ERV-like sequences in species of subfamily Muntiacinae. These findings, therefore, suggest that CERV ß1 endogenisation occurred after the split of these two subfamilies (between 3.3 and 5 million years ago). Our results provide important insights into the evolution of betaretroviruses in cervids.


Subject(s)
Betaretrovirus/isolation & purification , Deer/virology , Endogenous Retroviruses/isolation & purification , Animals , Animals, Wild/genetics , Animals, Wild/virology , Australia , Betaretrovirus/genetics , Deer/genetics , Endogenous Retroviruses/genetics , Evolution, Molecular , Genome , Genome, Viral , Open Reading Frames , Phylogeny , Proviruses/genetics
12.
Viruses ; 14(2)2022 01 31.
Article in English | MEDLINE | ID: mdl-35215891

ABSTRACT

Tick-borne encephalitis virus (TBEV) is the causative agent of tick-borne encephalitis (TBE), a severe zoonosis occurring in the Palearctic region mainly transmitted through Ixodes ticks. In Italy, TBEV is restricted to the north-eastern part of the country. This report describes for the first time a case of clinical TBE in a roe deer (Capreolus capreolus L.). The case occurred in the Belluno province, Veneto region, an area endemic for TBEV. The affected roe deer showed ataxia, staggering movements, muscle tremors, wide-base stance of the front limbs, repetitive movements of the head, persistent teeth grinding, hypersalivation and prolonged recumbency. An autopsy revealed no significant lesions to explain the neurological signs. TBEV RNA was detected in the brain by real-time RT-PCR, and the nearly complete viral genome (10,897 nucleotides) was sequenced. Phylogenetic analysis of the gene encoding the envelope protein revealed a close relationship to TBEV of the European subtype, and 100% similarity with a partial sequence (520 nucleotides) of a TBEV found in ticks in the bordering Trento province. The histological examination of the midbrain revealed lymphohistiocytic encephalitis, satellitosis and microgliosis, consistent with a viral etiology. Other viral etiologies were ruled out by metagenomic analysis of the brain. This report underlines, for the first time, the occurrence of clinical encephalitic manifestations due to TBEV in a roe deer, suggesting that this pathogen should be included in the frame of differential diagnoses in roe deer with neurologic disease.


Subject(s)
Deer/virology , Encephalitis Viruses, Tick-Borne/isolation & purification , Encephalitis, Tick-Borne/veterinary , Animals , Arachnid Vectors/physiology , Arachnid Vectors/virology , Encephalitis Viruses, Tick-Borne/classification , Encephalitis Viruses, Tick-Borne/genetics , Encephalitis, Tick-Borne/pathology , Encephalitis, Tick-Borne/virology , Italy , Ixodes/physiology , Ixodes/virology , Phylogeny
13.
Parasit Vectors ; 15(1): 36, 2022 Jan 24.
Article in English | MEDLINE | ID: mdl-35073977

ABSTRACT

BACKGROUND: Aedes albopictus and Aedes japonicus, two invasive mosquito species in the United States, are implicated in the transmission of arboviruses. Studies have shown interactions of these two mosquito species with a variety of vertebrate hosts; however, regional differences exist and may influence their contribution to arbovirus transmission. METHODS: We investigated the distribution, abundance, host interactions, and West Nile virus infection prevalence of Ae. albopictus and Ae. japonicus by examining Pennsylvania mosquito and arbovirus surveillance data for the period between 2010 and 2018. Mosquitoes were primarily collected using gravid traps and BG-Sentinel traps, and sources of blood meals were determined by analyzing mitochondrial cytochrome b gene sequences amplified in PCR assays. RESULTS: A total of 10,878,727 female mosquitoes representing 51 species were collected in Pennsylvania over the 9-year study period, with Ae. albopictus and Ae. japonicus representing 4.06% and 3.02% of all collected mosquitoes, respectively. Aedes albopictus was distributed in 39 counties and Ae. japonicus in all 67 counties, and the abundance of these species increased between 2010 and 2018. Models suggested an increase in the spatial extent of Ae. albopictus during the study period, while that of Ae. japonicus remained unchanged. We found a differential association between the abundance of the two mosquito species and environmental conditions, percent development, and median household income. Of 110 Ae. albopictus and 97 Ae. japonicus blood meals successfully identified to species level, 98% and 100% were derived from mammalian hosts, respectively. Among 12 mammalian species, domestic cats, humans, and white-tailed deer served as the most frequent hosts for the two mosquito species. A limited number of Ae. albopictus acquired blood meals from avian hosts solely or in mixed blood meals. West Nile virus was detected in 31 pools (n = 3582 total number of pools) of Ae. albopictus and 12 pools (n = 977 total pools) of Ae. japonicus. CONCLUSIONS: Extensive distribution, high abundance, and frequent interactions with mammalian hosts suggest potential involvement of Ae. albopictus and Ae. japonicus in the transmission of human arboviruses including Cache Valley, Jamestown Canyon, La Crosse, dengue, chikungunya, and Zika should any of these viruses become prevalent in Pennsylvania. Limited interaction with avian hosts suggests that Ae. albopictus might occasionally be involved in transmission of arboviruses such as West Nile in the region.


Subject(s)
Aedes , Arbovirus Infections/transmission , Feeding Behavior , Mosquito Vectors , Spatio-Temporal Analysis , Aedes/physiology , Aedes/virology , Animals , Arboviruses , Birds/virology , Chikungunya Fever/transmission , Deer/virology , Disease Reservoirs/virology , Humans , Introduced Species , Mammals/virology , Mosquito Vectors/physiology , Mosquito Vectors/virology , Pennsylvania , Population Density , Species Specificity , West Nile virus , Zika Virus , Zika Virus Infection/transmission , Zoonoses/virology
14.
Proc Natl Acad Sci U S A ; 119(6)2022 02 08.
Article in English | MEDLINE | ID: mdl-35078920

ABSTRACT

Many animal species are susceptible to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and could act as reservoirs; however, transmission in free-living animals has not been documented. White-tailed deer, the predominant cervid in North America, are susceptible to SARS-CoV-2 infection, and experimentally infected fawns can transmit the virus. To test the hypothesis that SARS-CoV-2 is circulating in deer, 283 retropharyngeal lymph node (RPLN) samples collected from 151 free-living and 132 captive deer in Iowa from April 2020 through January of 2021 were assayed for the presence of SARS-CoV-2 RNA. Ninety-four of the 283 (33.2%) deer samples were positive for SARS-CoV-2 RNA as assessed by RT-PCR. Notably, following the November 2020 peak of human cases in Iowa, and coinciding with the onset of winter and the peak deer hunting season, SARS-CoV-2 RNA was detected in 80 of 97 (82.5%) RPLN samples collected over a 7-wk period. Whole genome sequencing of all 94 positive RPLN samples identified 12 SARS-CoV-2 lineages, with B.1.2 (n = 51; 54.5%) and B.1.311 (n = 19; 20%) accounting for ∼75% of all samples. The geographic distribution and nesting of clusters of deer and human lineages strongly suggest multiple human-to-deer transmission events followed by subsequent deer-to-deer spread. These discoveries have important implications for the long-term persistence of the SARS-CoV-2 pandemic. Our findings highlight an urgent need for a robust and proactive "One Health" approach to obtain enhanced understanding of the ecology, molecular evolution, and dissemination of SARS-CoV-2.


Subject(s)
COVID-19/transmission , Deer/virology , SARS-CoV-2/isolation & purification , Zoonoses/virology , Animals , COVID-19/virology , Disease Reservoirs/virology , Humans , SARS-CoV-2/genetics
15.
Food Microbiol ; 101: 103890, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34579849

ABSTRACT

Seroprevalence data for Toxoplasma gondii and Hepatitis E virus (HEV) in wild boar (Sus scrofa), roe deer (Capreolus capreolus), red deer (Cervus elaphus), mouflon (Ovis aries/musimon) and chamois (Rupicapra rupicapra) hunted/culled in northern Italy were used to fit seroprevalence distributions describing the exposure and co-exposure of the species to the two pathogens. The higher proportion of T. gondii and HEV seropositive animals was observed in wild boars with point estimate seroprevalence of 49% (N = 331) and 15% (N = 326) respectively. Data allowed comparisons by area (pre-Alpine Vs Alpine environment) for roe deer, red deer and mouflons. Contrasts between the distributions describing the uncertainty in seroprevalence suggest roe deer, red deer and mouflons have higher probability of being seropositive to T. gondii in pre-Alps. When considering HEV, few seropositive animals were detected and contrasts were symmetrically centred to zero for roe deer and red deer; mouflons shown higher probability of being seropositive in Alpine environment. HEV seropositive animals also included chamois (P = 5.1%, N = 97) in the Alpine districts, confirming circulation of HEV in remote areas. Evidence of HEV and T. gondii co-exposure was limited except for wild boars where it was observed in 30 samples representing 60% of the overall HEV-positive samples. Seroprevalence data of single infection and co-infection are extremely useful to investigate circulation of zoonotic pathogens in wild animals and estimate the foodborne risk of human exposure, however, these type of data do not directly translate into the presence/absence of the pathogen in seropositive and seronegative animals. At benefit of future development of quantitative risk assessments aiming at estimating the risk of human infection/co-infection via consumption of game meat, we developed and made available an online application that allows estimating the probability of the pathogen(s) being present as a function of seroprevalence data.


Subject(s)
Deer , Hepatitis E virus , Sus scrofa , Toxoplasma , Toxoplasmosis, Animal , Animals , Animals, Wild , Coinfection/veterinary , Deer/parasitology , Deer/virology , Foodborne Diseases , Humans , Italy , Meat/parasitology , Meat/virology , Seroepidemiologic Studies , Sus scrofa/parasitology , Sus scrofa/virology , Toxoplasmosis, Animal/epidemiology
16.
Nature ; 602(7897): 481-486, 2022 02.
Article in English | MEDLINE | ID: mdl-34942632

ABSTRACT

Humans have infected a wide range of animals with SARS-CoV-21-5, but the establishment of a new natural animal reservoir has not been observed. Here we document that free-ranging white-tailed deer (Odocoileus virginianus) are highly susceptible to infection with SARS-CoV-2, are exposed to multiple SARS-CoV-2 variants from humans and are capable of sustaining transmission in nature. Using real-time PCR with reverse transcription, we detected SARS-CoV-2 in more than one-third (129 out of 360, 35.8%) of nasal swabs obtained from O. virginianus in northeast Ohio in the USA during January to March 2021. Deer in six locations were infected with three SARS-CoV-2 lineages (B.1.2, B.1.582 and B.1.596). The B.1.2 viruses, dominant in humans in Ohio at the time, infected deer in four locations. We detected probable deer-to-deer transmission of B.1.2, B.1.582 and B.1.596 viruses, enabling the virus to acquire amino acid substitutions in the spike protein (including the receptor-binding domain) and ORF1 that are observed infrequently in humans. No spillback to humans was observed, but these findings demonstrate that SARS-CoV-2 viruses have been transmitted in wildlife in the USA, potentially opening new pathways for evolution. There is an urgent need to establish comprehensive 'One Health' programmes to monitor the environment, deer and other wildlife hosts globally.


Subject(s)
Animals, Wild/virology , COVID-19/veterinary , Deer/virology , Phylogeny , SARS-CoV-2/isolation & purification , Viral Zoonoses/transmission , Viral Zoonoses/virology , Amino Acid Sequence , Amino Acid Substitution , Animals , COVID-19/epidemiology , COVID-19/transmission , Evolution, Molecular , Humans , Male , Ohio/epidemiology , One Health/trends , SARS-CoV-2/chemistry , SARS-CoV-2/classification , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Viral Zoonoses/epidemiology
17.
Viruses ; 13(12)2021 12 02.
Article in English | MEDLINE | ID: mdl-34960681

ABSTRACT

The use of high-throughput sequencing has facilitated virus discovery in wild animals and helped determine their potential threat to humans and other animals. We report the complete genome sequence of a novel picornavirus identified by next-generation sequencing in faeces from Australian fallow deer. Genomic analysis revealed that this virus possesses a typical picornavirus-like genomic organisation of 7554 nt with a single open reading frame (ORF) encoding a polyprotein of 2225 amino acids. Based on the amino acid identity comparison and phylogenetic analysis of the P1, 2C, 3CD, and VP1 regions, this novel picornavirus was closely related to but distinct from known bopiviruses detected to date. This finding suggests that deer/bopivirus could belong to a novel species within the genus Bopivirus, tentatively designated as "Bopivirus C". Epidemiological investigation of 91 deer (71 fallow, 14 sambar and 6 red deer) and 23 cattle faecal samples showed that six fallow deer and one red deer (overall prevalence 7.7%, 95% confidence interval [CI] 3.8-15.0%) tested positive, but deer/bopivirus was undetectable in sambar deer and cattle. In addition, phylogenetic and sequence analyses indicate that the same genotype is circulating in south-eastern Australia. To our knowledge, this study reports for the first time a deer-origin bopivirus and the presence of a member of genus Bopivirus in Australia. Further epidemiological and molecular studies are needed to investigate the geographic distribution and pathogenic potential of this novel Bopivirus species in other domestic and wild animal species.


Subject(s)
Animals, Wild/virology , Deer/virology , Picornaviridae Infections/veterinary , Picornaviridae/classification , Picornaviridae/genetics , Animals , Australia/epidemiology , Cattle , Cattle Diseases/epidemiology , Cattle Diseases/virology , Feces/virology , Genome, Viral , High-Throughput Nucleotide Sequencing , Phylogeny , Picornaviridae/isolation & purification , Picornaviridae Infections/epidemiology , Picornaviridae Infections/virology , Prevalence , RNA, Viral/genetics
18.
Parasit Vectors ; 14(1): 564, 2021 Nov 03.
Article in English | MEDLINE | ID: mdl-34732239

ABSTRACT

BACKGROUND: Bluetongue virus (BTV) and epizootic hemorrhagic disease virus (EHDV) are orbiviruses that can cause fatal vector-borne diseases in white-tailed deer (Odocoileus virginianus). Trapping methods for collecting potential Culicoides vectors of orbiviruses were compared to optimize surveillance studies. METHODS: The number of captured midges and the virus infection rates of midge pools were compared for dry ice-baited Centers for Disease Control and Prevention (CDC) traps with or without black light. The number of individual midges of different Culicoides species captured at different crepuscular and nocturnal periods using rotator traps also was determined. The number of species/specimens of Culicoides was measured using five different trap methods including three animal-baited methods, a CDC trap with black light, and a CDC trap with no light. RESULTS: In trial one, there was no significant difference (P = 0.37) in the proportion of BTV-infected flies caught in traps with light compared to traps without light. However, there was a significant difference (P = 0.026) for EHDV-infected flies, and 89% were captured in traps with light. In trial two, more specimens of C. debilipalpis were captured in the morning hours (06:00-08:00) than in the evening hours (18:00-20:00). For trial three, the animal-baited traps did not capture any species of Culicoides that were not captured in the CDC light traps. There was no significant difference (P = 0.22) in total specimens captured among all five trap types. CONCLUSIONS: Specimens of Culicoides infected with BTV were not repelled by light traps in the first trial, while the majority of the specimens positive for EHDV were caught in traps with light. For the second trial, specimens of C. debilipalpis were most abundant during early morning hours, and thus spray applications of insecticides for control of that species may be more effective at sunrise rather than sunset. For objective three, no animal-baited trapping method collected different species of midges when compared to the CDC traps with light, which is unlike certain studies conducted in other geographical regions.


Subject(s)
Ceratopogonidae/physiology , Deer/virology , Insect Control/methods , Insect Vectors/physiology , Reoviridae Infections/veterinary , Animals , Ceratopogonidae/virology , Insect Control/instrumentation , Insect Vectors/virology , Orbivirus/physiology , Reoviridae Infections/transmission , Reoviridae Infections/virology
19.
Proc Natl Acad Sci U S A ; 118(47)2021 11 23.
Article in English | MEDLINE | ID: mdl-34732584

ABSTRACT

Widespread human SARS-CoV-2 infections combined with human-wildlife interactions create the potential for reverse zoonosis from humans to wildlife. We targeted white-tailed deer (Odocoileus virginianus) for serosurveillance based on evidence these deer have angiotensin-converting enzyme 2 receptors with high affinity for SARS-CoV-2, are permissive to infection, exhibit sustained viral shedding, can transmit to conspecifics, exhibit social behavior, and can be abundant near urban centers. We evaluated 624 prepandemic and postpandemic serum samples from wild deer from four US states for SARS-CoV-2 exposure. Antibodies were detected in 152 samples (40%) from 2021 using a surrogate virus neutralization test. A subset of samples tested with a SARS-CoV-2 virus neutralization test showed high concordance between tests. These data suggest white-tailed deer in the populations assessed have been exposed to SARS-CoV-2.


Subject(s)
Deer/virology , SARS-CoV-2/isolation & purification , Animals , COVID-19/epidemiology , COVID-19/veterinary , Great Lakes Region/epidemiology , Seroepidemiologic Studies
20.
PLoS Negl Trop Dis ; 15(10): e0009837, 2021 10.
Article in English | MEDLINE | ID: mdl-34695125

ABSTRACT

Rift Valley fever virus (RVFV) causes morbidity and mortality in humans and domestic ungulates in sub-Saharan Africa, Egypt, and the Arabian Peninsula. Mosquito vectors transmit RVFV between vertebrates by bite, and also vertically to produce infectious progeny. Arrival of RVFV into the United States by infected mosquitoes or humans could result in significant impacts on food security, human health, and wildlife health. Elucidation of the vectors involved in the post-introduction RVFV ecology is paramount to rapid implementation of vector control. We performed vector competence experiments in which field-collected mosquitoes were orally exposed to an epidemic strain of RVFV via infectious blood meals. We targeted floodwater Aedes species known to feed on cattle, and/or deer species (Aedes melanimon Dyar, Aedes increpitus Dyar, Aedes vexans [Meigen]). Two permanent-water-breeding species were targeted as well: Culiseta inornata (Williston) of unknown competence considering United States populations, and Culex tarsalis Coquillett as a control species for which transmission efficiency is known. We tested the potential for midgut infection, midgut escape (dissemination), ovarian infection (vertical transmission), and transmission by bite (infectious saliva). Tissues were assayed by plaque assay and RT-qPCR, to quantify infectious virus and confirm virus identity. Tissue infection data were analyzed using a within-host model under a Bayesian framework to determine the probabilities of infection outcomes (midgut-limited infection, disseminated infection, etc.) while estimating barriers to infection between tissues. Permanent-water-breeding mosquitoes (Cx. tarsalis and Cs. inornata) exhibited more efficient horizontal transmission, as well as potential for vertical transmission, which is contrary to the current assumptions of RVFV ecology. Barrier estimates trended higher for Aedes spp., suggesting systemic factors in the differences between these species and Cx. tarsalis and Cs. inornata. These data indicate higher potential for vertical transmission than previously appreciated, and support the consensus of RVFV transmission including a broad range of potential vectors.


Subject(s)
Aedes/virology , Culex/virology , Mosquito Vectors/virology , Rift Valley Fever/transmission , Rift Valley fever virus/physiology , Aedes/genetics , Aedes/physiology , Animals , Cattle/virology , Colorado , Culex/physiology , Deer/virology , Mosquito Vectors/classification , Mosquito Vectors/physiology , Rift Valley Fever/virology , Rift Valley fever virus/genetics , Rift Valley fever virus/isolation & purification , Saliva/virology
SELECTION OF CITATIONS
SEARCH DETAIL
...