Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters











Publication year range
1.
BMC Vet Res ; 20(1): 342, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39095820

ABSTRACT

BACKGROUND: Porcine deltacoronavirus (PDCoV) is a swine enteropathogenic coronavirus that affects young pigs, causing vomiting, acute diarrhea, dehydration, and even death. There is growing evidence that PDCoV can undergo cross-species as well as zoonotic transmissions. Due to the frequent outbreaks of this deadly virus, early detection is essential for effective prevention and control. Therefore, developing a more convenient and reliable method for PDCoV detection is the need of the hour. RESULTS: This study utilized a high-affinity monoclonal antibody as the capture antibody and a horseradish peroxidase labeled polyclonal antibody as the detection antibody to develop an enzyme-linked immunosorbent assay (DAS-ELSA) for PDCoV detection.Both antibodies target the PDCoV nucleocapsid (N) protein. The findings of this study revealed that DAS-ELISA was highly specific to PDCoV and did not cross-react with other viruses to cause swine diarrhea. The limit of detection of the virus titer using this method was 103 TCID50/mL of PDCoV particles. The results of a parallel analysis of 239 known pig samples revealed a coincidence rate of 97.07% (κ = 0.922) using DAS-ELISA and reverse transcriptase PCR (RT-PCR). The DAS-ELISA was used to measure the one-step growth curve of PDCoV in LLC-PK cells and the tissue distribution of PDCoV in infected piglets. The study found that the DAS-ELISA was comparable in accuracy to the TCID50 method while measuring the one-step growth curve. Furthermore, the tissue distribution measured by DAS-ELISA was also consistent with the qRT-PCR method. CONCLUSION: The developed DAS-ELISA method can be conveniently used for the early clinical detection of PDCoV infection in pigs, and it may also serve as an alternative method for laboratory testing of PDCoV.


Subject(s)
Deltacoronavirus , Enzyme-Linked Immunosorbent Assay , Swine Diseases , Animals , Enzyme-Linked Immunosorbent Assay/veterinary , Enzyme-Linked Immunosorbent Assay/methods , Swine , Swine Diseases/virology , Swine Diseases/diagnosis , Swine Diseases/immunology , Deltacoronavirus/isolation & purification , Coronavirus Infections/veterinary , Coronavirus Infections/diagnosis , Coronavirus Infections/virology , Coronavirus Infections/immunology , Antibodies, Monoclonal/immunology , Sensitivity and Specificity , Antigens, Viral/analysis , Antigens, Viral/immunology , Antibodies, Viral/blood
2.
PLoS One ; 19(7): e0306532, 2024.
Article in English | MEDLINE | ID: mdl-38968319

ABSTRACT

This study evaluated the use of endemic enteric coronaviruses polymerase chain reaction (PCR)-negative testing results as an alternative approach to detect the emergence of animal health threats with similar clinical diseases presentation. This retrospective study, conducted in the United States, used PCR-negative testing results from porcine samples tested at six veterinary diagnostic laboratories. As a proof of concept, the database was first searched for transmissible gastroenteritis virus (TGEV) negative submissions between January 1st, 2010, through April 29th, 2013, when the first porcine epidemic diarrhea virus (PEDV) case was diagnosed. Secondly, TGEV- and PEDV-negative submissions were used to detect the porcine delta coronavirus (PDCoV) emergence in 2014. Lastly, encountered best detection algorithms were implemented to prospectively monitor the 2023 enteric coronavirus-negative submissions. Time series (weekly TGEV-negative counts) and Seasonal Autoregressive-Integrated Moving-Average (SARIMA) were used to control for outliers, trends, and seasonality. The SARIMA's fitted and residuals were then subjected to anomaly detection algorithms (EARS, EWMA, CUSUM, Farrington) to identify alarms, defined as weeks of higher TGEV-negativity than what was predicted by models preceding the PEDV emergence. The best-performing detection algorithms had the lowest false alarms (number of alarms detected during the baseline) and highest time to detect (number of weeks between the first alarm and PEDV emergence). The best-performing detection algorithms were CUSUM, EWMA, and Farrington flexible using SARIMA fitted values, having a lower false alarm rate and identified alarms 4 to 17 weeks before PEDV and PDCoV emergences. No alarms were identified in the 2023 enteric negative testing results. The negative-based monitoring system functioned in the case of PEDV propagating epidemic and in the presence of a concurrent propagating epidemic with the PDCoV emergence. It demonstrated its applicability as an additional tool for diagnostic data monitoring of emergent pathogens having similar clinical disease as the monitored endemic pathogens.


Subject(s)
Coronavirus Infections , Porcine epidemic diarrhea virus , Swine Diseases , Transmissible gastroenteritis virus , Animals , Swine , Transmissible gastroenteritis virus/genetics , Transmissible gastroenteritis virus/isolation & purification , Porcine epidemic diarrhea virus/isolation & purification , Porcine epidemic diarrhea virus/genetics , Coronavirus Infections/diagnosis , Coronavirus Infections/veterinary , Coronavirus Infections/virology , Coronavirus Infections/epidemiology , Swine Diseases/virology , Swine Diseases/diagnosis , Retrospective Studies , Gastroenteritis, Transmissible, of Swine/diagnosis , Gastroenteritis, Transmissible, of Swine/virology , Gastroenteritis, Transmissible, of Swine/epidemiology , Polymerase Chain Reaction/methods , Deltacoronavirus/genetics , Deltacoronavirus/isolation & purification , United States/epidemiology
3.
Microb Pathog ; 191: 106646, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38631414

ABSTRACT

Porcine viral diarrhea is a common ailment in clinical settings, causing significant economic losses to the swine industry. Notable culprits behind porcine viral diarrhea encompass transmissible gastroenteritis virus (TGEV), porcine epidemic diarrhea virus (PEDV), porcine deltacoronavirus (PDCoV), and porcine rotavirus-A (PoRVA). Co-infections involving the viruses are a common occurrence in clinical settings, thereby amplifying the complexities associated with differential diagnosis. As a consequence, it is therefore necessary to develop a method that can detect and differentiate all four porcine diarrhea viruses (TGEV, PEDV, PDCoV, and PoRVA) with a high sensitivity and specificity. Presently, polymerase chain reaction (PCR) is the go-to method for pathogen detection. In comparison to conventional PCR, TaqMan real-time PCR offers heightened sensitivity, superior specificity, and enhanced accuracy. This study aimed to develop a quadruplex real-time RT-qPCR assay, utilizing TaqMan probes, for the distinctive detection of TGEV, PEDV, PDCoV, and PoRVA. The quadruplex real-time RT-qPCR assay, as devised in this study, exhibited the capacity to avoid the detection of unrelated pathogens and demonstrated commendable specificity, sensitivity, repeatability, and reproducibility, boasting a limit of detection (LOD) of 27 copies/µL. In a comparative analysis involving 5483 clinical samples, the results from the commercial RT-qPCR kit and the quadruplex RT-qPCR for TGEV, PEDV, PDCoV, and PoRVA detection were entirely consistent. Following sample collection from October to March in Guangxi Zhuang Autonomous Region, we assessed the prevalence of TGEV, PEDV, PDCoV, and PoRVA in piglet diarrhea samples, revealing positive detection rates of 0.2 % (11/5483), 8.82 % (485/5483), 1.22 % (67/5483), and 4.94 % (271/5483), respectively. The co-infection rates of PEDV/PoRVA, PEDV/PDCoV, TGEV/PED/PoRVA, and PDCoV/PoRVA were 0.39 %, 0.11 %, 0.01 %, and 0.03 %, respectively, with no detection of other co-infections, as determined by the quadruplex real-time RT-qPCR. This research not only established a valuable tool for the simultaneous differentiation of TGEV, PEDV, PDCoV, and PoRVA in practical applications but also provided crucial insights into the prevalence of these viral pathogens causing diarrhea in Guangxi.


Subject(s)
Porcine epidemic diarrhea virus , Real-Time Polymerase Chain Reaction , Rotavirus , Sensitivity and Specificity , Swine Diseases , Transmissible gastroenteritis virus , Animals , Swine , Real-Time Polymerase Chain Reaction/methods , Transmissible gastroenteritis virus/genetics , Transmissible gastroenteritis virus/isolation & purification , Porcine epidemic diarrhea virus/genetics , Porcine epidemic diarrhea virus/isolation & purification , Porcine epidemic diarrhea virus/classification , Swine Diseases/virology , Swine Diseases/diagnosis , Rotavirus/genetics , Rotavirus/isolation & purification , Rotavirus/classification , Gastroenteritis, Transmissible, of Swine/diagnosis , Gastroenteritis, Transmissible, of Swine/virology , Deltacoronavirus/genetics , Deltacoronavirus/isolation & purification , Diarrhea/virology , Diarrhea/veterinary , Diarrhea/diagnosis , Coronavirus/genetics , Coronavirus/isolation & purification , Coronavirus/classification , Feces/virology , Coronavirus Infections/diagnosis , Coronavirus Infections/veterinary , Coronavirus Infections/virology
4.
Arch Virol ; 167(11): 2249-2262, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36029354

ABSTRACT

Porcine deltacoronavirus (PDCoV) is an enteric virus that was first identified in 2012. Although PDCoV has been detected worldwide, there is little information about its circulation in western China. In this study, fecal samples were collected from piglets with watery diarrhea in western China between 2015 and 2018 for the detection of PDCoV. The positive rate was 29.9%. A PDCoV strain (CHN/CQ/BN23/2016, BN23) was isolated and selected for further investigation. Phylogenetic analysis showed that this strain formed an individual cluster between the early Chinese lineage and the Chinese lineage. RDP4 and SimPlot analysis demonstrated that strain BN23 is a recombinant of Thailand/S5015L/2015 and CHN-AH-2004. The pathogenicity of BN23 was evaluated in 3-day-old piglets. Challenged piglets developed serious clinical signs and died at 3 days post-inoculation. Our data show that PDCoV is prevalent in western China and that strain BN23 is highly pathogenic to newborn piglets. Therefore, more attention should be paid to emerging PDCoV strains in western China.


Subject(s)
Deltacoronavirus , Animals , China , Coronavirus Infections/veterinary , Coronavirus Infections/virology , Deltacoronavirus/genetics , Deltacoronavirus/isolation & purification , Deltacoronavirus/pathogenicity , Diarrhea/veterinary , Genomics , Phylogeny , Swine , Swine Diseases/virology , Virulence
5.
Viruses ; 13(12)2021 11 30.
Article in English | MEDLINE | ID: mdl-34960672

ABSTRACT

Porcine deltacoronavirus (PDCoV) can cause diarrhea and dehydration in newborn piglets. Here, we developed a double antibody sandwich quantitative enzyme-linked immunosorbent assay (DAS-ELISA) for detection of PDCoV by using a specific monoclonal antibody against the PDCoV N protein and an anti-PDCoV rabbit polyclonal antibody. Using DAS-ELISA, the detection limit of recombinant PDCoV N protein and virus titer were approximately 0.5 ng/mL and 103.0 TCID50/mL, respectively. A total of 59 intestinal and 205 fecal samples were screened for the presence of PDCoV by using DAS-ELISA and reverse transcriptase real-time PCR (RT-qPCR). The coincidence rate of the DAS-ELISA and RT-qPCR was 89.8%. DAS-ELISA had a sensitivity of 80.8% and specificity of 95.6%. More importantly, the DAS-ELISA could detect the antigen of PDCoV inactivated virus, and the viral antigen concentrations remained unchanged in the inactivated virus. These results suggest that DAS-ELISA could be used for antigen detection of clinical samples and inactivated vaccines. It is a novel method for detecting PDCoV infections and evaluating the PDCoV vaccine.


Subject(s)
Antibodies, Viral/blood , Antigens, Viral/blood , Coronavirus Infections/blood , Coronavirus Infections/veterinary , Deltacoronavirus/immunology , Enzyme-Linked Immunosorbent Assay/methods , Swine Diseases/diagnosis , Animals , Antibodies, Viral/immunology , Antigens, Viral/immunology , Coronavirus Infections/immunology , Coronavirus Infections/virology , Deltacoronavirus/genetics , Deltacoronavirus/isolation & purification , Rabbits , Swine , Swine Diseases/blood , Swine Diseases/virology
6.
Nature ; 600(7887): 133-137, 2021 12.
Article in English | MEDLINE | ID: mdl-34789872

ABSTRACT

Coronaviruses have caused three major epidemics since 2003, including the ongoing SARS-CoV-2 pandemic. In each case, the emergence of coronavirus in our species has been associated with zoonotic transmissions from animal reservoirs1,2, underscoring how prone such pathogens are to spill over and adapt to new species. Among the four recognized genera of the family Coronaviridae, human infections reported so far have been limited to alphacoronaviruses and betacoronaviruses3-5. Here we identify porcine deltacoronavirus strains in plasma samples of three Haitian children with acute undifferentiated febrile illness. Genomic and evolutionary analyses reveal that human infections were the result of at least two independent zoonoses of distinct viral lineages that acquired the same mutational signature in the genes encoding Nsp15 and the spike glycoprotein. In particular, structural analysis predicts that one of the changes in the spike S1 subunit, which contains the receptor-binding domain, may affect the flexibility of the protein and its binding to the host cell receptor. Our findings highlight the potential for evolutionary change and adaptation leading to human infections by coronaviruses outside of the previously recognized human-associated coronavirus groups, particularly in settings where there may be close human-animal contact.


Subject(s)
Coronavirus Infections/epidemiology , Coronavirus Infections/virology , Deltacoronavirus/isolation & purification , Swine/virology , Viral Zoonoses/epidemiology , Viral Zoonoses/virology , Amino Acid Sequence , Animals , Bayes Theorem , Child , Chlorocebus aethiops , Conserved Sequence , Coronavirus Infections/blood , Deltacoronavirus/classification , Deltacoronavirus/genetics , Deltacoronavirus/pathogenicity , Female , Haiti/epidemiology , Humans , Male , Models, Molecular , Mutation , Phylogeny , Vero Cells , Viral Zoonoses/blood
8.
Mol Immunol ; 134: 86-99, 2021 06.
Article in English | MEDLINE | ID: mdl-33740580

ABSTRACT

Porcine deltacoronavirus (PDCoV), an emerging porcine enteropathogenic coronavirus, causes acute watery diarrhea and vomiting in piglets. Here, we isolated a strain of PDCoV from intestinal content of a piglet with severe watery diarrhea on a farm located in Henan Province, named PDCoV strain HNZK-02. Subsequently, the complete genomes of cell-cultured PDCoV HNZK-02 passage 5 and 15 were sequenced and analyzed. There was a continuous 3-nucleotide deletion and 7 amino acid changes in S genes when compared with the other reported PDCoVs. RNA sequencing (RNA-seq)-based transcriptome analysis was used to quantitatively identify differentially expressed genes after PDCoV infection in ST cells. In total, 523 differentially expressed genes (DEGs) were identified, including 62 upregulated genes and 457 downregulated genes. The 62 upregulated genes were associated with TNF signaling pathway, cytokine-cytokine receptor interaction, Toll-like receptor signaling pathway, IL-17 signaling, chemokine signaling pathway and NF-κB signaling pathway. The significant expressing changed genes, including three antiviral genes (Mx1, OASL, OAS1) and three inflammatory chemokine related genes (CCL5, CXCL8, CXCL10) were further validated using quantitative real-time RT-PCR (qRT-PCR) assay. It showed the consistent expression patterns of the candidate genes with those from RNA-seq. Our results demonstrated that PDCoV infection activates NF-κB signaling pathway and leads to the expression of inflammatory factors, which may be related to TLRs but TLR2 is not a critical factor.In general, these results can help us to confirm the molecular regulation mechanism and also provide us a comprehensive resource of PDCoV infection.


Subject(s)
Coronavirus Infections/veterinary , Deltacoronavirus/genetics , Gastrointestinal Diseases/veterinary , Gastrointestinal Diseases/virology , Genome, Viral/genetics , Animals , China , Coronavirus Infections/virology , Deltacoronavirus/isolation & purification , Gastrointestinal Diseases/pathology , Gene Expression Profiling , Signal Transduction/genetics , Swine , Swine Diseases/virology , Transcriptome/genetics
9.
J Clin Virol ; 136: 104754, 2021 03.
Article in English | MEDLINE | ID: mdl-33601153

ABSTRACT

OBJECTIVES: The four seasonal coronaviruses 229E, NL63, OC43, and HKU1 are frequent causes of respiratory infections and show annual and seasonal variation. Increased understanding about these patterns could be informative about the epidemiology of SARS-CoV-2. METHODS: Results from PCR diagnostics for the seasonal coronaviruses, and other respiratory viruses, were obtained for 55,190 clinical samples analyzed at the Karolinska University Hospital, Stockholm, Sweden, between 14 September 2009 and 2 April 2020. RESULTS: Seasonal coronaviruses were detected in 2130 samples (3.9 %) and constituted 8.1 % of all virus detections. OC43 was most commonly detected (28.4 % of detections), followed by NL63 (24.0 %), HKU1 (17.6 %), and 229E (15.3 %). The overall fraction of positive samples was similar between seasons, but at species level there were distinct biennial alternating peak seasons for the Alphacoronaviruses, 229E and NL63, and the Betacoronaviruses, OC43 and HKU1, respectively. The Betacoronaviruses peaked earlier in the winter season (Dec-Jan) than the Alphacoronaviruses (Feb-Mar). Coronaviruses were detected across all ages, but diagnostics were more frequently requested for paediatric patients than adults and the elderly. OC43 and 229E incidence was relatively constant across age strata, while that of NL63 and HKU1 decreased with age. CONCLUSIONS: Both the Alphacoronaviruses and Betacoronaviruses showed alternating biennial winter incidence peaks, which suggests some type of immune mediated interaction. Symptomatic reinfections in adults and the elderly appear relatively common. Both findings may be of relevance for the epidemiology of SARS-CoV-2.


Subject(s)
COVID-19/epidemiology , Common Cold/epidemiology , Coronavirus 229E, Human/isolation & purification , Coronavirus NL63, Human/isolation & purification , Coronavirus OC43, Human/isolation & purification , Deltacoronavirus/isolation & purification , Female , Humans , Male , Retrospective Studies , SARS-CoV-2 , Seasons , Sweden
10.
Sci Rep ; 11(1): 3040, 2021 02 04.
Article in English | MEDLINE | ID: mdl-33542409

ABSTRACT

Porcine epidemic diarrhea virus (PEDV) and porcine deltacoronavirus (PDCoV) cause an enteric disease characterized by diarrhea clinically indistinguishable. Both viruses are simultaneously detected in clinical cases, but a study involving the co-infection has not been reported. The study was therefore conducted to investigate the disease severity following a co-infection with PEDV and PDCoV. In the study, 4-day-old pigs were orally inoculated with PEDV and PDCoV, either alone or in combination. Following challenge, fecal score was monitored on a daily basis. Fecal swabs were collected and assayed for the presence of viruses. Three pigs per group were necropsied at 3 and 5 days post inoculation (dpi). Microscopic lesions and villous height to crypt depth (VH:CD) ratio, together with the presence of PEDV and PDCoV antigens, were evaluated in small intestinal tissues. Expressions of interferon alpha (IFN-α) and interleukin 12 (IL12) were investigated in small intestinal mucosa. The findings indicated that coinoculation increased the disease severity, demonstrated by significantly prolonged fecal score and virus shedding and decreasing VH:CD ratio in the jejunum compared with pigs inoculated with either PEDV or PDCoV alone. Notably, in single-inoculated groups, PEDV and PDCoV antigens were detected only in villous enterocytes wile in the coinoculated group, PDCoV antigen was detected in both villous enterocytes and crypts. IFN-α and IL12 were significantly up-regulated in coinoculated groups in comparison with single-inoculated groups. In conclusion, co-infection with PEDV and PDCoV exacerbate clinical signs and have a synergetic on the regulatory effect inflammatory cytokines compared to a single infection with either virus.


Subject(s)
Deltacoronavirus/pathogenicity , Diarrhea/genetics , Interferon-alpha/genetics , Interleukin-12/genetics , Porcine epidemic diarrhea virus/pathogenicity , Animals , Coinfection/genetics , Coinfection/veterinary , Coinfection/virology , Coronavirus Infections/genetics , Coronavirus Infections/veterinary , Coronavirus Infections/virology , Deltacoronavirus/genetics , Deltacoronavirus/isolation & purification , Diarrhea/veterinary , Diarrhea/virology , Feces/virology , Porcine epidemic diarrhea virus/genetics , Porcine epidemic diarrhea virus/isolation & purification , Severity of Illness Index , Swine , Swine Diseases/genetics , Swine Diseases/virology
11.
J Virol Methods ; 290: 114068, 2021 04.
Article in English | MEDLINE | ID: mdl-33460683

ABSTRACT

Porcine deltacoronavirus (PDCoV) is a novel swine enteropathogenic coronavirus that leads to acute diarrhea/vomiting, dehydration, and mortality in seronegative neonatal piglets. As widely known, attempts to culture porcine enteropathogenic coronaviruses, such as PDCoV and porcine epidemic diarrhea virus, in cells have been proven to be difficult. This study aimed to establish an efficient and cost-effective culture system for PDCoV using embryonated chicken eggs (ECEs) to enable future vaccine production and efficient virus isolation from infected animals. The inoculation of samples into the allantoic cavity of 3- to 7-day-old ECEs yielded efficient virus propagation even from porcine fecal samples. Virus propagation in 2- and 8-day-old ECEs were confirmed in 30.0 % and 11.1 % of the samples, respectively. This indicates that susceptible cells rapidly develop in 2-day-old ECEs and differentiate to mature cells that are nonsusceptible to PDCoV in 8-day-old layer chicken ECEs. Furthermore, our study demonstrated that PDCoV can be passaged in 6-day-old ECEs with high viral replicative efficiency. This technique for propagating PDCoV using ECEs is a powerful tool that could be utilized for PDCoV vaccine development and virus isolation from poultry, livestock, and wild animals.


Subject(s)
Deltacoronavirus/growth & development , Deltacoronavirus/isolation & purification , Virus Cultivation/methods , Amniotic Fluid/virology , Animals , Chick Embryo , Coronavirus Infections/veterinary , Coronavirus Infections/virology , Serial Passage , Swine , Swine Diseases/virology , Virus Replication
12.
Vet Med Sci ; 6(4): 854-859, 2020 11.
Article in English | MEDLINE | ID: mdl-32419393

ABSTRACT

Porcine deltacoronavirus (PDCoV) has been detected sporadically in China since its first description in 2012. In our study, 62 faecal and intestinal samples from pigs with diarrhoea were collected in Guangxi Province, China, during 2017 and 2018. Twelve samples (19.4%, 12/62) were positive for PDCoV. Five complete genomes of PDCoV were then determined, and sequence alignment revealed that the five strains had discontinuous deletions at 400-401 aa in non-structural protein 2 (NSP2) and 758-760 aa in non-structural protein 3 (NSP3) compared with the respective proteins in the HKU15-44 strain. Notably, the CHN-GX81-2018 strain contained two insertions in the S gene and 3'-UTR. Multiple sequence alignment and phylogenetic analysis showed that four strains shared 98.2%-98.4% nucleotide identity with CHN-AH-2004 and were classified into a new cluster of China lineage strains, whereas the CHN-GX81-2018 strain shared 98.7% nucleotide identity with Vietnam/Binh21/2015 and belonged to the Vietnam/Laos/Thailand lineage. Recombination analyses revealed that four strains were the result of recombination between CHN-HB-2014 and Vietnam/Binh21/2015 strains. This study demonstrated the co-existence of multiple lineages of PDCoV in China, and our findings will aid the reorganization and evolution of the virus.


Subject(s)
Coronavirus Infections/veterinary , Deltacoronavirus/isolation & purification , Swine Diseases/epidemiology , Animals , China/epidemiology , Coronavirus Infections/epidemiology , Coronavirus Infections/virology , Phylogeny , Prevalence , Sequence Alignment , Sequence Analysis, DNA/veterinary , Sus scrofa , Swine , Swine Diseases/virology
13.
Emerg Infect Dis ; 26(2): 255-265, 2020 02.
Article in English | MEDLINE | ID: mdl-31961296

ABSTRACT

Coronaviruses cause respiratory and gastrointestinal diseases in diverse host species. Deltacoronaviruses (DCoVs) have been identified in various songbird species and in leopard cats in China. In 2009, porcine deltacoronavirus (PDCoV) was detected in fecal samples from pigs in Asia, but its etiologic role was not identified until 2014, when it caused major diarrhea outbreaks in swine in the United States. Studies have shown that PDCoV uses a conserved region of the aminopeptidase N protein to infect cell lines derived from multiple species, including humans, pigs, and chickens. Because PDCoV is a potential zoonotic pathogen, investigations of its prevalence in humans and its contribution to human disease continue. We report experimental PDCoV infection and subsequent transmission among poultry. In PDCoV-inoculated chicks and turkey poults, we observed diarrhea, persistent viral RNA titers from cloacal and tracheal samples, PDCoV-specific serum IgY antibody responses, and antigen-positive cells from intestines.


Subject(s)
Coronavirus Infections/virology , Deltacoronavirus/isolation & purification , Swine Diseases/epidemiology , Animals , Chickens , Coronavirus Infections/transmission , Swine , Swine Diseases/transmission , Swine Diseases/virology , Turkeys , United States/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL