Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 537
Filter
1.
J Clin Microbiol ; 62(10): e0059324, 2024 Oct 16.
Article in English | MEDLINE | ID: mdl-39194193

ABSTRACT

The Advisory Committee on Immunization Practices (ACIP) recommended that dengue pre-vaccination screening tests for Dengvaxia administration have at least 98% specificity and 75% sensitivity. This study evaluates the performance of commercial anti-DENV IgG tests to identify tests that could be used for pre-vaccination screening. First, for seven tests, we evaluated sensitivity and specificity in early convalescent dengue virus (DENV) infection, using 44 samples collected 7-30 days after symptom onset and confirmed by RT-PCR. Next, for the five best-performing tests and two additional tests (with and without an external test reader) that became available later, we evaluated performance to detect past dengue infection among a panel of 44 specimens collected in 2018-2019 from healthy 9- to 16-year-old children from Puerto Rico. Finally, a full-scale evaluation was done with the four best-performing tests using 400 specimens from the same population. We used virus focus reduction neutralization test and an in-house DENV IgG ELISA as reference standards. Of seven tests, five showed ≥75% sensitivity in detecting anti-DENV IgG in early convalescent specimens with low cross-reactivity to the Zika virus. For the detection of previous DENV infections, the tests with the highest performance were the Euroimmun NS1 IgG ELISA (sensitivity 84.5%, specificity 97.1%) and CTK Dengue IgG rapid test R0065C with the test reader (sensitivity 76.2% specificity 98.1%). There are IgG tests available that can be used to accurately classify individuals with previous DENV infection as eligible for dengue vaccination to support safe vaccine implementation. IMPORTANCE: The Advisory Committee on Immunization Practices (ACIP) has set forth recommendations that dengue pre-vaccination screening tests must exhibit at least 98% specificity and 75% sensitivity. Our research rigorously assesses the performance of various commercial tests against these benchmarks using well-characterized specimens from Puerto Rico. The findings from our study are particularly relevant given FDA approval and ACIP recommendation of Sanofi Pasteur's Dengvaxia vaccine, highlighting the need for accurate pre-vaccination screening tools.


Subject(s)
Antibodies, Viral , Dengue Vaccines , Dengue Virus , Dengue , Immunoglobulin G , Sensitivity and Specificity , Humans , Dengue/diagnosis , Dengue/prevention & control , Dengue/immunology , Immunoglobulin G/blood , Dengue Virus/immunology , Child , Antibodies, Viral/blood , Adolescent , Dengue Vaccines/immunology , Puerto Rico , Enzyme-Linked Immunosorbent Assay/methods , Male , Female , Vaccination , Neutralization Tests/methods
2.
Virus Genes ; 60(5): 475-487, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39102085

ABSTRACT

DENV infection outcomes depend on the host's variable expression of immune receptors and mediators, leading to either resolution or exacerbation. While the NS3 protein is known to induce robust immune responses, the specific impact of its protease region epitopes remains unclear. This study investigated the effect of recombinant NS3 protease region proteins from all four DENV serotypes on splenocyte activation in BALB/c mice (n = 5/group). Mice were immunized with each protein, and their splenocytes were subsequently stimulated with homologous antigens. We measured the expression of costimulatory molecules (CD28, CD80, CD86, CD152) by flow cytometry, along with IL-2 production, CD25 expression, and examined the antigen-specific activation of CD4 + and CD8 + T cells. Additionally, the expression of IL-1, IL-10, and TGF-ß1 in splenocytes from immunized animals was assessed. Apoptosis was evaluated using Annexin V/PI staining and DNA fragmentation analysis. Stimulation of splenocytes from immunized mice triggered apoptosis (phosphatidylserine exposure and caspase 3/7 activation) and increased costimulatory molecule expression, particularly CD152. Low IL-2 production and low CD25 expression, as well as sustained expression of the IL-10 gene. These results suggest that these molecules might be involved in mechanisms by which the NS3 protein contributes to viral persistence and disease pathogenesis.


Subject(s)
Apoptosis , CTLA-4 Antigen , Dengue Virus , Mice, Inbred BALB C , Spleen , Viral Nonstructural Proteins , Animals , Mice , Spleen/immunology , Spleen/virology , Dengue Virus/immunology , Dengue Virus/genetics , CTLA-4 Antigen/genetics , CTLA-4 Antigen/immunology , Viral Nonstructural Proteins/immunology , Viral Nonstructural Proteins/genetics , Recombinant Proteins/immunology , Recombinant Proteins/genetics , Immunization , Dengue/immunology , Dengue/virology , Cytokines/metabolism , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology
3.
Int J Mol Sci ; 25(15)2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39125749

ABSTRACT

Despite successful vaccination efforts, the emergence of new SARS-CoV-2 variants poses ongoing challenges to control COVID-19. Understanding humoral responses regarding SARS-CoV-2 infections and their impact is crucial for developing future vaccines that are effective worldwide. Here, we identified 41 immunodominant linear B-cell epitopes in its spike glycoprotein with an SPOT synthesis peptide array probed with a pool of serum from hospitalized COVID-19 patients. The bioinformatics showed a restricted set of epitopes unique to SARS-CoV-2 compared to other coronavirus family members. Potential crosstalk was also detected with Dengue virus (DENV), which was confirmed by screening individuals infected with DENV before the COVID-19 pandemic in a commercial ELISA for anti-SARS-CoV-2 antibodies. A high-resolution evaluation of antibody reactivity against peptides representing epitopes in the spike protein identified ten sequences in the NTD, RBD, and S2 domains. Functionally, antibody-dependent enhancement (ADE) in SARS-CoV-2 infections of monocytes was observed in vitro with pre-pandemic Dengue-positive sera. A significant increase in viral load was measured compared to that of the controls, with no detectable neutralization or considerable cell death, suggesting its role in viral entry. Cross-reactivity against peptides from spike proteins was observed for the pre-pandemic sera. This study highlights the importance of identifying specific epitopes generated during the humoral response to a pathogenic infection to understand the potential interplay of previous and future infections on diseases and their impact on vaccinations and immunodiagnostics.


Subject(s)
Antibodies, Viral , COVID-19 , Cross Reactions , Dengue Virus , Epitopes, B-Lymphocyte , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Spike Glycoprotein, Coronavirus/immunology , Humans , Cross Reactions/immunology , SARS-CoV-2/immunology , COVID-19/immunology , COVID-19/virology , Antibodies, Viral/immunology , Antibodies, Viral/blood , Epitopes, B-Lymphocyte/immunology , Dengue Virus/immunology , Dengue/immunology , Dengue/virology , Antibody-Dependent Enhancement/immunology , Pandemics , Immunodominant Epitopes/immunology
4.
J Trop Pediatr ; 70(4)2024 Jul 13.
Article in English | MEDLINE | ID: mdl-39002166

ABSTRACT

Dengue is a significant health problem due to the high burden of critical infections during outbreaks. In 1997, the World Health Organization (WHO) classified dengue as dengue fever (DF), dengue hemorrhagic fever (DHF), and dengue shock syndrome (DSS). It was revised in 2009 (updated in 2015), and the new guidelines recommended classifying patients as dengue without warning signs (DNS), dengue with warning signs (DWS), and severe dengue (SD). Although the utility of the revised 2009 classification for clinical studies is accepted, for immunological studies it needs to be clarified. We determined the usefulness of the 2009 classification for pediatric studies that analyze the circulating interleukin (IL)-6 and IL-8, two inflammatory cytokines. Plasma levels of IL-6 and IL-8 were evaluated in the acute and convalescent phases by flow cytometry in children with dengue classified using the 1997 and 2009 WHO guidelines. The plasma levels of IL-6 and IL-8 were elevated during the acute and decreased during convalescence, and both cytokines served as a good marker of acute dengue illness compared to convalescence. There were no differences in the plasma level of the evaluated cytokines among children with different clinical severity with any classification, except for the IL-8, which was higher in DWS than DNS. Based on the levels of IL-8, the 2009 classification identified DWS plus SD (hospital-treated children) compared to the DNS group [area under the curve (AUC): 0.7, p = 0.028]. These results support the utility of the revised 2009 (updated in 2015) classification in studies of immune markers in pediatric dengue.


Subject(s)
Dengue , Interleukin-6 , Interleukin-8 , World Health Organization , Humans , Dengue/immunology , Dengue/diagnosis , Child , Male , Female , Interleukin-6/blood , Child, Preschool , Interleukin-8/blood , Severe Dengue/diagnosis , Severe Dengue/immunology , Severe Dengue/blood , Adolescent , Severity of Illness Index , Biomarkers/blood , Dengue Virus/immunology , Practice Guidelines as Topic , Flow Cytometry , Infant , Cytokines/blood
5.
Viruses ; 16(7)2024 Jul 08.
Article in English | MEDLINE | ID: mdl-39066260

ABSTRACT

Dengue (DENV) and Chikungunya (CHIKV) viruses can be transmitted simultaneously by Aedes mosquitoes, and there may be co-infections in humans. However, how the adaptive immune response is modified in the host has yet to be known entirely. In this study, we analyzed the cross-reactivity and neutralizing activity of IgG antibodies against DENV and CHIKV in sera of patients from the Mexican Institute of Social Security in Veracruz, Mexico, collected in 2013 and 2015 and using IgG antibodies of BALB/c mice inoculated with DENV and/or CHIKV. Mice first inoculated with DENV and then with CHIKV produced IgG antibodies that neutralized both viruses. Mice were inoculated with CHIKV, and then with DENV; they had IgG antibodies with more significant anti-CHIKV IgG antibody neutralizing activity. However, the inoculation only with CHIKV resulted in better neutralization of DENV2. In sera obtained from patients in 2013, significant cross-reactivity and low anti-CHIKV IgG antibody neutralizing activity were observed. In CHIKV-positive 2015 sera, the anti-DENV IgG antibody neutralizing activity was high. These results suggest that CHIKV stimulates DENV2-induced memory responses and vice versa. Furthermore, cross-reactivity between the two viruses generated neutralizing antibodies, but exchanging CHIKV for DENV2 generated a better anti-CHIKV neutralizing response.


Subject(s)
Antibodies, Neutralizing , Antibodies, Viral , Chikungunya Fever , Chikungunya virus , Cross Reactions , Dengue Virus , Dengue , Immunoglobulin G , Mice, Inbred BALB C , Animals , Chikungunya virus/immunology , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/blood , Immunoglobulin G/blood , Immunoglobulin G/immunology , Antibodies, Viral/immunology , Antibodies, Viral/blood , Dengue/immunology , Dengue/virology , Dengue Virus/immunology , Humans , Chikungunya Fever/immunology , Chikungunya Fever/virology , Cross Reactions/immunology , Mice , Mexico , Female , Neutralization Tests , Male , Coinfection/immunology , Coinfection/virology , Adult
6.
Front Immunol ; 15: 1385473, 2024.
Article in English | MEDLINE | ID: mdl-38720890

ABSTRACT

Interferons (IFNs) are a family of cytokines that activate the JAK-STAT signaling pathway to induce an antiviral state in cells. Interleukin 27 (IL-27) is a member of the IL-6 and/or IL-12 family that elicits both pro- and anti-inflammatory responses. Recent studies have reported that IL-27 also induces a robust antiviral response against diverse viruses, both in vitro and in vivo, suggesting that IFNs and IL-27 share many similarities at the functional level. However, it is still unknown how similar or different IFN- and IL-27-dependent signaling pathways are. To address this question, we conducted a comparative analysis of the transcriptomic profiles of human monocyte-derived macrophages (MDMs) exposed to IL-27 and those exposed to recombinant human IFN-α, IFN-γ, and IFN-λ. We utilized bioinformatics approaches to identify common differentially expressed genes between the different transcriptomes. To verify the accuracy of this approach, we used RT-qPCR, ELISA, flow cytometry, and microarrays data. We found that IFNs and IL-27 induce transcriptional changes in several genes, including those involved in JAK-STAT signaling, and induce shared pro-inflammatory and antiviral pathways in MDMs, leading to the common and unique expression of inflammatory factors and IFN-stimulated genes (ISGs)Importantly, the ability of IL-27 to induce those responses is independent of IFN induction and cellular lineage. Additionally, functional analysis demonstrated that like IFNs, IL-27-mediated response reduced chikungunya and dengue viruses replication in MDMs. In summary, IL-27 exhibits properties similar to those of all three types of human IFN, including the ability to stimulate a protective antiviral response. Given this similarity, we propose that IL-27 could be classified as a distinct type of IFN, possibly categorized as IFN-pi (IFN-π), the type V IFN (IFN-V).


Subject(s)
Chikungunya Fever , Dengue , Interleukin-27 , Janus Kinases , Macrophages , Signal Transduction , Humans , Cells, Cultured , Chikungunya Fever/immunology , Chikungunya Fever/virology , Chikungunya virus/immunology , Dengue/immunology , Dengue/virology , Dengue Virus/physiology , Dengue Virus/immunology , Interferons/metabolism , Interleukin-27/metabolism , Interleukins/immunology , Interleukins/pharmacology , Janus Kinases/metabolism , Macrophages/immunology , Macrophages/virology , Signal Transduction/genetics , STAT Transcription Factors/metabolism , Transcriptome , Virus Replication
7.
Braz J Infect Dis ; 28(3): 103746, 2024.
Article in English | MEDLINE | ID: mdl-38703788

ABSTRACT

Immunodiagnostic tests for detecting dengue virus infections encounter challenges related to cross-reactivity with other related flaviviruses. Our research focuses on the development of a synthetic multiepitope antigen tailored for dengue immunodiagnostics. Selected dengue epitopes involved structural linearity and dissimilarity from the proteomes of Zika and Yellow fever viruses which served for computationally modeling the three-dimensional protein structure, resulting in the design of two proteins: rDME-C and rDME-BR. Both proteins consist of seven epitopes, separated by the GPGPG linker, and a carboxy-terminal 6 × -histidine tag. The molecular weights of the final proteins rDME-C and rDME-BR are 16.83 kDa and 16.80 kDa, respectively, both with an isoelectric point of 6.35. The distinguishing factor between the two proteins lies in the origin of their epitope sequences, where rDME-C is based on the reference dengue proteome, while rDME-BR utilizes sequences from prevalent Dengue genotypes in Brazil from 2008 to 2019. PyMol analysis revealed exposure of epitopes in the secondary structure. Successful expression of the antigens was achieved in soluble form and fluorescence experiments indicated a disordered structure. In subsequent testing, rDME-BR and rDME-C antigens were assessed using an indirect Elisa protocol against Dengue infected serum, previously examined with a commercial diagnostic test. Optimal concentrations for antigens were determined at 10 µg/mL for rDME-BR and 30 µg/mL for rDME-C, with serum dilutions ranging from 1:50 to 1:100. Both antigens effectively detected IgM and IgG antibodies in Dengue fever patients, with rDME-BR exhibiting higher sensitivity. Our in-house test showed a sensitivity of 77.3 % and 82.6 % and a specificity of 89.4 % and 71.4 % for rDME-C and rDEM-BR antigens. No cross-reactivity was observed with serum from Zika-infected mice but with COVID-19 serum samples. Our findings underscore the utility of synthetic biology in crafting Dengue-specific multiepitope proteins and hold promise for precise clinical diagnosis and monitoring responses to emerging Dengue vaccines.


Subject(s)
Antigens, Viral , Dengue Virus , Dengue , Enzyme-Linked Immunosorbent Assay , Epitopes , Dengue/diagnosis , Dengue/immunology , Dengue/blood , Antigens, Viral/immunology , Epitopes/immunology , Humans , Dengue Virus/immunology , Dengue Virus/genetics , Antibodies, Viral/blood , Antibodies, Viral/immunology , Cross Reactions/immunology , Sensitivity and Specificity
8.
Viruses ; 16(5)2024 05 05.
Article in English | MEDLINE | ID: mdl-38793612

ABSTRACT

As dengue expands globally and many vaccines are under trials, there is a growing recognition of the need for assessing T cell immunity in addition to assessing the functions of neutralizing antibodies during these endeavors. While several dengue-specific experimentally validated T cell epitopes are known, less is understood about which of these epitopes are conserved among circulating dengue viruses and also shared by potential vaccine candidates. As India emerges as the epicenter of the dengue disease burden and vaccine trials commence in this region, we have here aligned known dengue specific T cell epitopes, reported from other parts of the world with published polyprotein sequences of 107 dengue virus isolates available from India. Of the 1305 CD4 and 584 CD8 epitopes, we found that 24% and 41%, respectively, were conserved universally, whereas 27% and 13% were absent in any viral isolates. With these data, we catalogued epitopes conserved in circulating dengue viruses from India and matched them with each of the six vaccine candidates under consideration (TV003, TDEN, DPIV, CYD-TDV, DENVax and TVDV). Similar analyses with viruses from Thailand, Brazil and Mexico revealed regional overlaps and variations in these patterns. Thus, our study provides detailed and nuanced insights into regional variation that should be considered for itemization of T cell responses during dengue natural infection and vaccine design, testing and evaluation.


Subject(s)
CD4-Positive T-Lymphocytes , CD8-Positive T-Lymphocytes , Dengue Vaccines , Dengue Virus , Dengue , Epitopes, T-Lymphocyte , Humans , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/blood , Brazil , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Dengue/immunology , Dengue/virology , Dengue Vaccines/immunology , Dengue Virus/immunology , Dengue Virus/genetics , Dengue Virus/classification , Epitopes, T-Lymphocyte/immunology , India , Mexico , Thailand
9.
Sci Transl Med ; 16(749): eadn2199, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38809964

ABSTRACT

Infection with any of the four dengue virus serotypes (DENV1-4) can protect against or enhance subsequent dengue depending on preexisting antibodies and infecting serotype. Additionally, primary infection with the related flavivirus Zika virus (ZIKV) is associated with increased risk of DENV2 disease. Here, we measured how prior DENV and ZIKV immunity influenced risk of disease caused by DENV1-4 in a pediatric Nicaraguan cohort. Of 3412 participants in 2022, 10.6% experienced dengue cases caused by DENV1 (n = 139), DENV4 (n = 133), DENV3 (n = 54), DENV2 (n = 9), or an undetermined serotype (n = 39). Longitudinal clinical and serological data were used to define infection histories, and generalized linear and additive models adjusted for age, sex, time since last infection, and year, and repeat measurements were used to predict disease risk. Compared with flavivirus-naïve participants, primary ZIKV infection was associated with increased risk of disease caused by DENV4 (relative risk = 2.62, 95% confidence interval: 1.48 to 4.63) and DENV3 (2.90, 1.34 to 6.27), but not DENV1 infection. Primary DENV infection or DENV followed by ZIKV infection was also associated with increased risk of DENV4 disease. We reanalyzed 19 years of cohort data and demonstrated that prior flavivirus immunity and antibody titer had distinct associations with disease risk depending on incoming serotype. We thus find that prior ZIKV infection, like prior DENV infection, is associated with increased risk of disease with certain DENV serotypes. Cross-reactivity among flaviviruses should be considered when assessing vaccine safety and efficacy.


Subject(s)
Dengue Virus , Dengue , Serogroup , Zika Virus Infection , Zika Virus , Humans , Zika Virus/immunology , Dengue/immunology , Dengue/virology , Dengue Virus/immunology , Zika Virus Infection/immunology , Zika Virus Infection/virology , Child , Female , Male , Nicaragua/epidemiology , Child, Preschool , Risk Factors , Adolescent , Antibodies, Viral/blood , Antibodies, Viral/immunology , Cohort Studies
11.
mBio ; 14(5): e0093423, 2023 Oct 31.
Article in English | MEDLINE | ID: mdl-37732809

ABSTRACT

IMPORTANCE: One of the fundamental features that make viruses intracellular parasites is the necessity to use cellular translational machinery. Hence, this is a crucial checkpoint for controlling infections. Here, we show that dengue and Zika viruses, responsible for nearly 400 million infections every year worldwide, explore such control for optimal replication. Using immunocompetent cells, we demonstrate that arrest of protein translations happens after sensing of dsRNA and that the information required to avoid this blocking is contained in viral 5'-UTR. Our work, therefore, suggests that the non-canonical translation described for these viruses is engaged when the intracellular stress response is activated.


Subject(s)
Dengue Virus , Stress, Physiological , Virus Replication , Zika Virus , eIF-2 Kinase , Animals , Humans , A549 Cells , Chlorocebus aethiops , Dengue/immunology , Dengue/virology , Dengue Virus/physiology , eIF-2 Kinase/genetics , eIF-2 Kinase/metabolism , Eukaryotic Initiation Factor-2/metabolism , Gene Deletion , Protein Biosynthesis/genetics , Protein Biosynthesis/immunology , Stress, Physiological/genetics , Stress, Physiological/immunology , Vero Cells , Virus Replication/genetics , Virus Replication/immunology , Zika Virus/physiology , Zika Virus Infection/immunology , Zika Virus Infection/virology , RNA, Double-Stranded/metabolism
12.
Viral Immunol ; 36(2): 101-109, 2023 03.
Article in English | MEDLINE | ID: mdl-36862827

ABSTRACT

Dengue virus (DENV) is the etiological agent of dengue, the most important mosquito-transmitted viral disease of humans worldwide. Enzyme-linked immunosorbent assays (ELISAs) designed to detect DENV IgM are commonly used for dengue diagnosis. However, DENV IgM is not reliably detected until ≥4 days after illness onset. Reverse transcription-polymerase chain reaction (RT-PCR) can diagnose early dengue but requires specialized equipment, reagents, and trained personnel. Additional diagnostic tools are needed. Limited work has been performed to determine whether IgE-based assays can be used for the early detection of vector-borne viral diseases, including dengue. In this study, we determined the efficacy of a DENV IgE capture ELISA for the detection of early dengue. Sera were collected within the first 4 days of illness onset from 117 patients with laboratory-confirmed dengue, as determined by DENV-specific RT-PCR. The serotypes responsible for the infections were DENV-1 and DENV-2 (57 and 60 patients, respectively). Sera were also collected from 113 dengue-negative individuals with febrile illness of undetermined etiology and 30 healthy controls. The capture ELISA detected DENV IgE in 97 (82.9%) confirmed dengue patients and none of the healthy controls. There was a high false positivity rate (22.1%) among the febrile non-dengue patients. In conclusion, we provide evidence that IgE capture assays have the potential to be explored for early diagnosis of dengue, but further research is necessary to address the possible false positivity rate among patients with other febrile illnesses.


Subject(s)
Antibodies, Viral , Dengue , Enzyme-Linked Immunosorbent Assay , Immunoglobulin E , Animals , Humans , Antibodies, Viral/immunology , Dengue Virus/immunology , Early Diagnosis , Enzyme-Linked Immunosorbent Assay/methods , Sensitivity and Specificity , Serogroup , Dengue/diagnosis , Dengue/immunology , Immunoglobulin E/immunology , False Positive Reactions
13.
Pathog Glob Health ; 117(2): 167-180, 2023 03.
Article in English | MEDLINE | ID: mdl-35850625

ABSTRACT

Dengue disease caused by dengue virus (DENV) infection is the most common vector-borne viral disease worldwide. Currently, no treatment is available to fight dengue symptoms. We and others have demonstrated the antiviral and immunomodulatory properties of VitD3 as a possible therapy for DENV infection. MicroRNAs (miRNAs) are small non-coding RNAs responsible for the regulation of cell processes including antiviral defense. Previous transcriptomic analysis showed that VitD3 regulates the expression of genes involved in stress and immune response by inducing specific miRNAs. Here, we focus on the effects of VitD3 supplementation in the regulation of the expression of inflammatory-liked miR-182-5p, miR-130a-3p, miR125b-5p, miR146a-5p, and miR-155-5p during DENV-2 infection of monocyte-derived macrophages (MDMs). Further, we evaluated the effects of inhibition of these miRNAs in the innate immune response. Our results showed that supplementation with VitD3 differentially regulated the expression of these inflammatory miRNAs. We also observed that inhibition of miR-182-5p, miR-130a-3p, miR-125b-5p, and miR-155-5p, led to decreased production of TNF-α and TLR9 expression, while increased the expression of SOCS-1, IFN-ß, and OAS1, without affecting DENV replication. By contrast, over-expression of miR-182-5p, miR-130a-3p, miR-125b-5p, and miR-155-5p significantly decreased DENV-2 infection rates and also DENV-2 replication in MDMs. Our results suggest that VitD3 immunomodulatory effects involve regulation of inflammation-linked miRNAs expression, which might play a key role in the inflammatory response during DENV infection.


Subject(s)
Dengue , Macrophages , MicroRNAs , Vitamin D , Humans , Dengue/immunology , Dengue Virus , Gene Expression Regulation , Macrophages/immunology , Macrophages/virology , MicroRNAs/genetics , Virus Replication , Vitamin D/pharmacology
14.
Viruses ; 14(5)2022 05 07.
Article in English | MEDLINE | ID: mdl-35632732

ABSTRACT

Dengue is a mosquito-borne viral disease caused by the dengue virus (DENV1-4). The clinical manifestations range from asymptomatic to life-threatening dengue hemorrhagic fever (DHF) and/or Dengue Shock Syndrome (DSS). Viral and host factors are related to the clinical outcome of dengue, although the disease pathogenesis remains uncertain. The innate antiviral response to DENV is implemented by a variety of immune cells and inflammatory mediators. Blood monocytes, dendritic cells (DCs) and tissue macrophages are the main target cells of DENV infection. These cells recognize pathogen-associated molecular patterns (PAMPs) through pattern recognition receptors (PRRs). Pathogen recognition is a critical step in eliciting the innate immune response. Toll-like receptors (TLRs) are responsible for the innate recognition of pathogens and represent an essential component of the innate and adaptive immune response. Ten different TLRs are described in humans, which are expressed in many different immune cells. The engagement of TLRs with viral PAMPs triggers downstream signaling pathways leading to the production of inflammatory cytokines, interferons (IFNs) and other molecules essential for the prevention of viral replication. Here, we summarize the crucial TLRs' roles in the antiviral innate immune response to DENV and their association with viral pathogenesis.


Subject(s)
Dengue , Immunity, Innate , Pathogen-Associated Molecular Pattern Molecules , Toll-Like Receptors , Dengue/immunology , Dengue Virus , Humans , Pathogen-Associated Molecular Pattern Molecules/immunology , Toll-Like Receptors/immunology
15.
Rev. Ciênc. Méd. Biol. (Impr.) ; 21(1): 40-45, maio 05,2022. fig
Article in Portuguese | LILACS | ID: biblio-1370563

ABSTRACT

Introduction: dengue is a most common mosquito-borne viral disease in the Americas and tropical countries. Objective: in this work, mice were hyperimmunized with DENV 4 antigen to produce monoclonal antibodies (mAbs). Methodology: DENV 4 (GenBank KC806069) was inoculated in C6/36 cell monolayers cultivated in Leibovitz's 15 medium supplemented with 5% fetal bovine serum and incubated at 28 oC. The virus stock was submitted to concentration and ultracentrifugation and stored at -80 oC until use (VC DENV 4). Balb/c mice were injected intraperitoneally with 50µg of DENV-4 and successive intraperitoneal injections of 25 µg of VCDENV 4 with Freund's incomplete adjuvant were performed. The spleen cells were fused to SP2/0 myeloma cells with PEG 1540 and distributed in 96-well microplates with Iscove's modified medium with Hipoxantina­Aminopterina­Timidina. Hybridoma screening by indirect ELISA showed positive results for six mAbs, and their characterization was performed by Western blotting and Indirect Immunofluorescence (IFI) techniques. Results: the six mAbs showed strong recognition of prM (24/29 kDa), and minor reaction to E protein (66 kDa), E/E protein dimer (105 kDa), and NS1 (49 kDa) protein in two mAbs. The use of mAbs anti-prM as a diagnostic tool using IFI has been demonstrated to detect DENV-4 antigen in infected cells or tissues. Conclusion: DENV 4 generate mAbs with strong reactivity to prM with potential use to confirm the presence of DENV 4 antigen in tissues or infected cells.


Introdução: a dengue é uma doença viral transmitida por mosquitos comumente das Américas e países tropicais. Objetivo: neste trabalho, camundongos foram hiperimunizados com antígeno DENV 4 para produzir anticorpos monoclonais (mAbs). Metodologia: DENV 4 (GenBank KC806069) foi inoculado em monocamadas de células C6 / 36 cultivadas em meio Leibovitz 15 suplementado com 5% de soro fetal bovino e incubadas a 28oC. O estoque viral foi submetido à concentração, ultracentrifugação e armazenado a -80 oC (VC DENV 4). Camundongos Balb / c foram injetados intraperitonealmente com 50 µg de VC DENV-4 e injeções intraperitoneais sucessivas de 25 µg de antigeno com adjuvante incompleto de Freund. As células do baço foram misturadas a células SP2/0 com PEG 1540 e distribuídas em microplacas de 96 poços com meio Iscove Modificado em presença de Hipoxantina ­ Aminopterina ­ Timidina. A triagem de hibridomas por ELISA indireto apresentou resultados positivos para seis mAbs, e sua caracterização foi realizada por técnicas de Western blotting e Imunofluorescência Indireta (IFI). Resultados: os seis mAbs mostraram forte reconhecimento de prM (24/29 kDa) e reação menor à proteína E (66 kDa), dímero de proteína E / E (105 kDa) e proteína NS1 (49 kDa) em dois mAbs. O uso de mAbs anti-prM como uma ferramenta de diagnóstico utilizando IFI demonstrou eficacia em detectar o antígeno DENV-4 em células ou tecidos infectados. Conclusão: o mAbs produzidos para DENV 4 demonstraram uma forte reatividade contra prM, e poderiam ser uma ferramenta de uso potencial no diagnóstico de DENV 4 .


Subject(s)
Animals , Mice , Dengue/immunology , Dengue Virus/immunology , Antibodies, Monoclonal/biosynthesis , Antigens, Viral/administration & dosage , Injections, Intraperitoneal , Mice, Inbred BALB C
16.
Front Immunol ; 13: 810376, 2022.
Article in English | MEDLINE | ID: mdl-35185902

ABSTRACT

Exacerbated inflammatory response and altered vascular function are hallmarks of dengue disease. Reactive oxygen species (ROS) production has been associated to endothelial barrier disturbance and microvascular alteration in distinct pathological conditions. Increased ROS has been reported in in vitro models of dengue virus (DENV) infection, but its impact for endothelial cell physiology had not been fully investigated. Our group had previously demonstrated that infection of human brain microvascular endothelial cells (HBMEC) with DENV results in the activation of RNA sensors and production of proinflammatory cytokines, which culminate in cell death and endothelial permeability. Here, we evaluated the role of mitochondrial function and NADPH oxidase (NOX) activation for ROS generation in HBMEC infected by DENV and investigated whether altered cellular physiology could be a consequence of virus-induced oxidative stress. DENV-infected HBMECs showed a decrease in the maximal respiratory capacity and altered membrane potential, indicating functional mitochondrial alteration, what might be related to mtROS production. Indeed, mtROS was detected at later time points after infection. Specific inhibition of mtROS diminished virus replication, cell death, and endothelial permeability, but did not affect cytokine production. On the other hand, inhibition of NOX-associated ROS production decreased virus replication and cell death, as well as the secretion of inflammatory cytokines, including IL-6, IL-8, and CCL5. These results demonstrated that DENV replication in endothelial cells induces ROS production by different pathways, which impacts biological functions that might be relevant for dengue pathogenesis. Those data also indicate oxidative stress events as relevant therapeutical targets to avoid vascular permeability, inflammation, and neuroinvasion during DENV infection.


Subject(s)
Antiviral Agents/pharmacology , Dengue Virus/drug effects , Endothelium, Vascular/virology , Reactive Oxygen Species/metabolism , Virus Replication/drug effects , Capillary Permeability/drug effects , Cell Line , Cells, Cultured , Cytokines/metabolism , Dengue/immunology , Dengue/virology , Dengue Virus/genetics , Endothelium, Vascular/drug effects , Humans , Oxidative Stress/drug effects
17.
Am J Trop Med Hyg ; 106(2): 585-592, 2021 12 20.
Article in English | MEDLINE | ID: mdl-34929668

ABSTRACT

Serological cross-reactivity has proved to be a challenge to diagnose Zika virus (ZIKV) infections in dengue virus (DENV) endemic countries. Confirmatory testing of ZIKV IgM positive results by plaque reduction neutralization tests (PRNTs) provides clarification in only a minority of cases because most individuals infected with ZIKV were previously exposed to DENV. The goal of this study was to evaluate the performance of a ZIKV/DENV DUO IgM antibody capture ELISA (MAC-ELISA) for discriminating between DENV and ZIKV infections in endemic regions. Our performance evaluation included acute and convalescent specimens from patients with real-time reverse transcription polymerase chain reaction (RT-PCR)-confirmed DENV or ZIKV from the Sentinel Enhanced Dengue Surveillance System in Ponce, Puerto Rico. The ZIKV/DENV DUO MAC-ELISA specificity was 100% for DENV (N = 127) and 98.4% for ZIKV (N = 275) when specimens were tested during the optimal testing window (days post-onset of illness [DPO] 6-120). The ZIKV/DENV DUO MAC-ELISA sensitivity of RT-PCR confirmed specimens reached 100% for DENV by DPO 6 and for ZIKV by DPO 9. Our new ZIKV/DENV DUO MAC-ELISA was also able to distinguish ZIKV and DENV regardless of previous DENV exposure. We conclude this novel serologic diagnostic assay can accurately discriminate ZIKV and DENV infections. This can potentially be useful considering that the more labor-intensive and expensive PRNT assay may not be an option for confirmatory diagnosis in areas that lack PRNT capacity, but experience circulation of both DENV and ZIKV.


Subject(s)
Antibodies, Viral/immunology , Dengue/diagnosis , Enzyme-Linked Immunosorbent Assay/methods , Immunoglobulin M/immunology , Zika Virus Infection/diagnosis , Cross Reactions , Dengue/immunology , Dengue/transmission , Dengue Virus/immunology , Endemic Diseases , Female , Humans , Male , Serologic Tests/methods , Viral Nonstructural Proteins , Zika Virus/immunology , Zika Virus Infection/immunology , Zika Virus Infection/transmission
18.
PLoS Negl Trop Dis ; 15(10): e0009873, 2021 10.
Article in English | MEDLINE | ID: mdl-34634046

ABSTRACT

A dysregulated or exacerbated inflammatory response is thought to be the key driver of the pathogenesis of severe disease caused by the mosquito-borne dengue virus (DENV). Compounds that restrict virus replication and modulate the inflammatory response could thus serve as promising therapeutics mitigating the disease pathogenesis. We and others have previously shown that macrophages, which are important cellular targets for DENV replication, differentiated in the presence of bioactive vitamin D (VitD3) are less permissive to viral replication, and produce lower levels of pro-inflammatory cytokines. Therefore, we here evaluated the extent and kinetics of innate immune responses of DENV-2 infected monocytes differentiated into macrophages in the presence (D3-MDMs) or absence of VitD3 (MDMs). We found that D3-MDMs expressed lower levels of RIG I, Toll-like receptor (TLR)3, and TLR7, as well as higher levels of SOCS-1 in response to DENV-2 infection. D3-MDMs produced lower levels of reactive oxygen species, related to a lower expression of TLR9. Moreover, although VitD3 treatment did not modulate either the expression of IFN-α or IFN-ß, higher expression of protein kinase R (PKR) and 2'-5'-oligoadenylate synthetase 1 (OAS1) mRNA were found in D3-MDMs. Importantly, the observed effects were independent of reduced infection, highlighting the intrinsic differences between D3-MDMs and MDMs. Taken together, our results suggest that differentiation of MDMs in the presence of VitD3 modulates innate immunity in responses to DENV-2 infection.


Subject(s)
Cell Differentiation , Dengue Virus/physiology , Dengue/immunology , Macrophages/cytology , Vitamin D/immunology , 2',5'-Oligoadenylate Synthetase/genetics , 2',5'-Oligoadenylate Synthetase/immunology , Adult , Animals , Dengue/genetics , Dengue/physiopathology , Dengue/virology , Dengue Virus/classification , Dengue Virus/genetics , Female , Humans , Immunity, Innate , Interferon-beta/genetics , Interferon-beta/immunology , Macrophages/immunology , Male , Monocytes/cytology , Monocytes/immunology , Virus Replication , Young Adult
19.
J Med Microbiol ; 70(10)2021 Oct.
Article in English | MEDLINE | ID: mdl-34668855

ABSTRACT

Dengue is endemic in Brazil, and several Brazilian cities are affected by frequent seasonal outbreaks of the disease. During the outbreaks the possibility of transfusion-transmitted dengue (TTD) is increased, mainly by the presence of asymptomatic or oligosymptomatic infections in eligible blood donors. The retrospective assessment of anti-DENV IgM and NS1 seroprevalence during a given time interval may indicate the need for measures for the previous screening of DENV infection in blood donors. In this context, we performed retrospective screening for anti-DENV IgM and NS1 in blood donors from the Federal District of Brazil during the early outbreak that occurred in 2019, the largest outbreak in recent years. In total, 450 blood donations were screened for anti-DENV IgM and DENV NS1 using commercial enzyme-linked immunosorbent assay kits (Panbio Dengue IgM Capture ELISA and Platelia Dengue NS1 Ag, respectively). Among the tested plasma samples, 16 % (72/450) presented anti-DENV IgM; no samples presented DENV NS1. Despite the apparent absence of antigenaemia in tested blood donations, the high prevalence of anti-DENV IgM highlights the importance of DENV screening in blood donors, principally during outbreak periods.


Subject(s)
Antibodies, Viral/blood , Blood Donors , Dengue , Disease Outbreaks , Immunoglobulin M/blood , Adult , Brazil/epidemiology , Dengue/epidemiology , Dengue/immunology , Female , Humans , Male , Middle Aged , Prevalence , Retrospective Studies , Seroepidemiologic Studies , Young Adult
20.
Viruses ; 13(9)2021 09 08.
Article in English | MEDLINE | ID: mdl-34578370

ABSTRACT

The incidence of dengue in Latin America has increased dramatically during the last decade. Understanding the pathogenic mechanisms in dengue is crucial for the identification of biomarkers for the triage of patients. We aimed to characterize the profile of cytokines (IFN-γ, TNF-α, IL-1ß, IL-6, IL-18 and IL-10), chemokines (CXCL8/IL-8, CCL2/MCP-1 and CXCL10/IP-10) and coagulation mediators (Fibrinogen, D-dimer, Tissue factor-TF, Tissue factor pathway inhibitor-TFPI and Thrombomodulin) during the dengue-4 epidemic in Brazil. Laboratory-confirmed dengue cases had higher levels of TNF-α (p < 0.001), IL-6 (p = 0.005), IL-10 (p < 0.001), IL-18 (p = 0.001), CXCL8/IL-8 (p < 0.001), CCL2/MCP-1 (p < 0.001), CXCL10/IP-10 (p = 0.001), fibrinogen (p = 0.037), D-dimer (p = 0.01) and TFPI (p = 0.042) and lower levels of TF (p = 0.042) compared to healthy controls. A principal component analysis (PCA) distinguished between two profiles of mediators of inflammation and coagulation: protective (TNF-α, IL-1ß and CXCL8/IL-8) and pathological (IL-6, TF and TFPI). Lastly, multivariate logistic regression analysis identified high aspartate aminotransferase-to-platelet ratio index (APRI) as independent risk factors associated with severity (adjusted OR: 1.33; 95% CI 1.03-1.71; p = 0.027), the area under the receiver operating characteristics curve (AUC) was 0.775 (95% CI 0.681-0.869) and an optimal cutoff value was 1.4 (sensitivity: 76%; specificity: 79%), so it could be a useful marker for the triage of patients attending primary care centers.


Subject(s)
Blood Coagulation Factors/immunology , Chemokines/blood , Cytokines/blood , Dengue Virus/immunology , Dengue/immunology , Severity of Illness Index , Adult , Biomarkers/blood , Blood Coagulation Factors/classification , Brazil , Chemokines/classification , Chemokines/immunology , Cytokines/classification , Cytokines/immunology , Dengue/blood , Female , Humans , Inflammation , Male , Middle Aged
SELECTION OF CITATIONS
SEARCH DETAIL