Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 311
Filter
1.
Biomed Microdevices ; 26(3): 33, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39023652

ABSTRACT

Stem cells are crucial in tissue engineering, and their microenvironment greatly influences their behavior. Among the various dental stem cell types, stem cells from the apical papilla (SCAPs) have shown great potential for regenerating the pulp-dentin complex. Microenvironmental cues that affect SCAPs include physical and biochemical factors. To research optimal pulp-dentin complex regeneration, researchers have developed several models of controlled biomimetic microenvironments, ranging from in vivo animal models to in vitro models, including two-dimensional cultures and three-dimensional devices. Among these models, the most powerful tool is a microfluidic microdevice, a tooth-on-a-chip with high spatial resolution of microstructures and precise microenvironment control. In this review, we start with the SCAP microenvironment in the regeneration of pulp-dentin complexes and discuss research models and studies related to the biological process.


Subject(s)
Dental Papilla , Lab-On-A-Chip Devices , Stem Cells , Humans , Stem Cells/cytology , Dental Papilla/cytology , Animals , Cellular Microenvironment , Dental Pulp/cytology , Tissue Engineering/instrumentation , Stem Cell Niche , Dentin/cytology
2.
Mol Biol Rep ; 51(1): 710, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38824241

ABSTRACT

BACKGROUND: Circular RNA (circRNA) is a key player in regulating the multidirectional differentiation of stem cells. Previous research by our group found that the blue light-emitting diode (LED) had a promoting effect on the osteogenic/odontogenic differentiation of human stem cells from apical papilla (SCAPs). This research aimed to investigate the differential expression of circRNAs during the osteogenic/odontogenic differentiation of SCAPs regulated by blue LED. MATERIALS AND METHODS: SCAPs were divided into the irradiation group (4 J/cm2) and the control group (0 J/cm2), and cultivated in an osteogenic/odontogenic environment. The differentially expressed circRNAs during osteogenic/odontogenic differentiation of SCAPs promoted by blue LED were detected by high-throughput sequencing, and preliminarily verified by qRT-PCR. Functional prediction of these circRNAs was performed using Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) and the circRNA-miRNA-mRNA networks were also constructed. RESULTS: It showed 301 circRNAs were differentially expressed. GO and KEGG analyses suggested that these circRNAs were associated with some signaling pathways related to osteogenic/odontogenic differentiation. And the circRNA-miRNA-mRNA networks were also successfully constructed. CONCLUSION: CircRNAs were involved in the osteogenic/odontogenic differentiation of SCAPs promoted by blue LED. In this biological process, circRNA-miRNA-mRNA networks served an important purpose, and circRNAs regulated this process through certain signaling pathways.


Subject(s)
Cell Differentiation , Dental Papilla , Light , Odontogenesis , Osteogenesis , RNA, Circular , Stem Cells , RNA, Circular/genetics , RNA, Circular/metabolism , Humans , Osteogenesis/genetics , Cell Differentiation/genetics , Stem Cells/metabolism , Stem Cells/cytology , Odontogenesis/genetics , Dental Papilla/cytology , Dental Papilla/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Gene Ontology , Cells, Cultured , Gene Expression Profiling/methods , RNA, Messenger/genetics , RNA, Messenger/metabolism , Gene Regulatory Networks , High-Throughput Nucleotide Sequencing/methods , Gene Expression Regulation/radiation effects , Blue Light
3.
J Appl Oral Sci ; 32: e20230449, 2024.
Article in English | MEDLINE | ID: mdl-38896639

ABSTRACT

OBJECTIVE: To explore the feasibility of injectable platelet-rich fibrin (i-PRF) in regenerative endodontics by comparing the effect of i-PRF and platelet-rich fibrin (PRF) on the biological behavior and angiogenesis of human stem cells from the apical papilla (SCAPs). METHODOLOGY: i-PRF and PRF were obtained from venous blood by two different centrifugation methods, followed by hematoxylin-eosin (HE) staining and scanning electron microscopy (SEM). Enzyme-linked immunosorbent assay (ELISA) was conducted to quantify the growth factors. SCAPs were cultured with different concentrations of i-PRF extract (i-PRFe) and PRF extract (PRFe), and the optimal concentrations were selected using the Cell Counting Kit-8 (CCK-8) assay. The cell proliferation and migration potentials of SCAPs were then observed using the CCK-8 and Transwell assays. Mineralization ability was detected by alizarin red staining (ARS), and angiogenesis ability was detected by tube formation assay. Real-time quantitative polymerase chain reaction (RT-qPCR) was performed to evaluate the expression of genes related to mineralization and angiogenesis. The data were subjected to statistical analysis. RESULTS: i-PRF and PRF showed a similar three-dimensional fibrin structure, while i-PRF released a higher concentration of growth factors than PRF ( P <.05). 1/4× i-PRFe and 1/4× PRFe were selected as the optimal concentrations. The cell proliferation rate of the i-PRFe group was higher than that of the PRFe group ( P <.05), while no statistical difference was observed between them in terms of cell mitigation ( P >.05). More importantly, our results showed that i-PRFe had a stronger effect on SCAPs than PRFe in facilitating mineralization and angiogenesis, with the consistent result of RT-qPCR ( P <.05). CONCLUSION: This study revealed that i-PRF released a higher concentration of growth factors and was superior to PRF in promoting proliferation, mineralization and angiogenesis of SCAPs, which indicates that i-PRF could be a promising biological scaffold for application in pulp regeneration.


Subject(s)
Cell Proliferation , Enzyme-Linked Immunosorbent Assay , Intercellular Signaling Peptides and Proteins , Microscopy, Electron, Scanning , Neovascularization, Physiologic , Platelet-Rich Fibrin , Real-Time Polymerase Chain Reaction , Regenerative Endodontics , Humans , Cell Proliferation/drug effects , Neovascularization, Physiologic/drug effects , Regenerative Endodontics/methods , Cells, Cultured , Reproducibility of Results , Cell Movement/drug effects , Stem Cells/drug effects , Time Factors , Feasibility Studies , Analysis of Variance , Dental Papilla/drug effects , Dental Papilla/cytology , Reference Values
4.
Exp Mol Med ; 56(6): 1426-1438, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38825638

ABSTRACT

Methyltransferase-like 3 (METTL3) is a crucial element of N6-methyladenosine (m6A) modifications and has been extensively studied for its involvement in diverse biological and pathological processes. In this study, we explored how METTL3 affects the differentiation of stem cells from the apical papilla (SCAPs) into odonto/osteoblastic lineages through gain- and loss-of-function experiments. The m6A modification levels were assessed using m6A dot blot and activity quantification experiments. In addition, we employed Me-RIP microarray experiments to identify specific targets modified by METTL3. Furthermore, we elucidated the molecular mechanism underlying METTL3 function through dual-luciferase reporter gene experiments and rescue experiments. Our findings indicated that METTL3+/- mice exhibited significant root dysplasia and increased bone loss. The m6A level and odonto/osteoblastic differentiation capacity were affected by the overexpression or inhibition of METTL3. This effect was attributed to the acceleration of pre-miR-665 degradation by METTL3-mediated m6A methylation in cooperation with the "reader" protein YTHDF2. Additionally, the targeting of distal-less homeobox 3 (DLX3) by miR-665 and the potential direct regulation of DLX3 expression by METTL3, mediated by the "reader" protein YTHDF1, were demonstrated. Overall, the METTL3/pre-miR-665/DLX3 pathway might provide a new target for SCAP-based tooth root/maxillofacial bone tissue regeneration.


Subject(s)
Cell Differentiation , Homeodomain Proteins , Methyltransferases , MicroRNAs , Stem Cells , Transcription Factors , Methyltransferases/metabolism , Methyltransferases/genetics , Animals , Cell Differentiation/genetics , Homeodomain Proteins/metabolism , Homeodomain Proteins/genetics , Mice , MicroRNAs/genetics , MicroRNAs/metabolism , Stem Cells/metabolism , Stem Cells/cytology , Transcription Factors/metabolism , Transcription Factors/genetics , Methylation , Adenosine/analogs & derivatives , Adenosine/metabolism , Dental Papilla/cytology , Dental Papilla/metabolism , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics
5.
J Dent ; 146: 105028, 2024 07.
Article in English | MEDLINE | ID: mdl-38719135

ABSTRACT

AIM: Three-dimensional (3D) cell culture systems perform better in resembling tissue or organism structures compared with traditional 2D models. Organs-on-chips (OoCs) are becoming more efficient 3D models. This study aimed to create a novel simplified dentin-on-a-chip using microfluidic chip technology and tissue engineering for screening dental materials. METHODOLOGY: A microfluidic device with three channels was designed for creating 3D dental tissue constructs using stem cells from the apical papilla (SCAP) and gelatin methacrylate (GelMA). The study investigated the effect of varying cell densities and GelMA concentrations on the layer features formed within the microfluidic chip. Cell viability and distribution were evaluated through live/dead staining and nuclei/F-actin staining. The osteo/odontogenic potential was assessed through ALP staining and Alizarin red staining. The impact of GelMA concentrations (5 %, 10 %) on the osteo/odontogenic differentiation trajectory of SCAP was also studied. RESULTS: The 3D tissue constructs maintained high viability and favorable spreading within the microfluidic chip for 3-7 days. A cell seeding density of 2 × 104 cells/µL was found to be the most optimal choice, ensuring favorable cell proliferation and even distribution. GelMA concentrations of 5 % and 10 % proved to be most effective for promoting cell growth and uniform distribution. Within the 5 % GelMA group, SCAP demonstrated higher osteo/odontogenic differentiation than that in the 10 % GelMA group. CONCLUSION: In 3D culture, GelMA concentration was found to regulate the osteo/odontogenic differentiation of SCAP. The study recommends a seeding density of 2 × 104 cells/µL of SCAP within 5 % GelMA for constructing simplified dentin-on-a-chip. CLINICAL SIGNIFICANCE: This study built up the 3D culture protocol, and induced odontogenic differentiation of SCAP, thus forming the simplified dentin-on-a-chip and paving the way to be used as a well-defined biological model for regenerative endodontics. It may serve as a potential testing platform for cell differentiation.


Subject(s)
Cell Differentiation , Cell Proliferation , Cell Survival , Dental Papilla , Dentin , Gelatin , Lab-On-A-Chip Devices , Tissue Engineering , Tissue Engineering/methods , Humans , Dental Papilla/cytology , Stem Cells/cytology , Odontogenesis , Osteogenesis/physiology , Methacrylates , Cell Culture Techniques , Microfluidics/methods , Microfluidics/instrumentation , Cell Culture Techniques, Three Dimensional/methods , Cell Culture Techniques, Three Dimensional/instrumentation , Cells, Cultured
6.
J Cell Biochem ; 125(7): e30577, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38720665

ABSTRACT

Odontoblast differentiation is a key process in dentin formation. Mouse dental papilla cells (mDPCs) are pivotal in dentinogenesis through their differentiation into odontoblasts. Odontoblast differentiation is intricately controlled by transcription factors (TFs) in a spatiotemporal manner. Previous research explored the role of RUNX2 and KLF4 in odontoblast lineage commitment, respectively. Building on bioinformatics analysis of our previous ATAC-seq profiling, we hypothesized that KLF4 potentially collaborates with RUNX2 to exert its biological role. To investigate the synergistic effect of multiple TFs in odontoblastic differentiation, we first examined the spatiotemporal expression patterns of RUNX2 and KLF4 in dental papilla at the bell stage using immunostaining techniques. Notably, RUNX2 and KLF4 demonstrated colocalization in preodontoblast. Further, immunoprecipitation and proximity ligation assays verified the interaction between RUNX2 and KLF4 in vitro. Specifically, the C-terminus of RUNX2 was identified as the interacting domain with KLF4. Functional implications of this interaction were investigated using small hairpin RNA-mediated knockdown of Runx2, Klf4, or both. Western blot analysis revealed a marked decrease in DSPP expression, an odontoblast differentiation marker, particularly in the double knockdown condition. Additionally, alizarin red S staining indicated significantly reduced mineralized nodule formation in this group. Collectively, our findings highlight the synergistic interaction between RUNX2 and KLF4 in promoting odontoblast differentiation from mDPCs. This study contributes to a more comprehensive understanding of the regulatory network of TFs governing odontoblast differentiation.


Subject(s)
Cell Differentiation , Core Binding Factor Alpha 1 Subunit , Dental Papilla , Kruppel-Like Factor 4 , Kruppel-Like Transcription Factors , Odontoblasts , Kruppel-Like Factor 4/metabolism , Odontoblasts/metabolism , Odontoblasts/cytology , Animals , Core Binding Factor Alpha 1 Subunit/metabolism , Core Binding Factor Alpha 1 Subunit/genetics , Kruppel-Like Transcription Factors/metabolism , Kruppel-Like Transcription Factors/genetics , Mice , Dental Papilla/cytology , Dental Papilla/metabolism
7.
Matrix Biol ; 129: 1-14, 2024 May.
Article in English | MEDLINE | ID: mdl-38490466

ABSTRACT

The coordination between odontoblastic differentiation and directed cell migration of mesenchymal progenitors is necessary for regular dentin formation. The synthesis and degradation of hyaluronan (HA) in the extracellular matrix create a permissive niche that directly regulates cell behaviors. However, the role and mechanisms of HA degradation in dentin formation remain unknown. In this work, we present that HA digestion promotes odontoblastic differentiation and cell migration of mouse dental papilla cells (mDPCs). Hyaluronidase 2 (HYAL2) is responsible for promoting odontoblastic differentiation through degrading HA, while hyaluronidase 1 (HYAL1) exhibits negligible effect. Silencing Hyal2 generates an extracellular environment rich in HA, which attenuates F-actin and filopodium formation and in turn inhibits cell migration of mDPCs. In addition, activating PI3K/Akt signaling significantly rescues the effects of HA accumulation on cytodifferentiation. Taken together, the results confirm the contribution of HYAL2 to HA degradation in dentinogenesis and uncover the mechanism of the HYAL2-mediated HA degradation in regulating the odontoblastic differentiation and migration of mDPCs.


Subject(s)
Cell Differentiation , Cell Movement , Dental Papilla , Hyaluronic Acid , Hyaluronoglucosaminidase , Odontoblasts , Animals , Hyaluronoglucosaminidase/metabolism , Hyaluronoglucosaminidase/genetics , Mice , Hyaluronic Acid/metabolism , Odontoblasts/metabolism , Odontoblasts/cytology , Dental Papilla/cytology , Dental Papilla/metabolism , Signal Transduction , GPI-Linked Proteins/metabolism , GPI-Linked Proteins/genetics , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-akt/genetics , Cells, Cultured , Phosphatidylinositol 3-Kinases/metabolism , Phosphatidylinositol 3-Kinases/genetics
8.
Int Endod J ; 55(3): 263-274, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34807471

ABSTRACT

AIM: To evaluate the effects of hsa-miRNA-143-3p on the cytodifferentiation of human stem cells from the apical papilla (hSCAPs) and the post-transcriptional regulation of Nuclear factor I-C (NFIC). METHODOLOGY: miRNA expression profiles in human immature permanent teeth and during hSCAP differentiation were examined. hSCAPs were treated with miR-143-3p overexpression or silencing viruses, and the proliferation and odontogenic and osteogenic differentiation of these stem cells, and the involvement of the NFIC pathway, were investigated. Luciferase reporter and NFIC mutant plasmids were used to confirm NFIC mRNA as a direct target of miR-143-3p. NFIC expression analysis in the miR-143-3p overexpressing hSCAPs was used to investigate whether miR-143-3p functioned by targeting NFIC. Student's t-test and chi-square tests were used for statistical analysis. RESULTS: miR-143-3p expression was screened by microarray profiling and was found to be significantly reduced during hSCAP differentiation (p < .05). Overexpression of miR-143-3p inhibited the mineralization of hSCAPs significantly (p < .05) and downregulated the levels of odontogenic differentiation markers (NFIC [p < .05], DSP [p < .01] and KLF4 [p < .01]), whereas silencing of miR-143-3p had the opposite effect. The luciferase reporter gene detection and bioinformatic approaches identified NFIC mRNA as a potential target of miR-143-3p. NFIC overexpression reversed the inhibitory effect of miR-143-3p on the odontogenic differentiation of hSCAPs. CONCLUSIONS: miR-143-3p maintained the stemness of hSCAPs and modulated their differentiation negatively by directly targeting NFIC. Thus, inhibition of this miRNA represents a potential strategy to promote the regeneration of damaged tooth roots.


Subject(s)
Cell Differentiation , Dental Papilla/cytology , MicroRNAs , NFI Transcription Factors , Cells, Cultured , Humans , MicroRNAs/genetics , NFI Transcription Factors/genetics , Osteogenesis , Stem Cells
9.
Arch Oral Biol ; 131: 105264, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34598025

ABSTRACT

OBJECTIVE: Insulin-like growth factor 1 (IGF1) is one of the vital factors in regenerative endodontics. Previous studies have focused on the role of IGF1 in the mineralization of dental tissues. However, the role of IGF1 in the neural differentiation of dental stem cells was little discussed. DESIGN: IGF1 was overexpressed in human stem cells from the apical papilla (hSCAPs) by lentivirus and knocked down in hSCAPs by small interfering RNA. The neural differentiation level of hSCAPs was investigated histologically by HE staining and Nissl staining after neural induction for 3 days. The expression of proteins was examined by western blot and immunofluorescence. RESULTS: IGF1 promoted neural differentiation of hSCAPs, more cell processes and Nissl-positive body stained cells. IGF1 overexpression could both promote glial differentiation in hSCAPs, characterized by the increase of S100ß and GFAP proteins, and neuronal differentiation, characterized by the increase of ßIII-tubulin and functional GAD67/vGLUT1 proteins. Conversely, IGF1 knockdown suppressed both glial and neuronal differentiation. IGF1 activated AKT to regulate the early neural differentiation of hSCAPs. CONCLUSIONS: The results indicate IGF1 could promote neural differentiation of hSCAPs by activating AKT signaling and provide a cue for the candidate of induced neural seeding cells in regenerative endodontics.


Subject(s)
Cell Differentiation , Insulin-Like Growth Factor I , Stem Cells , Cells, Cultured , Dental Papilla/cytology , Humans , Lentivirus , Signal Transduction , Stem Cells/cytology
10.
Biomed Res Int ; 2021: 1481215, 2021.
Article in English | MEDLINE | ID: mdl-34660780

ABSTRACT

Currently, it still remains a difficult problem to treat apical insufficiency of young permanent teeth resulted from pulp necrosis or periapical periodontitis. Previous studies have demonstrated that the treatment of revascularization using stem cells from apical papilla (SCAPs) results in increased root length and thickness of traumatized immature teeth and necrotic pulp. In this study, we investigated the role of 1,25-dihydroxyvitamin D3 in regulating the adhesion, spreading, proliferation, and osteogenic differentiation of SCAP, laying the foundation for subsequent clinical drug development. The immature tooth samples were collected in clinical treatment. SCAPs with stable passage ability were isolated and cultured. The multidifferentiation potential was determined by directed induction culture, while the stem cell characteristics were identified by flow cytometry. There were three groups: group A-SCAPs general culture group; group B-SCAPs osteogenesis induction culture group; and group C-SCAPs osteogenesis induction culture+1,25-dihydroxyvitamin D3 group, and the groups were compared statistically. The proliferation of SCAPs in each groups was detected through CCK-8 assay. RT-qPCR was used to detect the transcription levels of Runx2, ALP, Col I, and OCN of SCAPs in each groups. Results exhibited that the isolated SCAPs had multidifferentiation potential and stem cell characteristics. After 24 h culturing, cells in group C spread better than those in groups A and B. The proliferation activity of SCAPs factored by CCK-8 ranked as group C > group B > group A, while the transcription levels of Runx2, ALP, Col I, and OCN leveled as group C > group B > group A. These results suggested that 1,25-dihydroxyvitamin D3 can significantly promote the adhesion, spreading, and proliferation of SACPs and improve the osteogenic differentiation of SCAPs by means of regulating upward the transcription level of osteogenic differentiation marker.


Subject(s)
Calcitriol/pharmacology , Dental Papilla/physiology , Odontogenesis/drug effects , Osteogenesis/drug effects , Stem Cells/physiology , Adolescent , Bone Density Conservation Agents/pharmacology , Cell Adhesion , Cell Differentiation , Cell Movement , Cell Proliferation , Cells, Cultured , Child , Dental Papilla/cytology , Dental Papilla/drug effects , Humans , Stem Cells/cytology , Stem Cells/drug effects
11.
Molecules ; 26(6)2021 Mar 12.
Article in English | MEDLINE | ID: mdl-33809391

ABSTRACT

Stem cells from apical papilla (SCAPs) are desirable sources of dentin regeneration. Epigallocatechin-3-gallate (EGCG), a natural component of green tea, shows potential in promoting the osteogenic differentiation of bone mesenchymal stem cells. However, whether EGCG regulates the odontogenic differentiation of SCAPs and how this occurs remain unknown. SCAPs from immature human third molars (16-20 years, n = 5) were treated with a medium containing different concentrations of EGCG or bone morphogenic protein 2 (BMP2), with or without LDN193189 (an inhibitor of the canonical BMP pathway). Cell proliferation and migration were analyzed using a CCK-8 assay and wound-healing assay, respectively. Osteo-/odontogenic differentiation was evaluated via alkaline phosphatase staining, alizarin red S staining, and the expression of osteo-/odontogenic markers using qPCR and Western blotting. We found that EGCG (1 or 10 µM) promoted the proliferation of SCAPs, increased alkaline phosphatase activity and mineral deposition, and upregulated the expression of osteo-/odontogenic markers including dentin sialophosphoprotein (Dspp), dentin matrix protein-1 (Dmp-1), bone sialoprotein (Bsp), and Type I collagen (Col1), along with the elevated expression of BMP2 and phosphorylation level of Smad1/5/9 (p < 0.01). EGCG at concentrations below 10 µM had no significant influence on cell migration. Moreover, EGCG-induced osteo-/odontogenic differentiation was significantly attenuated via LDN193189 treatment (p < 0.01). Furthermore, EGCG showed the ability to promote mineralization comparable with that of recombinant BMP2. Our study demonstrated that EGCG promotes the osteo-/odontogenic differentiation of SCAPs through the BMP-Smad signaling pathway.


Subject(s)
Catechin/analogs & derivatives , Dental Papilla/cytology , Dental Papilla/drug effects , Multipotent Stem Cells/cytology , Multipotent Stem Cells/drug effects , Odontogenesis/drug effects , Osteogenesis/drug effects , Adolescent , Biomarkers/metabolism , Bone Morphogenetic Protein 2/metabolism , Catechin/pharmacology , Cell Differentiation/drug effects , Cell Movement/drug effects , Cell Proliferation/drug effects , Cells, Cultured , Dental Papilla/metabolism , Humans , Multipotent Stem Cells/metabolism , Regeneration/drug effects , Signal Transduction/drug effects , Smad Proteins/metabolism , Young Adult
12.
PLoS One ; 16(3): e0233944, 2021.
Article in English | MEDLINE | ID: mdl-33770099

ABSTRACT

During tooth development, dental papilla cells differentiate into odontoblasts with polarized morphology and cell function. Our previous study indicated that the C-Jun N-terminal kinase (JNK) pathway regulates human dental papilla cell adhesion, migration, and formation of focal adhesion complexes. The aim of this study was to further examine the role of the JNK pathway in dental papilla cell polarity formation. Histological staining, qPCR, and Western Blot suggested the activation of JNK signaling in polarized mouse dental papilla tissue. After performing an in vitro tooth germ organ culture and cell culture, we found that JNK inhibitor SP600125 postponed tooth germ development and reduced the polarization, migration and differentiation of mouse dental papilla cells (mDPCs). Next, we screened up-regulated polarity-related genes during dental papilla development and mDPCs or A11 differentiation. We found that Prickle3, Golga2, Golga5, and RhoA were all up-regulated, which is consistent with JNK signaling activation. Further, constitutively active RhoA mutant (RhoA Q63L) partly rescued the inhibition of SP600125 on cell differentiation and polarity formation of mDPCs. To sum up, this study suggests that JNK signaling has a positive role in the formation of dental papilla cell polarization.


Subject(s)
Dental Papilla/metabolism , JNK Mitogen-Activated Protein Kinases/metabolism , Animals , Anthracenes/pharmacology , Cell Differentiation/drug effects , Cell Movement/drug effects , Cell Polarity/drug effects , Cells, Cultured , Dental Papilla/cytology , Dental Papilla/pathology , JNK Mitogen-Activated Protein Kinases/genetics , MAP Kinase Signaling System/drug effects , Mice , Mice, Inbred ICR , Mutagenesis , Tooth Germ/growth & development , Tooth Germ/metabolism , Tooth Germ/pathology , rhoA GTP-Binding Protein/genetics , rhoA GTP-Binding Protein/metabolism
13.
Molecules ; 26(4)2021 Feb 19.
Article in English | MEDLINE | ID: mdl-33669807

ABSTRACT

Dental papilla cells (DPCs), precursors of odontoblasts, are considered promising seed cells for tissue engineering. Emerging evidence suggests that melatonin promotes odontoblastic differentiation of DPCs and affects tooth development, although the precise mechanisms remain unknown. Retinoid acid receptor-related orphan receptor α (RORα) is a nuclear receptor for melatonin that plays a critical role in cell differentiation and embryonic development. This study aimed to explore the role of RORα in odontoblastic differentiation and determine whether melatonin exerts its pro-odontogenic effect via RORα. Herein, we observed that RORα was expressed in DPCs and was significantly increased during odontoblastic differentiation in vitro and in vivo. The overexpression of RORα upregulated the expression of odontogenic markers, alkaline phosphatase (ALP) activity and mineralized nodules formation (p < 0.05). In contrast, odontoblastic differentiation of DPCs was suppressed by RORα knockdown. Moreover, we found that melatonin elevated the expression of odontogenic markers, which was accompanied by the upregulation of RORα (p < 0.001). Utilising small interfering RNA, we further demonstrated that RORα inhibition attenuated melatonin-induced odontogenic gene expression, ALP activity and matrix mineralisation (p < 0.01). Collectively, these results provide the first evidence that RORα can promote odontoblastic differentiation of DPCs and mediate the pro-odontogenic effect of melatonin.


Subject(s)
Cell Differentiation , Dental Papilla/cytology , Melatonin/pharmacology , Nuclear Receptor Subfamily 1, Group F, Member 1/metabolism , Odontoblasts/cytology , Odontoblasts/metabolism , Odontogenesis , Animals , Cell Differentiation/drug effects , Cells, Cultured , Odontoblasts/drug effects , Odontogenesis/drug effects , Rats, Sprague-Dawley , Up-Regulation/drug effects
14.
Int J Biochem Cell Biol ; 134: 105962, 2021 05.
Article in English | MEDLINE | ID: mdl-33636397

ABSTRACT

INTRODUCTION: SIRT4 is a mitochondrial sirtuin. Owing to its dependance on the cofactor nicotinamide adenine dinucleotide (NAD+), SIRT4 can act as a mitochondrial metabolic sensor of cellular energy status. We have previously shown that enhancement of mitochondrial functions is vital for the odontogenic diff ;erentiation of dental papilla cells (DPCs) during dentinogenesis. However, whether SIRT4 serves as an effective regulator of DPC diff ;erentiation by affecting mitochondrial functions remains unexplored. METHODS: Primary DPCs obtained from the first molar dental papilla of neonatal Sprague-Dawley rats were used in this study. The expression pattern of SIRT4 was observed by immunohistochemistry in the first molar of postnatal day 1 (P1) rats. The changes in SIRT4 expression during odontogenic DPC differentiation were evaluated using real-time quantitative polymerase chain reaction (PCR), western blotting, and immunofluorescence. DPCs with loss (small interfering RNA-mediated knockdown) and gain (plasmid transfection-induced overexpression) of SIRT4 function were used to explore the role of SIRT4 in odontogenic differentiation. Mitochondrial function assays were performed using ATP, reactive oxygen species (ROS), and NAD+/NADH kits to investigate the potential mechanisms involved in SIRT4-mediated dentinogenesis. RESULTS: In the present study, we found that SIRT4 expression increased in a time-dependent manner during odontogenic differentiation bothin vivo and in vitro. Sirt4 knockdown resulted in reduced odontogenic differentiation and mineralization, whereas an opposite effect was observed with SIRT4 overexpression. Furthermore, our results verified that in addition to reducing DPC differentiation, Sirt4 knockdown could also significantly reduce ATP levels, elevate the NAD+/NADH ratio, and increase ROS levels. CONCLUSION: SIRT4 regulates mitochondrial functions and the antioxidant capacity of DPCs, thereby influencing dentin formation and tooth development, a phenomenon that may provide a foundation for better understanding the specific molecular mechanisms underlying dentin regeneration.


Subject(s)
Dental Papilla/cytology , Mitochondria/metabolism , Odontogenesis , Reactive Oxygen Species/metabolism , Sirtuins/metabolism , Animals , Animals, Newborn , Cell Differentiation/physiology , Dental Papilla/metabolism , Models, Animal , Primary Cell Culture , Rats , Rats, Sprague-Dawley , Sirtuins/genetics
15.
Cell Tissue Res ; 383(2): 603-616, 2021 Feb.
Article in English | MEDLINE | ID: mdl-32803323

ABSTRACT

The dental pulp, a non-mineralized connective tissue uniquely encased within the cavity of the tooth, provides a niche for diverse arrays of dental mesenchymal stem cells. Stem cells in the dental pulp, including dental pulp stem cells (DPSCs), stem cells from human exfoliated deciduous teeth (SHEDs) and stem cells from apical papilla (SCAPs), have been isolated from human tissues with an emphasis on their potential application to regenerative therapies. Recent studies utilizing mouse genetic models shed light on the identities of these mesenchymal progenitor cells derived from neural crest cells (NCCs) in their native conditions, particularly regarding how they contribute to homeostasis and repair of the dental tissue. The current concept is that at least two distinct niches for stem cells exist in the dental pulp, e.g., the perivascular niche and the perineural niche. The precise identities of these stem cells and their niches are now beginning to be unraveled thanks to sophisticated mouse genetic models, which lead to better understanding of the fundamental properties of stem cells in the dental pulp and the apical papilla in humans. The new knowledge will be highly instrumental for developing more effective stem cell-based regenerative therapies to repair teeth in the future.


Subject(s)
Dental Papilla/cytology , Dental Pulp/cytology , Models, Genetic , Stem Cells/cytology , Animals , Biomarkers/metabolism , Mice , Stem Cell Niche
16.
J Biomed Mater Res A ; 109(2): 207-218, 2021 02.
Article in English | MEDLINE | ID: mdl-32441418

ABSTRACT

Cyclic adenosine monophosphate (cAMP) is a second messenger involved in the dental regeneration. However, efficient long-lasting delivery of cAMP that is sufficient to mimic the in vivo microenvironment remains a major challenge. Here, cAMP was loaded in stem cells from apical papilla (SCAPs) using layer-by-layer self-assembly with gelatin and alginate polyelectrolytes (LBL-cAMP-SCAPs). LBL-cAMP-SCAPs expressed cAMP and increased the phosphorylation level of cAMP-response element-binding protein (CREB) which were evaluated by immunofluorescence and western blotting (WB). Enzyme-linked immunosorbent assay (ELISA) demonstrated that a sustained release of cAMP and vascular endothelial growth factor (VEGF) were present up to 14 days. Scanning electron microscopy (SEM) found LBL-coated SCAPs exhibited a spheroid-like morphology. CCK8 and live/dead staining showed that LBL treatment had no significant effect on cell proliferation and viability. LBL-cAMP-SCAPs enhanced mineralized nodule formation and up-regulated the mRNA levels of the osteogenesis-related genes, as well as related transcription factor-2 protein level which were revealed by Alizarin red staining, RT-PCR and WB, respectively. In conclusion, LBL self-assembly loaded with cAMP promoted the osteo/odontogenic differentiation of SCAPs, thereby providing a potential strategy for bioactive molecular delivery in dental regeneration.


Subject(s)
Cyclic AMP/chemistry , Dental Papilla/drug effects , Odontogenesis/drug effects , Osteogenesis/drug effects , Polyelectrolytes/chemistry , Stem Cells/drug effects , Alginates/chemistry , Cell Differentiation/drug effects , Cell Proliferation/drug effects , Cells, Cultured , Cyclic AMP Response Element-Binding Protein/chemistry , Dental Papilla/cytology , Gelatin/chemistry , Humans , Odontogenesis/genetics , Osteogenesis/genetics , RNA, Messenger/biosynthesis , Up-Regulation/drug effects , Vascular Endothelial Growth Factor A/metabolism
17.
BMC Dev Biol ; 20(1): 22, 2020 11 18.
Article in English | MEDLINE | ID: mdl-33203369

ABSTRACT

BACKGROUND: Tissue regeneration mediated by mesenchymal stem cells (MSCs) is deemed a desirable way to repair teeth and craniomaxillofacial tissue defects. Nevertheless, the molecular mechanisms about cell proliferation and committed differentiation of MSCs remain obscure. Previous researches have proved that lysine demethylase 2A (KDM2A) performed significant function in the regulation of MSC proliferation and differentiation. SNRNP200, as a co-binding factor of KDM2A, its potential effect in regulating MSCs' function is still unclear. Therefore, stem cells from the apical papilla (SCAPs) were used to investigate the function of SNRNP200 in this research. METHODS: The alkaline phosphatase (ALP) activity assay, Alizarin Red staining, and osteogenesis-related gene expressions were used to examine osteo-/dentinogenic differentiation potential. Carboxyfluorescein diacetate, succinimidyl ester (CFSE) and cell cycle analysis were applied to detect the cell proliferation. Western blot analysis was used to evaluate the expressions of cell cycle-related proteins. RESULTS: Depletion of SNRNP200 caused an obvious decrease of ALP activity, mineralization formation and the expressions of osteo-/dentinogenic genes including RUNX2, DSPP, DMP1 and BSP. Meanwhile, CFSE and cell cycle assays revealed that knock-down of SNRNP200 inhibited the cell proliferation and blocked cell cycle at the G2/M and S phase in SCAPs. In addition, it was found that depletion of SNRNP200 up-regulated p21 and p53, and down-regulated the CDK1, CyclinB, CyclinE and CDK2. CONCLUSIONS: Depletion of SNRNP200 repressed osteo-/dentinogenic differentiation potentials and restrained cell proliferation through blocking cell cycle progression at the G2/M and S phase, further revealing that SNRNP200 has crucial effects on preserving the proliferation and differentiation potentials of dental tissue-derived MSCs.


Subject(s)
Cell Differentiation , Cell Proliferation , Dental Papilla/cytology , Mesenchymal Stem Cells/cytology , Ribonucleoproteins, Small Nuclear/metabolism , Cell Cycle Checkpoints/genetics , Cells, Cultured , Cellular Senescence/genetics , Dental Papilla/growth & development , Dentinogenesis , F-Box Proteins/metabolism , Gene Expression Regulation , Gene Knockdown Techniques , Humans , Jumonji Domain-Containing Histone Demethylases/metabolism , Osteogenesis , Protein Binding , Ribonucleoproteins, Small Nuclear/genetics
18.
Stem Cell Res Ther ; 11(1): 461, 2020 11 02.
Article in English | MEDLINE | ID: mdl-33138854

ABSTRACT

BACKGROUND: Osteogenesis is a complex biological process which requires the coordination of multiple molecular mechanisms. This research aimed to explore the biological role and underlying regulatory mechanism of circSIPA1L1 during the osteogenic differentiation of stem cells from apical papilla (SCAPs). METHODS: EdU retention assay, flow cytometry assay, and CCK-8 assay were used to evaluate the proliferation capacity of SCAPs. Western blot assay, alkaline phosphatase (ALP), and alizarin red staining (ARS) were conducted to investigate the biological roles of circSIPA1L1 and miR-204-5p. Fluorescence in situ hybridization was applied for circSIPA1L1 localization. Dual-luciferase reporter assay was performed to prove the interaction of circSIPA1L1 and miR-204-5p. RESULTS: CircSIPA1L1 had no significant effect on the proliferative capacity of SCAPs. CircSIPA1L1 promotes osteogenic differentiation of SCAPs by serving as a miRNA sponge for miR-204-5p. Either knockdown of circSIPA1L1 or overexpression of miR-204-5p significantly suppresses osteogenic differentiation of SCAPs. CONCLUSIONS: CircSIPA1L1 upregulates ALPL through targeting miR-204-5p and promotes the osteogenic differentiation of SCAPs.


Subject(s)
Cell Differentiation , MicroRNAs , Osteogenesis , RNA, Circular/genetics , Stem Cells/cytology , Alkaline Phosphatase , Cells, Cultured , Dental Papilla/cytology , GTPase-Activating Proteins , Humans , In Situ Hybridization, Fluorescence , MicroRNAs/genetics , Osteogenesis/genetics
19.
Stem Cells Dev ; 29(23): 1479-1496, 2020 12 01.
Article in English | MEDLINE | ID: mdl-32988295

ABSTRACT

The regenerative effects of stem cells derived from dental tissues have been previously investigated. This study assessed the potential of human tooth stem cells from apical papilla (SCAP) on nerve regeneration. The SCAP collected from nine individuals were characterized and polarized by exposure to interferon-γ (IFN-γ). IFN-γ increased kynurenine and interleukin-6 (IL-6) production by SCAP, without affecting the cell viability. IFN-γ-primed SCAP exhibited a decrease of brain-derived neurotrophic factor (BDNF) mRNA levels, followed by an upregulation of glial cell-derived neurotrophic factor mRNA. Ex vivo, the co-culture of SCAP with neurons isolated from the rat dorsal root ganglion induced neurite outgrowth, accompanied by increased BDNF secretion, irrespective of IFN-γ priming. In vivo, the local application of SCAP reduced the mechanical and thermal hypersensitivity in Wistar rats that had been submitted to sciatic chronic constriction injury. The SCAP also reduced the pain scores, according to the evaluation of the Grimace scale, partially restoring the myelin damage and BDNF immunopositivity secondary to nerve lesion. Altogether, our results provide novel evidence about the regenerative effects of human SCAP, indicating their potential to handle nerve injury-related complications.


Subject(s)
Dental Papilla/cytology , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells/cytology , Nerve Regeneration/physiology , Adolescent , Animals , Cell Differentiation , Cell Polarity/drug effects , Chemokines/metabolism , Chronic Disease , Constriction, Pathologic , Disease Models, Animal , Ganglia, Spinal/metabolism , Humans , Inflammation/pathology , Intercellular Signaling Peptides and Proteins/genetics , Intercellular Signaling Peptides and Proteins/metabolism , Interferon-gamma/pharmacology , Male , Neurons/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Rats, Wistar , Toll-Like Receptor 3/agonists , Toll-Like Receptor 3/metabolism , Toll-Like Receptor 4/agonists , Toll-Like Receptor 4/metabolism , Young Adult
20.
Biomed Res Int ; 2020: 4671989, 2020.
Article in English | MEDLINE | ID: mdl-32461990

ABSTRACT

OBJECTIVE: This study is aimed at evaluating the effects of platelet-rich plasma (PRP) on proliferation, viability, and odontogenic differentiation of neural crest stem-like cells (NCSCs) derived from human dental apical papilla. MATERIALS AND METHODS: Cells from apical papillae were obtained and then induced to form neural spheres. The expression of NCSC markers p75NTR and HNK-1 in neural sphere cells was detected by immunofluorescence staining. Human PRP was prepared by a 2-step centrifugation method and activated by CaCl2 and thrombin. The concentrations of PDGF-BB and TGF-ß1 in whole blood and PRP were measured by an ELISA kit. PRP in five different concentrations (0%, 2.5%, 5%, 10%, and 25%) was applied to culture NCSCs. On the 1st, 3rd, 5th, and 7th days, cell proliferation was evaluated by CCK8. Cell viability was tested by a live/dead staining kit. mRNA and protein expression of DSPP and BMP4 were analyzed by RT-qPCR and western blot, respectively. Statistical analysis was performed by a one-way analysis of variance (ANOVA) test or t-test. RESULTS: Dental apical papilla cells formed neural spheres, from which cells displayed positive expression of p75NTR and HNK-1. The concentrations of PDGF-BB and TGF-ß1 in PRP were about 3.5-fold higher than those in whole blood. 5% and 10% PRP significantly promoted proliferation of NCSCs, while 25% and 50% PRP inhibited cell proliferation from Day 3 to Day 7. Low-concentration (2.5%, 5%, and 10%) PRP slightly improved viability of NCSCs on Day 7. On the other hand, high-concentration (25% and 50%) PRP significantly inhibited viability of NCSCs from Day 3 to Day 7. RT-qPCR and western blot results indicated that 10% PRP could promote odontogenic differentiation of NCSCs on Day 7. mRNA and protein expression of DSPP and BMP4 were significantly upregulated in the 10% PRP group compared to those in the control group (P < 0.05). CONCLUSIONS: PRP is a simply acquirable blood derivative which contains high concentration of growth factors like PDGF-BB and TGF-ß1. PRP in a proper concentration could promote proliferation, viability, and odontogenic differentiation of NCSCs derived from human dental apical papilla.


Subject(s)
Cell Proliferation/drug effects , Dental Papilla/cytology , Neural Stem Cells/drug effects , Odontogenesis/drug effects , Platelet-Rich Plasma , Biological Products/pharmacology , Cell Survival/drug effects , Cells, Cultured , Humans , Neural Crest
SELECTION OF CITATIONS
SEARCH DETAIL