Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Int J Mol Sci ; 22(9)2021 May 01.
Article in English | MEDLINE | ID: mdl-34062717

ABSTRACT

Brassinosteroids are polyhydroxysteroids that are involved in different plants' biological functions, such as growth, development and resistance to biotic and external stresses. Because of its low abundance in plants, much effort has been dedicated to the synthesis and characterization of brassinosteroids analogs. Herein, we report the synthesis of brassinosteroid 24-nor-5ß-cholane type analogs with 23-benzoate function and 22,23-benzoate groups. The synthesis was accomplished with high reaction yields in a four-step synthesis route and using hyodeoxycholic acid as starting material. All synthesized analogs were tested using the rice lamina inclination test to assess their growth-promoting activity and compare it with those obtained for brassinolide, which was used as a positive control. The results indicate that the diasteroisomeric mixture of monobenzoylated derivatives exhibit the highest activity at the lowest tested concentrations (1 × 10-8 and 1 × 10-7 M), being even more active than brassinolide. Therefore, a simple synthetic procedure with high reaction yields that use a very accessible starting material provides brassinosteroid synthetic analogs with promising effects on plant growth. This exploratory study suggests that brassinosteroid analogs with similar chemical structures could be a good alternative to natural brassinosteroids.


Subject(s)
Benzoates/chemical synthesis , Brassinosteroids/chemical synthesis , Cholanes/chemical synthesis , Plant Development , Arabidopsis/growth & development , Benzoates/chemistry , Brassinosteroids/chemistry , Cholanes/chemistry , Deoxycholic Acid/chemical synthesis , Deoxycholic Acid/chemistry , Molecular Structure , Oryza/chemistry , Plant Growth Regulators , Steroids, Heterocyclic/chemistry
2.
Steroids ; 140: 45-51, 2018 12.
Article in English | MEDLINE | ID: mdl-30217787

ABSTRACT

In this work we present an efficient, environmentally friendly approach to the synthesis of a series of hyodeoxycholic acid derivatives applying Biocatalysis. Fifteen acetyl and ester derivatives, twelve of them new, were obtained through an enzymatic strategy in a fully regioselective way and in very good to excellent yield. In order to find the optimal reaction conditions, the influence of several parameters such as enzyme source, alcohol or acylating agent:substrate ratio, enzyme:substrate ratio, temperature and reaction solvent was considered. The excellent results obtained made this procedure very efficient, particularly considering the low amount of enzyme required. In addition, this methodology uses mild reaction conditions and has reduced environmental impact, making biocatalysis a suitable way to obtaining these bile acids derivatives.


Subject(s)
Biocatalysis , Deoxycholic Acid/chemistry , Deoxycholic Acid/chemical synthesis , Lipase/metabolism , Acetylation , Candida/enzymology , Chemistry Techniques, Synthetic , Esterification
3.
Biomed Pharmacother ; 106: 1082-1090, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30119174

ABSTRACT

The search for new drugs for the treatment of leishmaniasis is an important strategy for improving the current therapeutic arsenal for the disease. There are several limitations to the available drugs including high toxicity, low efficacy, prolonged parenteral administration, and high costs. Steroids are a diverse group of compounds with various applications in pharmacology. However, the antileishmanial activity of this class of molecules has not yet been explored. Therefore, in the present study, we investigated the antileishmanial activity and cytotoxicity of novel steroids against murine macrophages with a focus on the derivatives of cholesterol (CD), cholic acid (CA), and deoxycholic acid (DA). Furthermore, the mechanism of action of the best compound was assessed, and in silico studies to evaluate the physicochemical and pharmacokinetic properties were also conducted. Among the sixteen derivatives, schiffbase2, CD2 and deoxycholic acid derivatives (DOCADs) were effective against promastigotes of Leishmania species. Despite their low toxicity to macrophages, the majority of DOCADs were active against intracellular amastigotes of L. amazonensis, and DOCAD5 exhibited the best biological effect against these parasitic stages (IC50 = 15.34 µM). Neither the CA derivatives (CAD) nor DA alone inhibited the intracellular parasites. Thus, the absence of hydroxyl in the C-7 position of the steroid nucleus, as well as the modification of the acid group in DOCADs were considered important for antileishmanial activity. The treatment of L. amazonensis promastigote forms with DOCAD5 induced biochemical changes such as depolarization of the mitochondrial membrane potential, increased ROS production and cell cycle arrest. No alterations in parasite plasma membrane integrity were observed. In silico physicochemical and pharmacokinetic studies suggest that DOCAD5 could be a good candidate for an oral drug. The data demonstrate the potential antileishmanial effect of certain steroid derivatives and encourage new in vivo studies.


Subject(s)
Cholesterol/pharmacology , Deoxycholic Acid/pharmacology , Drug Discovery/methods , Leishmania/drug effects , Leishmaniasis/drug therapy , Macrophages, Peritoneal/drug effects , Trypanocidal Agents/pharmacology , Administration, Oral , Animals , Cell Cycle Checkpoints/drug effects , Cholesterol/analogs & derivatives , Cholesterol/chemical synthesis , Cholesterol/pharmacokinetics , Cholic Acid/chemical synthesis , Cholic Acid/pharmacokinetics , Cholic Acid/pharmacology , Deoxycholic Acid/analogs & derivatives , Deoxycholic Acid/chemical synthesis , Deoxycholic Acid/pharmacokinetics , Dose-Response Relationship, Drug , Leishmania/growth & development , Leishmania/metabolism , Leishmaniasis/parasitology , Macrophages, Peritoneal/parasitology , Membrane Potential, Mitochondrial/drug effects , Mice, Inbred BALB C , Mitochondria/drug effects , Mitochondria/metabolism , Models, Biological , Molecular Structure , Oxidative Stress/drug effects , Parasitic Sensitivity Tests , Structure-Activity Relationship , Trypanocidal Agents/chemical synthesis , Trypanocidal Agents/pharmacokinetics
4.
Molecules ; 23(6)2018 May 29.
Article in English | MEDLINE | ID: mdl-29844268

ABSTRACT

Natural brassinosteroids are widespread in the plant kingdom and it is known that they play an important role in regulating plant growth. In this study, two new brassinosteroid analogs with shorter side chains but keeping the diol function were synthesized. Thus, the synthesis of 2-deoxybrassinosteroids analogs of the 3α-hydroxy-24-nor, 22,23-dihydroxy-5α-cholestane side chain type is described. The starting material is a derivative from hyodeoxycholic acid (4), which was obtained with an overall yield of 59% following a previously reported five step route. The side chain of this intermediate was modified by oxidative decarboxylation to get a terminal olefin at the C22-C23 position (compound 20) and subsequent dihydroxylation of the olefin. The resulting epimeric mixture of 21a, 21b was separated and the absolute configuration at the C22 carbon for the main product 21a was elucidated by single crystal X-ray diffraction analysis of the benzoylated derivative 22. Finally, lactonization of 21a through a Baeyer-Villiger oxidation of triacetylated derivative 23, using CF3CO3H/CHCl3 as oxidant system, leads to lactones 24 and 25 in 35% and 14% yields, respectively. Deacetylation of these compounds leads to 2-deoxybrassinosteroids 18 and 19 in 86% and 81% yields. Full structural characterization of all synthesized compounds was achieved using their 1D, 2D NMR, and HRMS data.


Subject(s)
Brassinosteroids/chemical synthesis , Chemistry Techniques, Synthetic , Deoxycholic Acid/chemical synthesis , Lactones/chemical synthesis , Crystallography, X-Ray , Decarboxylation , Hydroxylation , Magnetic Resonance Spectroscopy , Oxidation-Reduction , Stereoisomerism
SELECTION OF CITATIONS
SEARCH DETAIL