Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 1.139
1.
Sci Transl Med ; 16(750): eadj7308, 2024 Jun 05.
Article En | MEDLINE | ID: mdl-38838131

Progranulin (PGRN) haploinsufficiency is a major risk factor for frontotemporal lobar degeneration with TAR DNA-binding protein 43 (TDP-43) pathology (FTLD-GRN). Multiple therapeutic strategies are in clinical development to restore PGRN in the CNS, including gene therapy. However, a limitation of current gene therapy approaches aimed to alleviate FTLD-associated pathologies may be their inefficient brain exposure and biodistribution. We therefore developed an adeno-associated virus (AAV) targeting the liver (L) to achieve sustained peripheral expression of a transferrin receptor (TfR) binding, brain-penetrant (b) PGRN variant [AAV(L):bPGRN] in two mouse models of FTLD-GRN, namely, Grn knockout and GrnxTmem106b double knockout mice. This therapeutic strategy avoids potential safety and biodistribution issues of CNS-administered AAVs and maintains sustained concentrations of PGRN in the brain after a single dose. AAV(L):bPGRN treatment reduced several FTLD-GRN-associated pathologies including severe motor function deficits, aberrant TDP-43 phosphorylation, dysfunctional protein degradation, lipid metabolism, gliosis, and neurodegeneration in the brain. The potential translatability of our findings was tested in an in vitro model using cocultured human induced pluripotent stem cell (hiPSC)-derived microglia lacking PGRN and TMEM106B and wild-type hiPSC-derived neurons. As in mice, aberrant TDP-43, lysosomal dysfunction, and neuronal loss were ameliorated after treatment with exogenous TfR-binding protein transport vehicle fused to PGRN (PTV:PGRN). Together, our studies suggest that peripherally administered brain-penetrant PGRN replacement strategies ameliorate FTLD-GRN relevant phenotypes including TDP-43 pathology, neurodegeneration, and behavioral deficits. Our data provide preclinical proof of concept for the use of this AAV platform for treatment of FTLD-GRN and potentially other CNS disorders.


Brain , Dependovirus , Disease Models, Animal , Frontotemporal Lobar Degeneration , Mice, Knockout , Progranulins , Animals , Progranulins/metabolism , Progranulins/genetics , Frontotemporal Lobar Degeneration/metabolism , Frontotemporal Lobar Degeneration/pathology , Brain/metabolism , Brain/pathology , Dependovirus/metabolism , Mice , Humans , Receptors, Transferrin/metabolism , Genetic Therapy , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Phosphorylation
2.
J Viral Hepat ; 31 Suppl 1: 26-34, 2024 04.
Article En | MEDLINE | ID: mdl-38606944

Adeno-associated virus (AAV)-based gene therapies are in clinical development for haemophilia and other genetic diseases. Since the recombinant AAV genome primarily remains episomal, it provides the opportunity for long-term expression in tissues that are not proliferating and reduces the safety concerns compared with integrating viral vectors. However, AAV integration events are detected at a low frequency. Preclinical studies in mouse models have reported hepatocellular carcinoma (HCC) after systemic AAV administration in some settings, though this has not been reported in large animal models. The risk of HCC or other cancers after AAV gene therapy in clinical studies thus remains theoretical. Potential risk factors for HCC after gene therapy are beginning to be elucidated through animal studies, but their relevance to human studies remains unknown. Studies to investigate the factors that may influence the risk of oncogenesis as well as detailed investigation of cases of cancer in AAV gene therapy patients will be important to define the potential risk of AAV genotoxicity.


Carcinoma, Hepatocellular , Liver Neoplasms , Mice , Animals , Humans , Liver Neoplasms/therapy , Liver Neoplasms/genetics , Carcinoma, Hepatocellular/pathology , Genetic Vectors , Plasmids , Genetic Therapy , Dependovirus/genetics , Dependovirus/metabolism , Virus Integration
3.
Cells ; 13(8)2024 Apr 20.
Article En | MEDLINE | ID: mdl-38667332

A deficiency in the shortest dystrophin-gene product, Dp71, is a pivotal aggravating factor for intellectual disabilities in Duchenne muscular dystrophy (DMD). Recent advances in preclinical research have achieved some success in compensating both muscle and brain dysfunctions associated with DMD, notably using exon skipping strategies. However, this has not been studied for distal mutations in the DMD gene leading to Dp71 loss. In this study, we aimed to restore brain Dp71 expression in the Dp71-null transgenic mouse using an adeno-associated virus (AAV) administrated either by intracardiac injections at P4 (ICP4) or by bilateral intracerebroventricular (ICV) injections in adults. ICP4 delivery of the AAV9-Dp71 vector enabled the expression of 2 to 14% of brain Dp71, while ICV delivery enabled the overexpression of Dp71 in the hippocampus and cortex of adult mice, with anecdotal expression in the cerebellum. The restoration of Dp71 was mostly located in the glial endfeet that surround capillaries, and it was associated with partial localization of Dp71-associated proteins, α1-syntrophin and AQP4 water channels, suggesting proper restoration of a scaffold of proteins involved in blood-brain barrier function and water homeostasis. However, this did not result in significant improvements in behavioral disturbances displayed by Dp71-null mice. The potential and limitations of this AAV-mediated strategy are discussed. This proof-of-concept study identifies key molecular markers to estimate the efficiencies of Dp71 rescue strategies and opens new avenues for enhancing gene therapy targeting cognitive disorders associated with a subgroup of severely affected DMD patients.


Brain , Dependovirus , Dystrophin , Membrane Proteins , Muscle Proteins , Animals , Male , Mice , Aquaporin 4/metabolism , Aquaporin 4/genetics , Behavior, Animal , Brain/metabolism , Brain/pathology , Calcium-Binding Proteins/metabolism , Calcium-Binding Proteins/genetics , Dependovirus/genetics , Dependovirus/metabolism , Disease Models, Animal , Dystrophin/metabolism , Dystrophin/genetics , Genetic Therapy/methods , Genetic Vectors/administration & dosage , Mice, Inbred C57BL , Mice, Knockout , Muscular Dystrophy, Duchenne/metabolism , Muscular Dystrophy, Duchenne/therapy , Muscular Dystrophy, Duchenne/genetics , Muscular Dystrophy, Duchenne/pathology
4.
Clin Transl Med ; 14(3): e1607, 2024 03.
Article En | MEDLINE | ID: mdl-38488469

Adeno-associated virus (AAV)-based therapies are recognized as one of the most potent next-generation treatments for inherited and genetic diseases. However, several biological and technological aspects of AAV vectors remain a critical issue for their widespread clinical application. Among them, the limited capacity of the AAV genome significantly hinders the development of AAV-based gene therapy. In this context, genetically modified transgenes compatible with AAV are opening up new opportunities for unlimited gene therapies for many genetic disorders. Recent advances in de novo protein design and remodelling are paving the way for new, more efficient and targeted gene therapeutics. Using computational and genetic tools, AAV expression cassette and transgenic DNA can be split, miniaturized, shuffled or created from scratch to mediate efficient gene transfer into targeted cells. In this review, we highlight recent advances in AAV-based gene therapy with a focus on its use in translational research. We summarize recent research and development in gene therapy, with an emphasis on large transgenes (>4.8 kb) and optimizing strategies applied by biomedical companies in the research pipeline. We critically discuss the prospects for AAV-based treatment and some emerging challenges. We anticipate that the continued development of novel computational tools will lead to rapid advances in basic gene therapy research and translational studies.


Dependovirus , Genetic Therapy , Dependovirus/genetics , Dependovirus/metabolism , Transgenes/genetics , Genetic Vectors/genetics
5.
Viruses ; 16(3)2024 03 12.
Article En | MEDLINE | ID: mdl-38543807

Today, adeno-associated virus (AAV)-based vectors are arguably the most promising in vivo gene delivery vehicles for durable therapeutic gene expression. Advances in molecular engineering, high-throughput screening platforms, and computational techniques have resulted in a toolbox of capsid variants with enhanced performance over parental serotypes. Despite their considerable promise and emerging clinical success, there are still obstacles hindering their broader use, including limited transduction capabilities, tissue/cell type-specific tropism and penetration into tissues through anatomical barriers, off-target tissue biodistribution, intracellular degradation, immune recognition, and a lack of translatability from preclinical models to clinical settings. Here, we first describe the transduction mechanisms of natural AAV serotypes and explore the current understanding of the systemic and cellular hurdles to efficient transduction. We then outline progress in developing designer AAV capsid variants, highlighting the seminal discoveries of variants which can transduce the central nervous system upon systemic administration, and, to a lesser extent, discuss the targeting of the peripheral nervous system, eye, ear, lung, liver, heart, and skeletal muscle, emphasizing their tissue and cell specificity and translational promise. In particular, we dive deeper into the molecular mechanisms behind their enhanced properties, with a focus on their engagement with host cell receptors previously inaccessible to natural AAV serotypes. Finally, we summarize the main findings of our review and discuss future directions.


Capsid , Dependovirus , Capsid/metabolism , Dependovirus/metabolism , Serogroup , Tissue Distribution , Capsid Proteins/genetics , Capsid Proteins/metabolism , Tropism , Genetic Vectors/genetics
6.
Cell Rep ; 43(3): 113902, 2024 Mar 26.
Article En | MEDLINE | ID: mdl-38431840

Adeno-associated virus (AAV) is a member of the genus Dependoparvovirus, which infects a wide range of vertebrate species. Here, we observe that, unlike most primate AAV isolates, avian AAV is transcriptionally silenced in human cells. By swapping the VP1 N terminus from primate AAVs (e.g., AAV8) onto non-mammalian isolates (e.g., avian AAV), we identify a minimal component of the AAV capsid that controls viral transcription and unlocks robust transduction in both human cells and mouse tissue. This effect is accompanied by increased AAV genome chromatin accessibility and altered histone methylation. Proximity ligation analysis reveals that host factors are selectively recruited by the VP1 N terminus of AAV8 but not avian AAV. Notably, these include AAV essential factors implicated in the nuclear factor κB pathway, chromatin condensation, and histone methylation. We postulate that the AAV capsid has evolved mechanisms to recruit host factors to its genome, allowing transcriptional activation in a species-specific manner.


Capsid , Dependovirus , Humans , Animals , Mice , Capsid/metabolism , Dependovirus/metabolism , Histones/metabolism , Viral Transcription , Genetic Vectors , Capsid Proteins/genetics , Capsid Proteins/metabolism , Primates , Host Specificity , Chromatin/metabolism
7.
Hum Gene Ther ; 35(5-6): 192-201, 2024 Mar.
Article En | MEDLINE | ID: mdl-38386497

Fabry disease (FD) is an inherited lysosomal storage disease caused by deficiency of α-galactosidase A (α-Gal A), an enzyme that hydrolyzes glycosphingolipids in lysosome. Accumulation of glycosphingolipids, mainly globotriaosylceramide (Gb3) in tissues, induces cellular dysfunction leading to multi-organ disorder. Gene therapy is a promising strategy that can overcome these problems, and virus vectors such as adeno-associated virus (AAV) have been used for study on gene therapy. We used human Gb3 synthetase-transgenic (TgG3S)/α-Gal A knockout (GLAko) mice. TgG3S/GLAko mice have elevated Gb3 accumulation in the major organs compared with GLAko mice, which have been widely used as a model for FD. At the age of 6 weeks, male TgG3S/GLAko were injected with 2 × 1012 vector genome AAV9 vectors containing human α-Gal A cDNA. Eight weeks after intravenous injection of AAV, α-Gal A enzymatic activity was elevated in the plasma, heart, and liver of TgG3S/GLAko mice to levels corresponding to 224%, 293%, and 105% of wild-type, respectively. Gb3 amount 8 weeks after AAV injection in the heart and liver of this group was successfully reduced to levels corresponding to 16% and 3% of untreated TgG3S/GLAko mice. Although the brain and kidney of AAV9-treated TgG3S/GLAko mice showed no significant increases in α-Gal A activity, Gb3 amount was smaller than untreated littermates (48% and 44%, respectively). In this study, systemic AAV administration did not show significant extension of the lifespan of TgG3S/GLAko mice compared with the untreated littermates. The timing of AAV injection, capsid choice, administration route, and injection volume may be important to achieve sufficient expression of α-Gal A in the whole body for the amelioration of lifespan.


Fabry Disease , Mice , Animals , Male , Humans , Infant , Fabry Disease/genetics , Fabry Disease/therapy , Dependovirus/genetics , Dependovirus/metabolism , alpha-Galactosidase/genetics , alpha-Galactosidase/metabolism , alpha-Galactosidase/therapeutic use , Mice, Knockout , Glycosphingolipids/metabolism , Glycosphingolipids/therapeutic use , Administration, Intravenous , Disease Models, Animal
8.
Thromb Res ; 236: 242-249, 2024 Apr.
Article En | MEDLINE | ID: mdl-38383218

Early gene therapy clinical trials for the treatment of Haemophilia B have been instrumental to our global understanding of gene therapy and have significantly contributed to the rapid expansion of the field. The use of adeno-associated viruses (AAVs) as vectors for gene transfer has successfully led to therapeutic expression of coagulation factor IX (FIX) in severe haemophilia B patients. Expression of FIX has remained stable following a single administration of vector for up to 8 years at levels that are clinically relevant to reduce the incidence of spontaneous bleeds and have permitted a significant change in the disease management with reduction or elimination of the need for coagulation factor concentrates. These trials have also shed light on several concerns around AAV-mediated gene transfer such as the high prevalence of pre-existing immunity against the vector capsid as well as the elevation of liver transaminases that is associated with a loss of FIX transgene expression in some patients. However, this field is advancing very rapidly with the development of increasingly more efficient strategies to overcome some of these obstacles and importantly raise the possibility of a functional cure, which has been long sought after. This review overviews the evolution of gene therapy for haemophilia B over the last two decades.


Hemophilia B , Humans , Hemophilia B/genetics , Hemophilia B/therapy , Genetic Vectors , Genetic Therapy , Factor IX/genetics , Factor IX/therapeutic use , Factor IX/metabolism , Hemorrhage/drug therapy , Dependovirus/genetics , Dependovirus/metabolism
9.
Exp Neurol ; 375: 114739, 2024 May.
Article En | MEDLINE | ID: mdl-38401852

Spinal cord injury (SCI) is a disorder of the central nervous system resulting from various factors such as trauma, inflammation, tumors, and other etiologies. This condition leads to impairment in motor, sensory, and autonomic functions below the level of injury. Limitations of current therapeutic approaches prompt an investigation into therapeutic angiogenesis through persistent local expression of proangiogenic factors. Here, we investigated whether overexpression of adeno-associated virus (AAV)-mediated vascular endothelial growth factor A (VEGFA) in mouse SCI promoted locomotor function recovery, and whether the phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt) pathway was mechanistically involved. Three weeks before SCI, AAV-VEGFA was injected at the T10 level to induce VEGFA overexpression. Neurofunctional, histological, and biochemical assessments were done to determine tissue damage and/or recovery of neuromuscular and behavioral impairments. Daily injections of the PI3K/Akt pathway inhibitor LY294002 were made to assess a possible mechanism. AAV-VEGFA overexpression dramatically improved locomotor function and ameliorated pathological injury caused by SCI. Improved motor-evoked potentials in hindlimbs and more spinal CD31-positive microvessels were observed in AAV-VEGFA-overexpressing mice. LY294002 reduced PI3K and Akt phosphorylation levels and attenuated AAV-VEGFA-related improvements. In conclusion, sustained local AAV-mediated VEGFA overexpression in spinal cord can significantly promote angiogenesis and ameliorate locomotor impairment after SCI in a contusion mouse model through activation of the PI3K/Akt signaling pathway.


Proto-Oncogene Proteins c-akt , Spinal Cord Injuries , Mice , Animals , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor A/metabolism , Dependovirus/genetics , Dependovirus/metabolism , Phosphatidylinositol 3-Kinase/metabolism , Phosphatidylinositol 3-Kinase/therapeutic use , Angiogenesis , Signal Transduction , Spinal Cord/pathology , Recovery of Function/physiology
10.
J Virol ; 98(3): e0151523, 2024 Mar 19.
Article En | MEDLINE | ID: mdl-38323812

Adeno-associated virus (AAV) requires co-infection with helper virus for efficient replication. We previously reported that Human Bocavirus 1 (HBoV1) genes, including NP1, NS2, and BocaSR, were critical for AAV2 replication. Here, we first demonstrate the essential roles of the NP1 protein in AAV2 DNA replication and protein expression. We show that NP1 binds to single-strand DNA (ssDNA) at least 30 nucleotides (nt) in length in a sequence-independent manner. Furthermore, NP1 colocalized with the BrdU-labeled AAV2 DNA replication center, and the loss of the ssDNA-binding ability of NP1 by site-directed mutation completely abolished AAV2 DNA replication. We used affinity-tagged NP1 protein to identify host cellular proteins associated with NP1 in cells cotransfected with the HBoV1 helper genes and AAV2 duplex genome. Of the identified proteins, we demonstrate that NP1 directly binds to the DBD-F domain of the RPA70 subunit with a high affinity through the residues 101-121. By reconstituting the heterotrimer protein RPA in vitro using gel filtration, we demonstrate that NP1 physically associates with RPA to form a heterologous complex characterized by typical fast-on/fast-off kinetics. Following a dominant-negative strategy, we found that NP1-RPA complex mainly plays a role in expressing AAV2 capsid protein by enhancing the transcriptional activity of the p40 promoter. Our study revealed a novel mechanism by which HBoV1 NP1 protein supports AAV2 DNA replication and capsid protein expression through its ssDNA-binding ability and direct interaction with RPA, respectively.IMPORTANCERecombinant adeno-associated virus (rAAV) vectors have been extensively used in clinical gene therapy strategies. However, a limitation of these gene therapy strategies is the efficient production of the required vectors, as AAV alone is replication-deficient in the host cells. HBoV1 provides the simplest AAV2 helper genes consisting of NP1, NS2, and BocaSR. An important question regarding the helper function of HBoV1 is whether it provides any direct function that supports AAV2 DNA replication and protein expression. Also of interest is how HBoV1 interplays with potential host factors to constitute a permissive environment for AAV2 replication. Our studies revealed that the multifunctional protein NP1 plays important roles in AAV2 DNA replication via its sequence-independent ssDNA-binding ability and in regulating AAV2 capsid protein expression by physically interacting with host protein RPA. Our findings present theoretical guidance for the future application of the HBoV1 helper genes in the rAAV vector production.


Capsid Proteins , Capsid , DNA, Single-Stranded , DNA, Viral , DNA-Binding Proteins , Dependovirus , Human bocavirus , Viral Proteins , Humans , Capsid/metabolism , Capsid Proteins/biosynthesis , Capsid Proteins/chemistry , Capsid Proteins/genetics , Capsid Proteins/metabolism , Dependovirus/genetics , Dependovirus/growth & development , Dependovirus/metabolism , DNA, Single-Stranded/biosynthesis , DNA, Single-Stranded/metabolism , DNA, Viral/biosynthesis , DNA, Viral/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Gene Expression Regulation, Viral , Human bocavirus/genetics , Human bocavirus/metabolism , Kinetics , Mutagenesis, Site-Directed , Mutation , Promoter Regions, Genetic , Protein Binding , Protein Domains , Viral Proteins/genetics , Viral Proteins/metabolism , Virus Replication
11.
Sheng Wu Gong Cheng Xue Bao ; 40(2): 473-484, 2024 Feb 25.
Article Zh | MEDLINE | ID: mdl-38369834

Adeno-associated virus (AAV) is one of the most frequently used viral vectors in the field of gene therapy. However, the industrial production of AAV is facing key bottlenecks such as low yield and high-cost. The aim of this study was to establish a technology system for production of AAV in the double virus infected insects by using multiple-gene deleted baculovirus. First, a multiple gene deleted baculovirus for AAV production was constructed, and the baculovirus titer and its effect on infected cells was examined. Subsequently, the insect cells were co-infected with the double baculovirus and the infection conditions were optimized. At the final stage, we performed AAV production based on optimized conditions, and evaluated relevant parameters including production titer and quality. The results showed that the titer of AAV produced in the multiple gene deleted baculovirus was not different from that of the wild type, but the rate of cell death was significantly slower upon infection. Using the double virus route for optimized production of AAV, the genome titers were 1.63×1011 VG/mL for Bac4.0-1 and 1.02×1011 VG/mL for Bac5.0-2, which were elevated 240% and 110%, respectively, compared with that of the wild-type. Electron microscopy observations revealed that all three groups exhibited normal AAV viral morphology and they showed similar transduction activity. Taken together, we developed an AAV production system based on the infection of insect cells using multiple-gene deleted baculovirus, which significantly improved the virus yield and showed application potential.


Baculoviridae , Dependovirus , Animals , Dependovirus/genetics , Dependovirus/metabolism , Baculoviridae/genetics , Baculoviridae/metabolism , Cell Line , Genetic Vectors , Insecta/genetics
12.
Int J Mol Sci ; 25(3)2024 Feb 02.
Article En | MEDLINE | ID: mdl-38339118

Variants within the Retinitis Pigmentosa GTPase regulator (RPGR) gene are the predominant cause of X-Linked Retinitis Pigmentosa (XLRP), a common and severe form of inherited retinal disease. XLRP is characterised by the progressive degeneration and loss of photoreceptors, leading to visual loss and, ultimately, bilateral blindness. Unfortunately, there are no effective approved treatments for RPGR-associated XLRP. We sought to investigate the efficacy of RPGRORF15 gene supplementation using a clinically relevant construct in human RPGR-deficient retinal organoids (ROs). Isogenic RPGR knockout (KO)-induced pluripotent stem cells (IPSCs) were generated using established CRISPR/Cas9 gene editing methods targeting RPGR. RPGR-KO and isogenic wild-type IPSCs were differentiated into ROs and utilised to test the adeno associated virus (AAV) RPGR (AAV-RPGR) clinical vector construct. The transduction of RPGR-KO ROs using AAV-RPGR successfully restored RPGR mRNA and protein expression and localisation to the photoreceptor connecting cilium in rod and cone photoreceptors. Vector-derived RPGR demonstrated equivalent levels of glutamylation to WT ROs. In addition, treatment with AAV-RPGR restored rhodopsin localisation within RPGR-KO ROs, reducing mislocalisation to the photoreceptor outer nuclear layer. These data provide mechanistic insights into RPGRORF15 gene supplementation functional potency in human photoreceptor cells and support the previously reported Phase I/II trial positive results using this vector construct in patients with RPGR-associated XLRP, which is currently being tested in a Phase III clinical trial.


Opsins , Retinitis Pigmentosa , Humans , Opsins/genetics , Dependovirus/genetics , Dependovirus/metabolism , Eye Proteins/genetics , Eye Proteins/metabolism , Reactive Oxygen Species/metabolism , Carrier Proteins/metabolism , Retinitis Pigmentosa/genetics , Retinitis Pigmentosa/therapy , Retinitis Pigmentosa/metabolism , Rhodopsin/genetics , Genetic Therapy/methods , Mutation
13.
Hum Gene Ther ; 35(3-4): 123-131, 2024 Feb.
Article En | MEDLINE | ID: mdl-38299967

The enzyme choline acetyltransferase (ChAT) synthesizes acetylcholine from acetyl-CoA and choline at the neuromuscular junction and at the nerve terminals of cholinergic neurons. Mutations in the ChAT gene (CHAT) result in a presynaptic congenital myasthenic syndrome (CMS) that often associates with life-threatening episodes of apnea. Knockout mice for Chat (Chat-/-) die at birth. To circumvent the lethality of this model, we crossed mutant mice possessing loxP sites flanking Chat exons 4 and 5 with mice that expressed Cre-ERT2. Injection of tamoxifen (Tx) at postnatal (P) day 11 in these mice induced downregulation of Chat, autonomic failure, weakness, and death. However, a proportion of Chatflox/flox-Cre-ERT2 mice receiving at birth an intracerebroventricular injection of 2 × 1013 vg/kg adeno-associated virus type 9 (AAV9) carrying human CHAT (AAV9-CHAT) survived a subsequent Tx injection and lived to adulthood without showing signs of weakness. Likewise, injection of AA9-CHAT by intracisternal injection at P28 after the onset of weakness also resulted in survival to adulthood. The expression of Chat in spinal motor neurons of Chatflox/flox-Cre-ERT2 mice injected with Tx was markedly reduced, but AAV-injected mice showed a robust recovery of ChAT expression, which was mainly translated by the human CHAT RNA. The biodistribution of the viral genome was widespread but maximal in the spinal cord and brain of AAV-injected mice. No significant histopathological changes were observed in the brain, liver, and heart of AAV-injected mice after 1 year follow-up. Thus, AAV9-mediated gene therapy may provide an effective and safe treatment for patients severely affected with CHAT-CMS.


Choline O-Acetyltransferase , Dependovirus , Mice , Humans , Animals , Choline O-Acetyltransferase/genetics , Choline O-Acetyltransferase/metabolism , Dependovirus/genetics , Dependovirus/metabolism , Tissue Distribution , Mice, Knockout , Genetic Therapy
14.
J Chromatogr A ; 1718: 464684, 2024 Mar 15.
Article En | MEDLINE | ID: mdl-38350350

Adeno-associated virus (AAV) analytical characterization is crucial to the well-defined and reproducible production of human gene therapies utilizing the AAV vector modality. The establishment of analytical methods based upon technology platforms currently widely used by bio-therapeutic manufacturers, namely HPLC, will assist efforts to produce high quality AAV reproducibly and decrease chemical manufacturing and control challenges in method portability and reliability. AAV analysis by size exclusion chromatography (SEC) is currently practiced with columns and mobile phase conditions traditional to SEC of proteins. Here, an improved method to measure multiple AVV critical quality attributes (CQA) rapidly by SEC is explored. The use of short columns made with small particles at high flow rates resulted in up to 80 % reduction in analysis time and 66 % in sample consumption while maintaining reliable quantitation of AAV aggregate or high molecular weight (HMW) content. These results were demonstrated across four different AAV serotypes. Furthermore, critical AAV sample handling learnings are shared.


Dependovirus , Proteins , Humans , Dependovirus/genetics , Dependovirus/metabolism , Reproducibility of Results , Proteins/metabolism , Chromatography, Gel , Chromatography, High Pressure Liquid , Genetic Vectors
15.
J Chromatogr A ; 1716: 464632, 2024 Feb 08.
Article En | MEDLINE | ID: mdl-38219623

Recombinant adeno-associated virus (AAV) has emerged as one of the most promising systems for therapeutic gene delivery and has demonstrated clinical success in a wide range of genetic disorders. However, manufacturing of high-quality AAV in large amounts still remains a challenge. A significant difficulty for downstream processing is the need to remove empty capsids that are generated in all currently utilized expression systems and that represent product-related impurities that adversely affect safety and efficacy of AAV vectors. Empty and full capsids exhibit only subtle differences in surface charge and size, making chromatography-based separations highly challenging. Here, we present a rapid methodology for the systematic process development of the crucial AAV full/empty capsid separation on ion-exchange media based on high-throughput screening and mechanistic modeling. Two of the most commonly employed serotypes, AAV8 and AAV9, are used as case studies. First, high-throughput studies in filter-plate format are performed that allow the rapid and comprehensive study of binding and elution behavior of AAV on different resins, using different buffer systems, pH, salt conditions, and solution additives. Small amounts of separated empty and full AAV capsids are generated by iodixanol gradient centrifugation that allow studying the binding and elution behavior of the two vector species separately in miniaturized format. Process conditions that result in maximum differences in elution behavior between empty and full capsids are then transferred to benchtop chromatography systems that are used to generate calibration data for the estimation of steric mass-action isotherm and mass transport parameters for process simulation. The resulting column models are employed for in-silico process development that serves to enhance understanding of separation constraints and to identify optimized conditions for the removal of empty particles. Finally, optimized separation conditions are verified experimentally. The methodology presented in this work provides a systematic framework that affords mechanistic understanding of the crucial empty/full capsid separation and accelerates the development of a scalable AAV downstream process.


Capsid , Dependovirus , Capsid/chemistry , Capsid/metabolism , Dependovirus/genetics , Dependovirus/metabolism , High-Throughput Screening Assays , Genetic Vectors , Capsid Proteins/genetics , Capsid Proteins/analysis
16.
Anal Chem ; 96(5): 1890-1897, 2024 02 06.
Article En | MEDLINE | ID: mdl-38262068

Despite substantial efforts to detect host cell proteins (HCPs) in antibody drugs, information regarding HCPs in gene therapy products remains limited and has not been widely integrated into the host cell engineering or purification processes. Most methods that have successfully detected HCPs in antibody drugs are not applicable to gene therapy products, except for the ProteoMiner enrichment method. Here, we demonstrate that ProteoMiner beads effectively enrich HCPs in adeno-associated virus (AAV) products and simultaneously remove the detergent Pluronic F-68 without a loss of low-abundance HCPs. Following optimization of this technique, there was up to a 34-fold increase in the enrichment of HCPs compared to direct digestion. Moreover, the detection limit was significantly lowered with the ability to detect HCPs at levels as low as 0.1 ng/mL after ProteoMiner treatment. This approach holds promise in AAV HCP analysis and may be adaptable to other gene therapy products. The findings from this study provide valuable insights into HCPs in AAV products and may facilitate process development and host cell line optimization. The high sensitivity of this approach also facilitates detection of critical low-abundance HCPs, thereby contributing to risk assessment of their impact on the safety and quality of the AAV-based gene therapy products.


Antibodies, Monoclonal , Dependovirus , Cricetinae , Animals , Antibodies, Monoclonal/metabolism , Dependovirus/genetics , Dependovirus/metabolism , Cricetulus , CHO Cells , Technology
17.
Appl Biochem Biotechnol ; 196(3): 1623-1635, 2024 Mar.
Article En | MEDLINE | ID: mdl-37436544

Adeno-associated virus (AAV) has been widely used to treat various human diseases as an important delivery vector for gene therapy due to its low immunogenicity and safety. AAV capsids proteins are comprised of three capsid viral proteins (VP; VP1, VP2, VP3). The capsid proteins play a key role in viral vector infectivity and transduction efficiency. To ensure the safety and efficacy of AAV gene therapy products, the quality of AAV vector capsid proteins during development and production should be carefully monitored and controlled. Microflow liquid chromatography coupled with mass spectrometry provides superior sensitivity and fast analysis capability. It showed significant advantages in the analysis of low- concentration and large numbers of AAV samples. The intact mass of capsid protein can be accurately determined using high-resolution mass spectrometry (MS). And MS also provides highly confident confirmation of sequence coverage and post-translational modifications site identification and quantitation. In this study, we used microflow liquid chromatography-tandem mass spectrometry (LC-MS/MS) for the characterization of AAV2 capsid protein. we obtained nearly 100% sequence coverage of low-concentration AAV2 capsid protein (8 × 1011 GC/mL). More than 30 post-translational modifications (PTMs) sites were identified, the PTMs types included deamidation, oxidation and acetylation. From this study, the proposed microflow LC-MS/MS method provides a sensitive and high throughput approach in the characterization of AAVs and other biological products with low abundance.


Capsid Proteins , Dependovirus , Humans , Capsid Proteins/genetics , Capsid Proteins/metabolism , Dependovirus/genetics , Dependovirus/metabolism , Chromatography, Liquid , Tandem Mass Spectrometry , Capsid/metabolism , Genetic Vectors
18.
J Inherit Metab Dis ; 47(1): 119-134, 2024 Jan.
Article En | MEDLINE | ID: mdl-37204237

Pompe disease (PD) is a neuromuscular disorder caused by acid α-glucosidase (GAA) deficiency. Reduced GAA activity leads to pathological glycogen accumulation in cardiac and skeletal muscles responsible for severe heart impairment, respiratory defects, and muscle weakness. Enzyme replacement therapy with recombinant human GAA (rhGAA) is the standard-of-care treatment for PD, however, its efficacy is limited due to poor uptake in muscle and the development of an immune response. Multiple clinical trials are ongoing in PD with adeno-associated virus (AAV) vectors based on liver- and muscle-targeting. Current gene therapy approaches are limited by liver proliferation, poor muscle targeting, and the potential immune response to the hGAA transgene. To generate a treatment tailored to infantile-onset PD, we took advantage of a novel AAV capsid able to increase skeletal muscle targeting compared to AAV9 while reducing liver overload. When combined with a liver-muscle tandem promoter (LiMP), and despite the extensive liver-detargeting, this vector had a limited immune response to the hGAA transgene. This combination of capsid and promoter with improved muscle expression and specificity allowed for glycogen clearance in cardiac and skeletal muscles of Gaa-/- adult mice. In neonate Gaa-/- , complete rescue of glycogen content and muscle strength was observed 6 months after AAV vector injection. Our work highlights the importance of residual liver expression to control the immune response toward a potentially immunogenic transgene expressed in muscle. In conclusion, the demonstration of the efficacy of a muscle-specific AAV capsid-promoter combination for the full rescue of PD manifestation in both neonate and adult Gaa-/- provides a potential therapeutic avenue for the infantile-onset form of this devastating disease.


Dependovirus , Glycogen Storage Disease Type II , Mice , Humans , Animals , Infant, Newborn , Dependovirus/genetics , Dependovirus/metabolism , Genetic Vectors/genetics , Mice, Knockout , Glycogen Storage Disease Type II/genetics , Glycogen Storage Disease Type II/therapy , Glycogen Storage Disease Type II/pathology , alpha-Glucosidases/genetics , alpha-Glucosidases/therapeutic use , Liver/metabolism , Muscle, Skeletal/pathology , Glycogen/metabolism , Genetic Therapy , Phenotype
19.
Hum Gene Ther ; 35(1-2): 59-69, 2024 Jan.
Article En | MEDLINE | ID: mdl-38062776

Despite decades of research in adeno-associated virus (AAV) and the role of adenovirus in production, the interplay of AAV and adenovirus is not fully understood. Specific regions of the adenoviral genome containing E1, E2a, E4 open reading frame (ORF), and VA RNA have been demonstrated as necessary for AAV production; however, incorporating these regions into either a producer cell line or subcloning into an Ad helper plasmid may lead to inclusion of neighboring adenoviral sequence or ORFs with unknown function. Because AAV is frequently used in gene therapies, removing excessive adenovirus sequences improves the Ad helper plasmid size and manufacturability, and may lead to safer vectors for patients. Furthermore, deepening our understanding of the helper virus genes required for recombinant AAV (rAAV) production has the potential to increase yields and manufacturability of rAAV for clinical and commercial applications. One region continuously included in various Ad helper plasmid iterations is the adenoviral E2a promoter region that appears to be necessary for E2a expression. Due to the compact nature of viral genomes, the E2a promoter region overlaps with the Hexon Assembly/100K protein and the L4 region. The L4 region, which contains the coding sequences for 22K and 33K proteins, had not been thought to be necessary for AAV production. Through molecular techniques, this study demonstrates that the adenoviral 22K protein is essential for rAAV production in HEK293 cells by triple transfection and that the 33K protein synergistically increases rAAV yield.


Adenoviridae , Dependovirus , Humans , Dependovirus/genetics , Dependovirus/metabolism , Adenoviridae/genetics , HEK293 Cells , Plasmids , Transfection , Viral Proteins/genetics , Genetic Vectors/genetics
20.
Mol Ther ; 32(1): 59-73, 2024 Jan 03.
Article En | MEDLINE | ID: mdl-37974401

GPIHBP1 plays an important role in the hydrolysis of triglyceride (TG) lipoproteins by lipoprotein lipases (LPLs). However, Gpihbp1 knockout mice did not develop hypertriglyceridemia (HTG) during the suckling period but developed severe HTG after weaning on a chow diet. It has been postulated that LPL expression in the liver of suckling mice may be involved. To determine whether hepatic LPL expression could correct severe HTG in Gpihbp1 deficiency, liver-targeted LPL expression was achieved via intravenous administration of the adeno-associated virus (AAV)-human LPL gene, and the effects of AAV-LPL on HTG and HTG-related acute pancreatitis (HTG-AP) were observed. Suckling Gpihbp1-/- mice with high hepatic LPL expression did not develop HTG, whereas Gpihbp1-/- rat pups without hepatic LPL expression developed severe HTG. AAV-mediated liver-targeted LPL expression dose-dependently decreased plasma TG levels in Gpihbp1-/- mice and rats, increased post-heparin plasma LPL mass and activity, decreased mortality in Gpihbp1-/- rat pups, and reduced the susceptibility and severity of both Gpihbp1-/- animals to HTG-AP. However, the muscle expression of AAV-LPL had no significant effect on HTG. Targeted expression of LPL in the liver showed no obvious adverse reactions. Thus, liver-targeted LPL expression may be a new therapeutic approach for HTG-AP caused by GPIHBP1 deficiency.


Hypertriglyceridemia , Pancreatitis , Receptors, Lipoprotein , Animals , Humans , Mice , Rats , Acute Disease , Dependovirus/genetics , Dependovirus/metabolism , Hypertriglyceridemia/genetics , Hypertriglyceridemia/therapy , Lipoprotein Lipase/genetics , Lipoprotein Lipase/metabolism , Liver/metabolism , Pancreatitis/genetics , Pancreatitis/therapy , Pancreatitis/metabolism , Receptors, Lipoprotein/genetics , Receptors, Lipoprotein/metabolism , Triglycerides/metabolism
...