Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 8.040
1.
FASEB J ; 38(11): e23721, 2024 Jun 15.
Article En | MEDLINE | ID: mdl-38822662

Schistosome infection and schistosome-derived products have been implicated in the prevention and alleviation of inflammatory bowel disease by manipulating the host immune response, whereas the role of gut microbiota in this protective effect remains poorly understood. In this study, we found that the intraperitoneal immunization with Schistosoma japonicum eggs prior to dextran sulfate sodium (DSS) application significantly ameliorated the symptoms of DSS-induced acute colitis, which was characterized by higher body weight, lower disease activity index score and macroscopic inflammatory scores. We demonstrated that the immunomodulatory effects of S. japonicum eggs were accompanied by an influence on gut microbiota composition, abundance, and diversity, which increased the abundance of genus Turicibacter, family Erysipelotrichaceae, phylum Firmicutes, and decreased the abundance of genus Odoribacter, family Marinifilaceae, order Bacteroidales, class Bacteroidia, phylum Bacteroidota. In addition, Lactobacillus was identified as a biomarker that distinguishes healthy control mice from DSS-induced colitis mice. The present study revealed the importance of the gut microbiota in S. japonicum eggs exerting protective effects in an experimental ulcerative colitis (UC) model, providing an alternative strategy for the discovery of UC prevention and treatment drugs.


Colitis, Ulcerative , Dextran Sulfate , Disease Models, Animal , Gastrointestinal Microbiome , Schistosoma japonicum , Animals , Gastrointestinal Microbiome/drug effects , Colitis, Ulcerative/microbiology , Colitis, Ulcerative/immunology , Mice , Schistosoma japonicum/immunology , Dextran Sulfate/toxicity , Female , Immunization/methods , Ovum , Mice, Inbred C57BL
2.
Immun Inflamm Dis ; 12(5): e1077, 2024 May.
Article En | MEDLINE | ID: mdl-38722267

BACKGROUND: Considering the antihepatitis effects of Tectorigenin (TEC), and the same adenosine mitogen-activated protein kinase (MAPK) pathway in both hepatitis and inflammatory bowel disease (IBD) models, exploring the role of TEC in IBD is contributive to develop a new treatment strategy against IBD. METHODS: The IBD mouse model was constructed by feeding with dextran sodium sulfate (DSS) and injection of TEC. Afterward, the mouse body weight, colon length, and disease activity index (DAI) were tested to assess the enteritis level. Mouse intestine lesions were detected by hematoxylin and eosin staining. Murine macrophages underwent lipopolysaccharide (LPS) induction to establish an inflammation model. Cell viability was determined by cell counting kit-8 assay. Enzyme-linked immunosorbent assay was performed to measure interleukin 6 (IL-6) and tumor necrosis factor-α (TNF-α) levels. Cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) expressions were quantified via quantitative reverse transcription polymerase chain reaction. Levels of MAPK pathway-related proteins (p-P38, P38, p-Jun N-terminal kinase (JNK), JNK, signal-regulated kinase (ERK), p-ERK), COX-2 and iNOS were quantitated by Western blot. RESULTS: TEC improved the inflammatory response through ameliorating weight loss, shortening colon, and increasing DAI score in IBD mouse. Expressions of intestinal inflammatory factors (IL-6, TNF-α, iNOS and COX-2) and MAPK pathway-related proteins (p-P38, p-JNK, and p-ERK) were increased both in DSS-induced mouse intestinal tissue, but TEC inhibited expressions of inflammatory factors. The same increased trend was identified in LPS-induced macrophages, but TEC improved macrophage inflammation, as evidenced by downregulation of inflammatory factors. CONCLUSION: TEC mitigates IBD and LPS-induced macrophage inflammation in mice via inhibiting MAPK signaling pathway.


Inflammatory Bowel Diseases , Isoflavones , Lipopolysaccharides , MAP Kinase Signaling System , Macrophages , Animals , Mice , Inflammatory Bowel Diseases/drug therapy , Inflammatory Bowel Diseases/chemically induced , Inflammatory Bowel Diseases/immunology , Inflammatory Bowel Diseases/metabolism , Inflammatory Bowel Diseases/pathology , MAP Kinase Signaling System/drug effects , Macrophages/immunology , Macrophages/metabolism , Macrophages/drug effects , Isoflavones/pharmacology , Isoflavones/therapeutic use , Disease Models, Animal , Dextran Sulfate/toxicity , Inflammation/drug therapy , Inflammation/immunology , Male , Mice, Inbred C57BL , Nitric Oxide Synthase Type II/metabolism
3.
Int J Biol Sci ; 20(7): 2507-2531, 2024.
Article En | MEDLINE | ID: mdl-38725846

Neuropeptide substance P (SP) belongs to a family of bioactive peptides and regulates many human diseases. This study aims to investigate the role and underlying mechanisms of SP in colitis. Here, activated SP-positive neurons and increased SP expression were observed in dextran sodium sulfate (DSS)-induced colitis lesions in mice. Administration of exogenous SP efficiently ameliorated the clinical symptoms, impaired intestinal barrier function, and inflammatory response. Mechanistically, SP protected mitochondria from damage caused by DSS or TNF-α exposure, preventing mitochondrial DNA (mtDNA) leakage into the cytoplasm, thereby inhibiting the cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) pathway. SP can also directly prevent STING phosphorylation through the neurokinin-1 receptor (NK1R), thereby inhibiting the activation of the TBK1-IRF3 signaling pathway. Further studies revealed that SP alleviated the DSS or TNF-α-induced ferroptosis process, which was associated with repressing the cGAS-STING signaling pathway. Notably, we identified that the NK1R inhibition reversed the effects of SP on inflammation and ferroptosis via the cGAS-STING pathway. Collectively, we unveil that SP attenuates inflammation and ferroptosis via suppressing the mtDNA-cGAS-STING or directly acting on the STING pathway, contributing to improving colitis in an NK1R-dependent manner. These findings provide a novel mechanism of SP regulating ulcerative colitis (UC) disease.


Colitis , Dextran Sulfate , Ferroptosis , Inflammation , Membrane Proteins , Mice, Inbred C57BL , Nucleotidyltransferases , Signal Transduction , Substance P , Animals , Nucleotidyltransferases/metabolism , Signal Transduction/drug effects , Mice , Colitis/metabolism , Colitis/chemically induced , Substance P/metabolism , Membrane Proteins/metabolism , Ferroptosis/drug effects , Inflammation/metabolism , Dextran Sulfate/toxicity , Male , Receptors, Neurokinin-1/metabolism , Tumor Necrosis Factor-alpha/metabolism , DNA, Mitochondrial/metabolism
4.
Food Res Int ; 186: 114322, 2024 Jun.
Article En | MEDLINE | ID: mdl-38729712

Lactobacillus delbrueckii subsp. lactis CIDCA 133 is a health-promoting bacterium that can alleviate gut inflammation and improve the epithelial barrier in a mouse model of mucositis. Despite these beneficial effects, the protective potential of this strain in other inflammation models, such as inflammatory bowel disease, remains unexplored. Herein, we examined for the first time the efficacy of Lactobacillus delbrueckii CIDCA 133 incorporated into a fermented milk formulation in the recovery of inflammation, epithelial damage, and restoration of gut microbiota in mice with dextran sulfate sodium-induced colitis. Oral administration of Lactobacillus delbrueckii CIDCA 133 fermented milk relieved colitis by decreasing levels of inflammatory factors (myeloperoxidase, N-acetyl-ß-D-glucosaminidase, toll-like receptor 2, nuclear factor-κB, interleukins 10 and 6, and tumor necrosis factor), secretory immunoglobulin A levels, and intestinal paracellular permeability. This immunobiotic also modulated the expression of tight junction proteins (zonulin and occludin) and the activation of short-chain fatty acids-related receptors (G-protein coupled receptors 43 and 109A). Colonic protection was effectively associated with acetate production and restoration of gut microbiota composition. Treatment with Lactobacillus delbrueckii CIDCA 133 fermented milk increased the abundance of Firmicutes members (Lactobacillus genus) while decreasing the abundance of Proteobacteria (Helicobacter genus) and Bacteroidetes members (Bacteroides genus). These promising outcomes influenced the mice's mucosal healing, colon length, body weight, and disease activity index, demonstrating that this immunobiotic could be explored as an alternative approach for managing inflammatory bowel disease.


Colitis , Cultured Milk Products , Dextran Sulfate , Gastrointestinal Microbiome , Lactobacillus delbrueckii , Animals , Gastrointestinal Microbiome/drug effects , Colitis/microbiology , Colitis/chemically induced , Colitis/metabolism , Colitis/drug therapy , Lactobacillus delbrueckii/metabolism , Cultured Milk Products/microbiology , Mice , Probiotics/therapeutic use , Male , Mice, Inbred C57BL , Disease Models, Animal , Intestinal Mucosa/microbiology , Intestinal Mucosa/metabolism , Inflammation , Colon/microbiology , Colon/metabolism , Lactobacillus
5.
Clin Transl Sci ; 17(5): e13821, 2024 May.
Article En | MEDLINE | ID: mdl-38742709

Inflammatory bowel disease (IBD) is characterized by a chronically dysregulated immune response in the gastrointestinal tract. Bone marrow multipotent mesenchymal stromal cells have an important immunomodulatory function and support regeneration of inflamed tissue by secretion of soluble factors as well as through direct local differentiation. CXCR4 is the receptor for CXCL12 (SDF-1, stromal-derived factor-1) and has been shown to be the main chemokine receptor, required for homing of MSCs. Increased expression of CXCL12 by inflamed intestinal tissue causes constitutive inflammation by attracting lymphocytes but can also be used to direct MSCs to sites of injury/inflammation. Trypsin is typically used to dissociate MSCs into single-cell suspensions but has also been shown to digest surface CXCR4. Here, we assessed the regenerative effects of CXCR4high and CXCR4low MSCs in an immune-deficient mouse model of DSS-induced colitis. We found that transplantation of MSCs resulted in clinical improvement and histological recovery of intestinal epithelium. In contrary to our expectations, the levels of CXCR4 on transplanted MSCs did not affect their regenerative supporting potential, indicating that paracrine effects of MSCs may be largely responsible for their regenerative/protective effects.


Colitis , Disease Models, Animal , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Mice, Inbred C57BL , Receptors, CXCR4 , Regeneration , Animals , Receptors, CXCR4/metabolism , Receptors, CXCR4/genetics , Mesenchymal Stem Cells/metabolism , Colitis/chemically induced , Colitis/pathology , Colitis/immunology , Colitis/therapy , Colitis/metabolism , Mesenchymal Stem Cell Transplantation/methods , Mice , Dextran Sulfate , Intestinal Mucosa/metabolism , Intestinal Mucosa/pathology , Intestinal Mucosa/immunology , Chemokine CXCL12/metabolism , Chemokine CXCL12/genetics , Bone Marrow Cells/metabolism
6.
J Tradit Chin Med ; 44(3): 427-436, 2024 Jun.
Article En | MEDLINE | ID: mdl-38767626

OBJECTIVE: To evaluate the protective effects of Chang'an decoction (, CAD) on colitis, and investigate the potential mechanisms underlying these effects from the perspectives of endoplasmic reticulum (ER) stress induced by mitofusin 2 (MFN2). METHODS: The composition of CAD was identified by liquid chromatography-mass spectrometry technology. A mice model of dextran sulfate sodium (DSS) induced colitis was established and therapeutic effects of CAD were determined by detecting body weight, disease activity index, colon length and histopathological changes. Then, the expression levels of MFN2, ER stress markers and Nucleotide-binding domain and leucine-rich repeat protein3 (NLRP3) relevant proteins were detected by polymerase chain reaction (PCR), Western blot, immunohistochemistry and immunofluorescence staining. Subsequently, knockdown and overexpression cell model were constructed to further investigate the underlying mechanism of MFN2 mediating ER stress and energy metabolism by PCR, Western blot, electron microscopy and reactive oxygen species (ROS) staining. Finally, inflammatory indicator and tight junction proteins were measured by PCR and immunofluorescence staining to evaluate the protective effects of CAD. RESULTS: Results showed that the indispensable regulatory role of MFN2 in mediating ER stress and mitochondrial damage was involved in the protective effects of CAD on colitis in mice fed with DSS. Network pharmacology analysis also revealed CAD may play a protective effect on colitis by affecting mitochondrial function. In addition, our data also suggested a causative role for MFN2 in the development of inflammatory responses and energy metabolic alterations by constructing a knockdown and overexpression cell model whereby alter proper ER-mitochondria interaction in Caco-2 cells. Furthermore, relative expression analyses of ER stress markers and NLRP3 inflammasome showed the onset of ER stress and activation of NLRP3 inflammasome, which is consistent with the above findings. In contrast, intervention of CAD could improve the mucosal barrier integrity and colonic inflammatory response effectively through inhibiting ER stress response mediated by MFN2. CONCLUSION: CAD could alleviate ER stress by regulating MFN2 to exert therapeutic effects on DSS-induced colitis, which might provide an effective natural therapeutic approach for the treatment of ulcerative colitis.


Colitis , Drugs, Chinese Herbal , Endoplasmic Reticulum Stress , GTP Phosphohydrolases , Animals , Endoplasmic Reticulum Stress/drug effects , Mice , Drugs, Chinese Herbal/administration & dosage , Drugs, Chinese Herbal/pharmacology , Colitis/drug therapy , Colitis/metabolism , Colitis/genetics , Colitis/chemically induced , GTP Phosphohydrolases/genetics , GTP Phosphohydrolases/metabolism , Humans , Male , Mice, Inbred C57BL , Dextran Sulfate/adverse effects , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Mitochondrial Proteins/metabolism , Mitochondrial Proteins/genetics , Reactive Oxygen Species/metabolism
7.
J Tradit Chin Med ; 44(3): 478-488, 2024 Jun.
Article En | MEDLINE | ID: mdl-38767631

OBJECTIVE: To explore the pharmacodynamic effects and potential mechanisms of Shuangling extract against ulcerative colitis (UC). METHODS: The bioinformatics method was used to predict the active ingredients and action targets of Shuangling extract against UC in mice. And the biological experiments such as serum biochemical indexes and histopathological staining were used to verify the pharmacological effect and mechanism of Shuangling extract against UC in mice. RESULTS: The Shuangling extract reduced the levels of seruminterleukin-1ß (IL-1ß), tumor necrosis factor-α (TNF-N), interleukin-6 (IL-6) and other inflammatory factors in UC mice and inhibited the inflammatory response. AKT Serine/threonine Kinase 1 and IL-6 may be the main targets of the anti-UC action of Shuangling extract, and the TNF signaling pathway, Forkhead box O signaling pathway and T-cell receptor signaling pathway may be the main signaling pathways. CONCLUSION: The Shuangling extract could inhibit the inflammatory response induced by UC and regulate intestinal immune function through multiple targets and multiple channels, which provided a new option and theoretical basis for anti-UC.


Colitis, Ulcerative , Dextran Sulfate , Drugs, Chinese Herbal , Network Pharmacology , Tumor Necrosis Factor-alpha , Animals , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/chemically induced , Mice , Drugs, Chinese Herbal/administration & dosage , Drugs, Chinese Herbal/pharmacology , Dextran Sulfate/adverse effects , Male , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism , Humans , Interleukin-1beta/genetics , Interleukin-1beta/metabolism , Interleukin-6/genetics , Interleukin-6/metabolism , Interleukin-6/immunology , Disease Models, Animal , Signal Transduction/drug effects
8.
J Transl Med ; 22(1): 488, 2024 May 21.
Article En | MEDLINE | ID: mdl-38773576

Ulcerative colitis (UC) is an idiopathic, chronic inflammatory condition of the colon, characterized by repeated attacks, a lack of effective treatment options, and significant physical and mental health complications for patients. The endoplasmic reticulum (ER) is a vital intracellular organelle in maintaining cellular homeostasis. Endoplasmic reticulum stress (ERS) is induced when the body is exposed to adverse external stimuli. Numerous studies have shown that ERS-induced apoptosis plays a vital role in the pathogenesis of UC. Mogroside V (MV), an active ingredient of Monk fruit, has demonstrated excellent anti-inflammatory and antioxidant effects. In this study, we investigated the therapeutic effects of MV on dextran sulfate sodium (DSS)-induced UC and its potential mechanisms based on ERS. The results showed that MV exerted a protective effect against DSS-induced UC in mice as reflected by reduced DAI scores, increased colon length, reduced histological scores of the colon, and levels of pro-inflammatory cytokines, as well as decreased intestinal permeability. In addition, the expression of ERS pathway including BIP, PERK, eIF2α, ATF4, CHOP, as well as the apoptosis-related protein including Caspase-12, Bcl-2 and Bax, was found to be elevated in UC. However, MV treatment significantly inhibited the UC and reversed the expression of inflammation signaling pathway including ERS and ERS-induced apoptosis. Additionally, the addition of tunicamycin (Tm), an ERS activator, significantly weakened the therapeutic effect of MV on UC in mice. These findings suggest that MV may be a therapeutic agent for the treatment of DSS-induced UC by inhibiting the activation of the ERS-apoptosis pathway, and may provide a novel avenue for the treatment of UC.


Apoptosis , Colitis, Ulcerative , Dextran Sulfate , Endoplasmic Reticulum Stress , Animals , Endoplasmic Reticulum Stress/drug effects , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/pathology , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/metabolism , Apoptosis/drug effects , Male , Mice, Inbred C57BL , Colon/pathology , Colon/drug effects , Triterpenes/pharmacology , Triterpenes/therapeutic use , Mice , Cytokines/metabolism , Permeability/drug effects , Signal Transduction/drug effects
9.
Alzheimers Res Ther ; 16(1): 116, 2024 May 21.
Article En | MEDLINE | ID: mdl-38773640

Systemic inflammation and neuroinflammation affect the natural course of the sporadic form of Alzheimer's disease (AD), as supported by epidemiological and preclinical data, and several epidemiological studies indicate a higher prevalence of AD in patients with inflammatory bowel disease. In this study, we explored whether colitis induced by dextran sulfate sodium (DSS) in young, presymptomatic/preplaque mice worsens and/or anticipates age-dependent cognitive impairment in Tg2576, a widely used mouse model of AD. We demonstrated that DSS colitis induced in young Tg2576 mice anticipates the onset age of learning and memory deficit in the Morris water maze test. To explore potential mechanisms behind the acceleration of cognitive decline in Tg2576 mice by DSS colitis, we focused on gut microbiota, systemic inflammation and neuroinflammation markers. We observed a Firmicutes/Bacteroidetes ratio change in Tg2576 DSS animals comparable to that of elderly Tg2576 mice, suggesting accelerated microbiota aging in Tg2576 DSS mice, a change not observed in C57BL6 DSS mice. We also observed substantial differences between Tg2576 and WT mice in several inflammation and neuroinflammation-related parameters as early as 3 months of age, well before plaque deposition, a picture which evolved rapidly (between 3 and 5.5 months of age) in contrast to Tg2576 and WT littermates not treated with DSS. In detail, following induction of DSS colitis, WT and Tg2576 mice exhibited contrasting features in the expression level of inflammation-evoked astrocyte-associated genes in the hippocampus. No changes in microglial features occurred in the hippocampus between the experimental groups, whereas a reduced glial fibrillary acidic protein immunoreactivity was observed in Tg2576 vs. WT mice. This finding may reflect an atrophic, "loss-of-function" profile, further exacerbated by DSS where a decreased of GFAP mRNA expression level was detected. In conclusion, we suggest that as-yet unidentified peripheral mediators evoked by DSS colitis and involving the gut-brain axis emphasize an astrocyte "loss-of-function" profile present in young Tg2576 mice, leading to impaired synaptic morphological and functional integrity as a very early sign of AD.


Alzheimer Disease , Colitis , Dextran Sulfate , Disease Models, Animal , Mice, Inbred C57BL , Mice, Transgenic , Animals , Alzheimer Disease/pathology , Alzheimer Disease/genetics , Mice , Colitis/chemically induced , Colitis/pathology , Dextran Sulfate/toxicity , Gastrointestinal Microbiome , Phenotype , Male , Hippocampus/pathology , Hippocampus/metabolism , Female , Cognitive Dysfunction/genetics , Cognitive Dysfunction/pathology , Cognitive Dysfunction/etiology
10.
J Extracell Vesicles ; 13(5): e12448, 2024 May.
Article En | MEDLINE | ID: mdl-38779712

The excretory-secretory proteome plays a pivotal role in both intercellular communication during disease progression and immune escape mechanisms of various pathogens including cestode parasites like Taenia solium. The cysticerci of T. solium causes infection in the central nervous system known as neurocysticercosis (NCC), which affects a significant population in developing countries. Extracellular vesicles (EVs) are 30-150-nm-sized particles and constitute a significant part of the secretome. However, the role of EV in NCC pathogenesis remains undetermined. Here, for the first time, we report that EV from T. solium larvae is abundant in metabolites that can negatively regulate PI3K/AKT pathway, efficiently internalized by macrophages to induce AKT and mTOR degradation through auto-lysosomal route with a prominent increase in the ubiquitination of both proteins. This results in less ROS production and diminished bacterial killing capability among EV-treated macrophages. Due to this, both macro-autophagy and caspase-linked apoptosis are upregulated, with a reduction of the autophagy substrate sequestome 1. In summary, we report that T. solium EV from viable cysts attenuates the AKT-mTOR pathway thereby promoting apoptosis in macrophages, and this may exert immunosuppression during an early viable stage of the parasite in NCC, which is primarily asymptomatic. Further investigation on EV-mediated immune suppression revealed that the EV can protect the mice from DSS-induced colitis and improve colon architecture. These findings shed light on the previously unknown role of T. solium EV and the therapeutic role of their immune suppression potential.


Colitis , Disease Models, Animal , Extracellular Vesicles , Mechanistic Target of Rapamycin Complex 1 , Proto-Oncogene Proteins c-akt , Taenia solium , Animals , Extracellular Vesicles/metabolism , Mice , Proto-Oncogene Proteins c-akt/metabolism , Taenia solium/metabolism , Mechanistic Target of Rapamycin Complex 1/metabolism , Colitis/metabolism , Colitis/parasitology , Signal Transduction , Dextran Sulfate , Macrophages/metabolism , Macrophages/parasitology , Neurocysticercosis/metabolism , Neurocysticercosis/parasitology , Apoptosis
11.
J Cancer Res Clin Oncol ; 150(5): 234, 2024 May 06.
Article En | MEDLINE | ID: mdl-38710918

BACKGROUND: The pathogenesis and treatment of colorectal cancer (CRC) continue to be areas of ongoing research, especially the benefits of traditional Chinese medicine (TCM) in slowing the progression of CRC. This study was conducted to investigate the effectiveness and mechanism of action of modified Lichong decoction (MLCD) in inhibiting CRC progression. METHODS: We established CRC animal models using azoxymethane/dextran sodium sulfate (AOM/DSS) and administered high, medium, or low doses of MLCD or mesalazine (MS) for 9 weeks to observe MLCD alleviation of CRC. The optimal MLCD dose group was then subjected to metagenomic and RNA sequencing (RNA-seq) to explore the differentially abundant flora and genes in the control, model and MLCD groups. Finally, the mechanism of action was verified using WB, qRT‒PCR, immunohistochemistry and TUNEL staining. RESULTS: MLCD inhibited the progression of CRC, and the optimal effect was observed at high doses. MLCD regulated the structure and function of the intestinal flora by decreasing the abundance of harmful bacteria and increasing that of beneficial bacteria. The differentially expressed genes were mainly associated with the Wnt/ß-catenin pathway and the cell cycle. Molecular biology analysis indicated that MLCD suppressed the Wnt/ß-catenin pathway and the epithelial-mesenchymal transition (EMT), inhibited abnormal cell proliferation and promoted intestinal epithelial cell apoptosis. CONCLUSION: MLCD mitigated the abnormal growth of intestinal epithelial cells and promoted apoptosis, thereby inhibiting the progression of CRC. This inhibition was accomplished by modifying the intestinal microbiota and disrupting the Wnt/ß-catenin pathway and the EMT. Therefore, MLCD could serve as a potential component of TCM prescriptions for CRC treatment.


Colorectal Neoplasms , Drugs, Chinese Herbal , Gastrointestinal Microbiome , Wnt Signaling Pathway , Wnt Signaling Pathway/drug effects , Gastrointestinal Microbiome/drug effects , Animals , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/pathology , Colorectal Neoplasms/metabolism , Drugs, Chinese Herbal/pharmacology , Mice , Humans , Male , Apoptosis/drug effects , Epithelial-Mesenchymal Transition/drug effects , Cell Proliferation/drug effects , Dextran Sulfate , beta Catenin/metabolism , Disease Models, Animal
12.
Int J Mol Sci ; 25(10)2024 May 07.
Article En | MEDLINE | ID: mdl-38791116

Ulcerative colitis (UC) is characterized by continuous mucosal ulceration of the colon, starting in the rectum. 5-Aminosalicylic acid (5-ASA) is the main therapy for ulcerative colitis; however, it has side effects. Physical exercise effectively increases the number of anti-inflammatory and anti-immune cells in the body. In the current study, the effects of simultaneous treatment of treadmill exercise and 5-ASA were compared with monotherapy with physical exercise or 5-ASA in UC mice. To induce the UC animal model, the mice consumed 2% dextran sulfate sodium dissolved in drinking water for 7 days. The mice in the exercise groups exercised on a treadmill for 1 h once a day for 14 days after UC induction. The 5-ASA-treated groups received 5-ASA by enema injection using a 200 µL polyethylene catheter once a day for 14 days. Simultaneous treatment improved histological damage and increased body weight, colon weight, and colon length, whereas the disease activity index score and collagen deposition were decreased. Simultaneous treatment with treadmill exercise and 5-ASA suppressed pro-inflammatory cytokines and apoptosis following UC. The benefits of this simultaneous treatment may be due to inhibition on nuclear factor-κB/mitogen-activated protein kinase signaling activation. Based on this study, simultaneous treatment of treadmill exercise and 5-ASA can be considered as a new therapy of UC.


Colitis, Ulcerative , Disease Models, Animal , Mesalamine , Physical Conditioning, Animal , Animals , Mesalamine/therapeutic use , Mesalamine/pharmacology , Colitis, Ulcerative/therapy , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/pathology , Mice , Male , Colon/pathology , Colon/drug effects , Colon/metabolism , Dextran Sulfate , NF-kappa B/metabolism , Cytokines/metabolism , Apoptosis/drug effects , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Anti-Inflammatory Agents, Non-Steroidal/therapeutic use
13.
Braz J Med Biol Res ; 57: e13379, 2024.
Article En | MEDLINE | ID: mdl-38808888

Ulcerative colitis (UC) is a difficult intestinal disease characterized by inflammation, and its mechanism is complex and diverse. Angiopoietin-like protein 2 (ANGPT2) plays an important regulatory role in inflammatory diseases. However, the role of ANGPT2 in UC has not been reported so far. After exploring the expression level of ANGPT2 in serum of UC patients, the reaction mechanism of ANGPT2 was investigated in dextran sodium sulfate (DSS)-induced UC mice. After ANGPT2 expression was suppressed, the clinical symptoms and pathological changes of UC mice were detected. Colonic infiltration, oxidative stress, and colonic mucosal barrier in UC mice were evaluated utilizing immunohistochemistry, immunofluorescence, and related kits. Finally, western blot was applied for the estimation of mTOR signaling pathway and NLRP3 inflammasome-related proteins. ANGPT2 silencing improved clinical symptoms and pathological changes, alleviated colonic inflammatory infiltration and oxidative stress, and maintained the colonic mucosal barrier in DSS-induced UC mice. The regulatory effect of ANGPT2 on UC disease might occur by regulating the mTOR signaling pathway and thus affecting autophagy-mediated NLRP3 inflammasome inactivation. ANGPT2 silencing alleviated UC by regulating autophagy-mediated NLRP3 inflammasome inactivation via the mTOR signaling pathway.


Autophagy , Colitis, Ulcerative , Disease Models, Animal , Inflammasomes , NLR Family, Pyrin Domain-Containing 3 Protein , Signal Transduction , TOR Serine-Threonine Kinases , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/pathology , Colitis, Ulcerative/metabolism , Animals , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Autophagy/physiology , TOR Serine-Threonine Kinases/metabolism , Mice , Inflammasomes/metabolism , Humans , Male , Angiopoietin-Like Protein 2 , Mice, Inbred C57BL , Female , Angiopoietin-2/metabolism , Dextran Sulfate , Oxidative Stress , Immunohistochemistry , Blotting, Western
14.
Eur J Med Chem ; 272: 116426, 2024 Jun 05.
Article En | MEDLINE | ID: mdl-38718622

Pyruvate kinase isoform 2 (PKM2) is closely related to the regulation of Th17/Treg balance, which is considered to be an effective strategy for UC therapy. Parthenolide (PTL), a natural product, only possesses moderate PKM2-activating activity. Thus, five series of PTL derivatives are designed and synthesized to improve PKM2-activated activities and anti-UC abilities. Through detailed structure optimization, B4 demonstrates potent T-cell anti-proliferation activity (IC50 = 0.43 µM) and excellent PKM2-activated ability (AC50 = 0.144 µM). Subsequently, through mass spectrometry analysis, B4 is identified to interact with Cys423 of PKM2 via covalent-bond. Molecular docking and molecular dynamic simulation results reveal that the trifluoromethoxy of B4 forms a stronger hydrophobic interaction with Ala401, Pro402, and Ile403. In addition, B4 has a significant effect only on Th17 cell differentiation, thereby regulating the Th17/Treg balance. The effect of B4 on Th17/Treg imbalance can be attributed to inhibition of PKM2 dimer translocation and suppression of glucose metabolism. Finally, B4 can notably ameliorate the symptoms of dextran sulfate sodium (DSS)-induced colitis in mouse model in vivo. Thus, B4 is confirmed as a potent PKM2 activator, and has the potential to develop as a novel anti-UC agent.


Colitis, Ulcerative , Drug Design , Lactones , Pyruvate Kinase , Sesquiterpenes , Sesquiterpenes/pharmacology , Sesquiterpenes/chemistry , Sesquiterpenes/chemical synthesis , Animals , Mice , Pyruvate Kinase/metabolism , Pyruvate Kinase/antagonists & inhibitors , Lactones/pharmacology , Lactones/chemistry , Lactones/chemical synthesis , Structure-Activity Relationship , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/chemically induced , Humans , Molecular Structure , Cell Proliferation/drug effects , Mice, Inbred C57BL , Dose-Response Relationship, Drug , Male , Dextran Sulfate , Molecular Docking Simulation , Thyroid Hormones/metabolism , Th17 Cells/drug effects , Thyroid Hormone-Binding Proteins
15.
Molecules ; 29(9)2024 May 06.
Article En | MEDLINE | ID: mdl-38731645

Ulcerative colitis (UC), as a chronic inflammatory disease, presents a global public health threat. However, the mechanism of Poria cocos (PC) in treating UC remains unclear. Here, LC-MS/MS was carried out to identify the components of PC. The protective effect of PC against UC was evaluated by disease activity index (DAI), colon length and histological analysis in dextran sulfate sodium (DSS)-induced UC mice. ELISA, qPCR, and Western blot tests were conducted to assess the inflammatory state. Western blotting and immunohistochemistry techniques were employed to evaluate the expression of tight junction proteins. The sequencing of 16S rRNA was utilized for the analysis of gut microbiota regulation. The results showed that a total of fifty-two nutrients and active components were identified in PC. After treatment, PC significantly alleviated UC-associated symptoms including body weight loss, shortened colon, an increase in DAI score, histopathologic lesions. PC also reduced the levels of inflammatory cytokines TNF-α, IL-6, and IL-1ß, as evidenced by the suppressed NF-κB pathway, restored the tight junction proteins ZO-1 and Claudin-1 in the colon, and promoted the diversity and abundance of beneficial gut microbiota. Collectively, these findings suggest that PC ameliorates colitis symptoms through the reduction in NF-κB signaling activation to mitigate inflammatory damage, thus repairing the intestinal barrier, and regulating the gut microbiota.


Colitis, Ulcerative , Dextran Sulfate , Gastrointestinal Microbiome , NF-kappa B , Signal Transduction , Wolfiporia , Animals , Gastrointestinal Microbiome/drug effects , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/metabolism , Colitis, Ulcerative/microbiology , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/pathology , NF-kappa B/metabolism , Mice , Signal Transduction/drug effects , Wolfiporia/chemistry , Male , Disease Models, Animal , Cytokines/metabolism , Colon/pathology , Colon/metabolism , Colon/drug effects , Colon/microbiology , Tight Junction Proteins/metabolism , Mice, Inbred C57BL
16.
Nutrients ; 16(9)2024 Apr 26.
Article En | MEDLINE | ID: mdl-38732552

Ulcerative colitis (UC) is a chronic intestinal ailment which cannot be completely cured. The occurrence of UC has been on the rise in recent years, which is highly detrimental to patients. The effectiveness of conventional drug treatment is limited. The long-term usage of these agents can lead to substantial adverse effects. Therefore, the development of a safe and efficient dietary supplement is important for the prevention of UC. Echinacea purpurea polysaccharide (EPP) is one of the main bioactive substances in Echinacea purpurea. EPP has many favorable effects, such as antioxidative, anti-inflammatory, and antitumor effects. However, whether EPP can prevent or alleviate UC is still unclear. This study aims to analyze the effect and mechanism of EPP on UC in mice using a 3% dextran sulfate sodium (DSS)-induced UC model. The results showed that dietary supplementation with 200 mg/kg EPP significantly alleviated the shortening of colon length, weight loss, and histopathological damage in DSS-induced colitis mice. Mechanistically, EPP significantly inhibits the activation of the TLR4/NF-κB pathway and preserves the intestinal mechanical barrier integrity by enhancing the expression of claudin-1, ZO-1, and occludin and reducing the loss of goblet cells. Additionally, 16S rRNA sequencing revealed that EPP intervention reduced the abundance of Bacteroides, Escherichia-Shigella, and Klebsiella; the abundance of Lactobacillus increased. The results of nontargeted metabonomics showed that EPP reshaped metabolism. In this study, we clarified the effect of EPP on UC, revealed the potential function of EPP, and supported the use of polysaccharide dietary supplements for UC prevention.


Colitis, Ulcerative , Dextran Sulfate , Echinacea , Gastrointestinal Microbiome , NF-kappa B , Polysaccharides , Toll-Like Receptor 4 , Animals , Male , Mice , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/microbiology , Colon/drug effects , Colon/pathology , Colon/metabolism , Dietary Supplements , Disease Models, Animal , Echinacea/chemistry , Gastrointestinal Microbiome/drug effects , Mice, Inbred C57BL , NF-kappa B/metabolism , Polysaccharides/pharmacology , Signal Transduction/drug effects , Toll-Like Receptor 4/metabolism
17.
Cell Rep ; 43(5): 114206, 2024 May 28.
Article En | MEDLINE | ID: mdl-38733584

The interleukin (IL)-22 cytokine can be protective or inflammatory in the intestine. It is unclear if IL-22 receptor (IL-22Ra1)-mediated protection involves a specific type of intestinal epithelial cell (IEC). By using a range of IEC type-specific Il22Ra1 conditional knockout mice and a dextran sulfate sodium (DSS) colitis model, we demonstrate that IL-22Ra1 signaling in MATH1+ cells (goblet and progenitor cells) is essential for maintaining the mucosal barrier and intestinal tissue regeneration. The IL-22Ra1 signaling in IECs promotes mucin core-2 O-glycan extension and induces beta-1,3-galactosyltransferase 5 (B3GALT5) expression in the colon. Adenovirus-mediated expression of B3galt5 is sufficient to rescue Il22Ra1IEC mice from DSS colitis. Additionally, we observe a reduction in the expression of B3GALT5 and the Tn antigen, which indicates defective mucin O-glycan, in the colon tissue of patients with ulcerative colitis. Lastly, IL-22Ra1 signaling in MATH1+ progenitor cells promotes organoid regeneration after DSS injury. Our findings suggest that IL-22-dependent protective responses involve O-glycan modification, proliferation, and differentiation in MATH1+ progenitor cells.


Colitis , Dextran Sulfate , Interleukin-22 , Interleukins , Receptors, Interleukin , Animals , Interleukins/metabolism , Mice , Glycosylation , Colitis/metabolism , Colitis/pathology , Colitis/chemically induced , Receptors, Interleukin/metabolism , Mucins/metabolism , Basic Helix-Loop-Helix Transcription Factors/metabolism , Humans , Signal Transduction , Mice, Inbred C57BL , Inflammation/pathology , Inflammation/metabolism , Intestinal Mucosa/metabolism , Intestinal Mucosa/pathology , Mice, Knockout , Galactosyltransferases/metabolism , Galactosyltransferases/genetics , Stem Cells/metabolism
18.
Eur J Med Chem ; 272: 116487, 2024 Jun 05.
Article En | MEDLINE | ID: mdl-38759452

Acute lung injury (ALI) and inflammatory bowel disease (IBD) are common inflammatory illnesses that seriously affect people's health. Herein, a series of 4-hydroxylcoumarin (4-HC) derivatives were designed and synthesized. The inhibitory effects of these compounds on LPS-induced interleukin-6 (IL-6) release from J774A.1 cells were then screened via ELISA assay, compound B8 showed 3 times more active than the lead compound 4-HC. The most active compound B8 had the IC50 values of 4.57 µM and 6.51 µM for IL-6 release on mouse cells J774A.1 and human cells THP-1, respectively. Furthermore, we also found that B8 could act on the MAPK pathway. Based on the target prediction results of computer virtual docking, kinase inhibitory assay was carried out, and it revealed that targeting IRAK1 was a key mechanism for B8 to exert anti-inflammatory activity. Moreover, B8 exerted a good therapeutic effect on the dextran sulfate sodium (DSS)-induced colitis model and liposaccharide (LPS)-induced ALI mouse models. The acute toxicity experiments indicated that high-dose B8 caused no adverse reactions in mice, confirming its safety in vivo. Additionally, the preliminary pharmacokinetic (PK) parameters of B8 in SD rats were also examined, revealing a bioavailability (F) of 28.72 %. In conclusion, B8 is a potential candidate of drug for the treatment of ALI and colitis.


4-Hydroxycoumarins , Acute Lung Injury , Colitis , Drug Design , Acute Lung Injury/drug therapy , Acute Lung Injury/chemically induced , Animals , Colitis/drug therapy , Colitis/chemically induced , Mice , Humans , Structure-Activity Relationship , 4-Hydroxycoumarins/pharmacology , 4-Hydroxycoumarins/chemistry , 4-Hydroxycoumarins/chemical synthesis , Molecular Structure , Dextran Sulfate , Male , Dose-Response Relationship, Drug , Rats , Lipopolysaccharides/pharmacology , Lipopolysaccharides/antagonists & inhibitors , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemical synthesis , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/therapeutic use , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Anti-Inflammatory Agents, Non-Steroidal/chemical synthesis , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Interleukin-6/metabolism , Interleukin-6/antagonists & inhibitors , Interleukin-1 Receptor-Associated Kinases/antagonists & inhibitors , Interleukin-1 Receptor-Associated Kinases/metabolism , Molecular Docking Simulation , Mice, Inbred C57BL , Cell Line
19.
Front Immunol ; 15: 1374425, 2024.
Article En | MEDLINE | ID: mdl-38745644

Various gut bacteria, including Lactobacillus plantarum, possess several enzymes that produce hydroxy fatty acids (FAs), oxo FAs, conjugated FAs, and partially saturated FAs from polyunsaturated FAs as secondary metabolites. Among these derivatives, we identified 10-oxo-cis-6,trans-11-octadecadienoic acid (γKetoC), a γ-linolenic acid (GLA)-derived enon FA, as the most effective immunomodulator, which inhibited the antigen-induced immunoactivation and LPS-induced production of inflammatory cytokines. The treatment with γKetoC significantly suppressed proliferation of CD4+ T cells, LPS-induced activation of bone marrow-derived dendritic cells (BMDCs), and LPS-induced IL-6 release from peritoneal cells, splenocytes, and CD11c+ cells isolated from the spleen. γKetoC also inhibited the release of inflammatory cytokines from BMDCs stimulated with poly-I:C, R-848, or CpG. Further in vitro experiments using an agonist of GPR40/120 suggested the involvement of these GPCRs in the effects of γKetoC on DCs. We also found that γKetoC stimulated the NRF2 pathway in DCs, and the suppressive effects of γKetoC and agonist of GPR40/120 on the release of IL-6 and IL-12 were reduced in Nrf2-/- BMDCs. We evaluated the role of NRF2 in the anti-inflammatory effects of γKetoC in a dextran sodium sulfate-induced colitis model. The oral administration of γKetoC significantly reduced body weight loss, improved stool scores, and attenuated atrophy of the colon, in wild-type C57BL/6 and Nrf2+/- mice with colitis. In contrast, the pathology of colitis was deteriorated in Nrf2-/- mice even with the administration of γKetoC. Collectively, the present results demonstrated the involvement of the NRF2 pathway and GPCRs in γKetoC-mediated anti-inflammatory responses.


Gastrointestinal Microbiome , Inflammatory Bowel Diseases , Mice, Inbred C57BL , NF-E2-Related Factor 2 , Receptors, G-Protein-Coupled , Signal Transduction , Animals , NF-E2-Related Factor 2/metabolism , Mice , Receptors, G-Protein-Coupled/metabolism , Signal Transduction/drug effects , Gastrointestinal Microbiome/drug effects , Inflammatory Bowel Diseases/metabolism , Inflammatory Bowel Diseases/drug therapy , Inflammatory Bowel Diseases/immunology , Mice, Knockout , Cytokines/metabolism , Disease Models, Animal , Dextran Sulfate , Oleic Acids/pharmacology , Lactobacillus plantarum , Colitis/metabolism , Colitis/chemically induced , Colitis/drug therapy , Dendritic Cells/immunology , Dendritic Cells/metabolism , Dendritic Cells/drug effects , Male
20.
J Agric Food Chem ; 72(19): 10923-10935, 2024 May 15.
Article En | MEDLINE | ID: mdl-38691832

This study aimed to explore the ameliorative effects and potential mechanisms of Huangshan Umbilicaria esculenta polysaccharide (UEP) in dextran sulfate sodium-induced acute ulcerative colitis (UC) and UC secondary liver injury (SLI). Results showed that UEP could ameliorate both colon and liver pathologic injuries, upregulate mouse intestinal tight junction proteins (TJs) and MUC2 expression, and reduce LPS exposure, thereby attenuating the effects of the gut-liver axis. Importantly, UEP significantly downregulated the secretion levels of TNF-α, IL-1ß, and IL-6 through inhibition of the NF-κB pathway and activated the Nrf2 signaling pathway to increase the expression levels of SOD and GSH-Px. In vitro, UEP inhibited the LPS-induced phosphorylation of NF-κB P65 and promoted nuclear translocation of Nrf2 in RAW264.7 cells. These results revealed that UEP ameliorated UC and SLI through NF-κB and Nrf2-mediated inflammation and oxidative stress. The study first investigated the anticolitis effect of UEP, suggesting its potential for the treatment of colitis and colitis-associated liver disease.


Colitis , Dextran Sulfate , NF-E2-Related Factor 2 , NF-kappa B , Polysaccharides , Animals , Mice , Polysaccharides/pharmacology , Polysaccharides/chemistry , Polysaccharides/administration & dosage , Dextran Sulfate/adverse effects , Male , NF-E2-Related Factor 2/metabolism , NF-E2-Related Factor 2/genetics , Humans , Colitis/drug therapy , Colitis/chemically induced , Colitis/metabolism , RAW 264.7 Cells , NF-kappa B/metabolism , NF-kappa B/genetics , Mice, Inbred C57BL , Protective Agents/pharmacology , Protective Agents/administration & dosage , Protective Agents/chemistry , Liver/drug effects , Liver/metabolism , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism , Tumor Necrosis Factor-alpha/immunology , Oxidative Stress/drug effects , Interleukin-1beta/genetics , Interleukin-1beta/metabolism , Interleukin-1beta/immunology , Interleukin-6/genetics , Interleukin-6/metabolism , Interleukin-6/immunology , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/metabolism , Colitis, Ulcerative/chemically induced , Chemical and Drug Induced Liver Injury/drug therapy , Chemical and Drug Induced Liver Injury/metabolism , Mucin-2/genetics , Mucin-2/metabolism
...