Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 2.561
1.
Hum Vaccin Immunother ; 20(1): 2363068, 2024 Dec 31.
Article En | MEDLINE | ID: mdl-38860457

PURPOSE: To overview the recent literature regarding the relationship between COVID-19 vaccines and glycemic control. METHODS: Data were extracted from text and tables of all available articles published up to September 2023 in PubMed Database describing glucose homeostasis data in subjects exposed to COVID-19 vaccines, focusing on patients with diabetes mellitus (DM). RESULTS: It is debated if the immune system impairment observed in diabetic patients makes them susceptible to lower efficacy of vaccines, but evidence suggests a possible improvement in immune response in those with good glycemic control. Despite their proven protective role lowering infection rates and disease severity, COVID-19 vaccines can result in diabetic ketoacidosis, new-onset diabetes, or episodes of hyper- or hypoglycemia. CONCLUSIONS: Evidence with COVID-19 vaccines highlights the strong relationship existing between DM and immune system function. Clinicians should strive to achieve optimal glucose control before vaccination and promptly manage possible glucose homeostasis derangement following vaccine exposure.


Blood Glucose , COVID-19 Vaccines , COVID-19 , Diabetes Mellitus , Humans , COVID-19 Vaccines/immunology , Blood Glucose/metabolism , COVID-19/prevention & control , COVID-19/immunology , Diabetes Mellitus/immunology , Glycemic Control/methods , SARS-CoV-2/immunology , Hypoglycemia/prevention & control , Hypoglycemia/immunology
2.
Curr Microbiol ; 81(7): 208, 2024 Jun 04.
Article En | MEDLINE | ID: mdl-38833191

Diabetes mellitus (DM) leads to impaired innate and adaptive immune responses. This renders individuals with DM highly susceptible to microbial infections such as COVID-19, tuberculosis and melioidosis. Melioidosis is a tropical disease caused by the bacterial pathogen Burkholderia pseudomallei, where diabetes is consistently reported as the most significant risk factor associated with the disease. Type-2 diabetes is observed in 39% of melioidosis patients where the risk of infection is 13-fold higher than non-diabetic individuals. B. pseudomallei is found in the environment and is an opportunistic pathogen in humans, often exhibiting severe clinical manifestations in immunocompromised patients. The pathophysiology of diabetes significantly affects the host immune responses that play a critical role in fighting the infection, such as leukocyte and neutrophil impairment, macrophage and monocyte inhibition and natural killer cell dysfunction. These defects result in delayed recruitment as well as activation of immune cells to target the invading B. pseudomallei. This provides an advantage for the pathogen to survive and adapt within the immunocompromised diabetic patients. Nevertheless, knowledge gaps on diabetes-infectious disease comorbidity, in particular, melioidosis-diabetes comorbidity, need to be filled to fully understand the dysfunctional host immune responses and adaptation of the pathogen under diabetic conditions to guide therapeutic options.


Burkholderia pseudomallei , Melioidosis , Melioidosis/microbiology , Melioidosis/immunology , Humans , Burkholderia pseudomallei/immunology , Diabetes Complications/microbiology , Diabetes Mellitus/immunology , Diabetes Mellitus/microbiology , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/immunology , Diabetes Mellitus, Type 2/microbiology , Immunocompromised Host
3.
Narra J ; 4(1): e532, 2024 Apr.
Article En | MEDLINE | ID: mdl-38798871

Sepsis, a life-threatening condition resulting from immune dysregulation, is typically triggered by bacterial infections and commonly coexists with diabetes mellitus. Neutrophils are the first responders to infection and require regulated activation to control pathogen and damage-associated molecular patterns. Dysregulation of neutrophil activation leads to uncontrolled inflammatory responses, often observed in both sepsis and diabetes patients. Neutrophil dysregulation, characterized by effector dysfunction and inadequate cell death processes, can serve as a biomarker for assessing sepsis severity, particularly in diabetic patients. This review provides information on the relationship between effector function, neutrophil cell death, and the severity of sepsis in individuals with diabetes mellitus, aiming to shed light on the mechanisms underlying sepsis progression. Topics covered in the review include an overview of effector function of neutrophil cells, mechanisms of neutrophil cell death, and dysregulation of effectors and neutrophil cell death processes in sepsis severity with diabetes mellitus.


Cell Death , Neutrophils , Sepsis , Severity of Illness Index , Humans , Sepsis/immunology , Sepsis/pathology , Neutrophils/immunology , Neutrophils/pathology , Diabetes Mellitus/immunology , Diabetes Mellitus/pathology , Biomarkers
4.
Front Immunol ; 15: 1357378, 2024.
Article En | MEDLINE | ID: mdl-38720885

Exosomes carry proteins, metabolites, nucleic acids and lipids from their parent cell of origin. They are derived from cells through exocytosis, are ingested by target cells, and can transfer biological signals between local or distant cells. Therefore, exosomes are often modified in reaction to pathological processes, including infection, cancer, cardiovascular diseases and in response to metabolic perturbations such as obesity and diabetes, all of which involve a significant inflammatory aspect. Here, we discuss how immune cell-derived exosomes origin from neutrophils, T lymphocytes, macrophages impact on the immune reprogramming of diabetes and the associated complications. Besides, exosomes derived from stem cells and their immunomodulatory properties and anti-inflammation effect in diabetes are also reviewed. Moreover, As an important addition to previous reviews, we describes promising directions involving engineered exosomes as well as current challenges of clinical applications in diabetic therapy. Further research on exosomes will explore their potential in translational medicine and provide new avenues for the development of effective clinical diagnostics and therapeutic strategies for immunoregulation of diabetes.


Diabetes Mellitus , Exosomes , Immunomodulation , Exosomes/immunology , Exosomes/metabolism , Humans , Diabetes Mellitus/immunology , Diabetes Mellitus/therapy , Animals , Macrophages/immunology , Macrophages/metabolism
5.
Int J Mol Sci ; 25(10)2024 May 08.
Article En | MEDLINE | ID: mdl-38791147

Despite neutrophil involvement in inflammation and tissue repair, little is understood about their inflammatory status in acute coronary syndrome (ACS) patients with poor outcomes. Hence, we investigated the potential correlation between neutrophil inflammatory markers and the prognosis of ACS patients with/without diabetes and explored whether neutrophils demonstrate a unique inflammatory phenotype in patients experiencing an adverse in-hospital outcome. The study enrolled 229 ACS patients with or without diabetes. Poor evolution was defined as either death, left ventricular ejection fraction (LVEF) <40%, Killip Class 3/4, ventricular arrhythmias, or mechanical complications. Univariate and multivariate analyses were employed to identify clinical and paraclinical factors associated with in-hospital outcomes. Neutrophils isolated from fresh blood were investigated using qPCR, Western blot, enzymatic assay, and immunofluorescence. Poor evolution post-myocardial infarction (MI) was associated with increased number, activity, and inflammatory status of neutrophils, as indicated by significant increase of Erythrocyte Sedimentation Rate (ESR), C-reactive protein (CRP), fibrinogen, interleukin-1ß (IL-1ß), and, interleukin-6 (IL-6). Among the patients with complicated evolution, neutrophil activity had an important prognosis value for diabetics. Neutrophils from patients with unfavorable evolution revealed a pro-inflammatory phenotype with increased expression of CCL3, IL-1ß, interleukin-18 (IL-18), S100A9, intracellular cell adhesion molecule-1 (ICAM-1), matrix metalloprotease (MMP-9), of molecules essential in reactive oxygen species (ROS) production p22phox and Nox2, and increased capacity to form neutrophil extracellular traps. Inflammation is associated with adverse short-term prognosis in acute ACS, and inflammatory biomarkers exhibit greater specificity in predicting short-term outcomes in diabetics. Moreover, neutrophils from patients with unfavorable evolution exhibit distinct inflammatory patterns, suggesting that alterations in the innate immune response in this subgroup may exert detrimental effects on disease progression.


Acute Coronary Syndrome , Inflammation , Neutrophils , Humans , Neutrophils/metabolism , Neutrophils/immunology , Acute Coronary Syndrome/blood , Acute Coronary Syndrome/complications , Male , Female , Prognosis , Middle Aged , Aged , Inflammation/blood , Inflammation/pathology , Biomarkers/blood , Diabetes Mellitus/blood , Diabetes Mellitus/immunology , Diabetes Mellitus/pathology
6.
Front Immunol ; 15: 1381319, 2024.
Article En | MEDLINE | ID: mdl-38742118

Introduction: Inflammation of the pancreas contributes to the development of diabetes mellitus. Although it is well-accepted that local inflammation leads to a progressive loss of functional beta cell mass that eventually causes the onset of the disease, the development of islet inflammation remains unclear. Methods: Here, we used single-cell RNA sequencing to explore the cell type-specific molecular response of primary human pancreatic cells exposed to an inflammatory environment. Results: We identified a duct subpopulation presenting a unique proinflammatory signature among all pancreatic cell types. Discussion: Overall, the findings of this study point towards a role for duct cells in the propagation of islet inflammation, and in immune cell recruitment and activation, which are key steps in the pathophysiology of diabetes mellitus.


Inflammation , Pancreatic Ducts , Single-Cell Analysis , Transcriptome , Humans , Pancreatic Ducts/pathology , Pancreatic Ducts/metabolism , Pancreatic Ducts/immunology , Inflammation/immunology , Inflammation/genetics , Gene Expression Profiling , Diabetes Mellitus/immunology , Diabetes Mellitus/genetics , Diabetes Mellitus/metabolism , Cells, Cultured , Inflammation Mediators/metabolism
7.
PLoS One ; 19(5): e0301300, 2024.
Article En | MEDLINE | ID: mdl-38709763

OBJECTIVE: The purpose of this study was to investigate whether the combination of abnormal systemic immune-inflammation index (SII) levels and hyperglycemia increased the risk of cognitive function decline and reduced survival rate in the United States. METHODS: This cross-sectional study used data from the National Health and Nutrition Examination Survey (NHANES) database from 2011-2014 and enrolled 1,447 participants aged 60 years or older. Restricted cubic splines (RCS), linear regression and kaplan-meier(KM) curve were employed to explore the combined effects of abnormal SII and hyperglycemia on cognitive function and survival rate, and subgroup analysis was also conducted. RESULTS: The RCS analysis revealed an inverted U-shaped relationship between lgSII levels and cognitive function. Linear regression analysis indicated that neither abnormal SII nor diabetes alone significantly contributed to the decline in cognitive function compared to participants with normal SII levels and blood glucose. However, when abnormal SII coexisted with diabetes (but not prediabetes), it resulted to a significant decline in cognitive function. After adjusting for various confounding factors, these results remained significant in Delayed Word Recall (ß:-0.76, P<0.05) and Digit Symbol Substitution tests (ß:-5.02, P<0.05). Nevertheless, these results showed marginal significance in Total Word Recall test as well as Animal Fluency test. Among all subgroup analyses performed, participants with both abnormal SII levels and diabetes exhibited the greatest decline in cognitive function compared to those with only diabetes. Furthermore, KM curve demonstrated that the combination of abnormal SII levels and diabetes decreased survival rate among participants. CONCLUSION: The findings suggest that the impact of diabetes on cognitive function/survival rate is correlated with SII levels, indicating that their combination enhances predictive power.


Cognition , Inflammation , Nutrition Surveys , Humans , Female , Male , Aged , Middle Aged , Cross-Sectional Studies , Inflammation/blood , Survival Rate , Diabetes Mellitus/mortality , Diabetes Mellitus/immunology , Diabetes Mellitus/epidemiology , United States/epidemiology , Hyperglycemia/mortality , Blood Glucose/analysis
8.
Int J Mol Sci ; 25(9)2024 Apr 30.
Article En | MEDLINE | ID: mdl-38732153

Inflammation is closely associated with cerebrovascular diseases, cardiovascular diseases, diabetes, and cancers, and it is accompanied by the development of autoantibodies in the early stage of inflammation-related diseases. Hence, it is meaningful to discover novel antibody biomarkers targeting inflammation-related diseases. In this study, Jumonji C-domain-containing 6 (JMJD6) was identified by the serological identification of antigens through recombinant cDNA expression cloning. In particular, JMJD6 is an antigen recognized in serum IgG from patients with unstable angina pectoris (a cardiovascular disease). Then, the serum antibody levels were examined using an amplified luminescent proximity homogeneous assay-linked immunosorbent assay and a purified recombinant JMJD6 protein as an antigen. We observed elevated levels of serum anti-JMJD6 antibodies (s-JMJD6-Abs) in patients with inflammation-related diseases such as ischemic stroke, acute myocardial infarction (AMI), diabetes mellitus (DM), and cancers (including esophageal cancer, EC; gastric cancer; lung cancer; and mammary cancer), compared with the levels in healthy donors. The s-JMJD6-Ab levels were closely associated with some inflammation indicators, such as C-reactive protein and intima-media thickness (an atherosclerosis index). A better postoperative survival status of patients with EC was observed in the JMJD6-Ab-positive group than in the negative group. An immunohistochemical analysis showed that JMJD6 was highly expressed in the inflamed mucosa of esophageal tissues, esophageal carcinoma tissues, and atherosclerotic plaques. Hence, JMJD6 autoantibodies may reflect inflammation, thereby serving as a potential biomarker for diagnosing specific inflammation-related diseases, including stroke, AMI, DM, and cancers, and for prediction of the prognosis in patients with EC.


Autoantibodies , Biomarkers , Inflammation , Jumonji Domain-Containing Histone Demethylases , Humans , Autoantibodies/immunology , Autoantibodies/blood , Biomarkers/blood , Inflammation/immunology , Inflammation/blood , Female , Jumonji Domain-Containing Histone Demethylases/immunology , Jumonji Domain-Containing Histone Demethylases/metabolism , Male , Middle Aged , Neoplasms/immunology , Neoplasms/diagnosis , Neoplasms/blood , Aged , Adult , Diabetes Mellitus/immunology , Diabetes Mellitus/blood
9.
J Mol Med (Berl) ; 102(6): 709-717, 2024 06.
Article En | MEDLINE | ID: mdl-38538987

Ischemic stroke is the major contributor to morbidity and mortality in people with diabetes mellitus. In ischemic stroke patients, neuroinflammation is now understood to be one of the main underlying mechanisms for cerebral damage and recovery delay. It has been well-established that toll-like receptor 4 (TLR4) signaling pathway plays a key role in neuroinflammation. Emerging research over the last decade has revealed that, compared to ischemic stroke without diabetes mellitus, ischemic stroke with diabetes mellitus significantly upregulates TLR4-mediated neuroinflammation, increasing the risk of cerebral and neuronal damage as well as neurofunctional recovery delay. This review aims to discuss how ischemic stroke with diabetes mellitus amplifies TLR4-mediated neuroinflammation and its consequences. Additionally covered in this review is the potential application of TLR4 antagonists in the management of diabetic ischemic stroke.


Ischemic Stroke , Neuroinflammatory Diseases , Toll-Like Receptor 4 , Humans , Toll-Like Receptor 4/metabolism , Ischemic Stroke/metabolism , Ischemic Stroke/immunology , Animals , Neuroinflammatory Diseases/metabolism , Neuroinflammatory Diseases/etiology , Neuroinflammatory Diseases/immunology , Signal Transduction , Diabetes Mellitus/metabolism , Diabetes Mellitus/immunology , Diabetes Complications/metabolism
10.
Am J Obstet Gynecol ; 231(1): 115.e1-115.e11, 2024 Jul.
Article En | MEDLINE | ID: mdl-38408622

BACKGROUND: Diabetes is an independent risk factor for mesh complications in women undergoing mesh-augmented surgical repairs of stress urinary incontinence and/or pelvic organ prolapse. The underlying mechanism remains unclear. OBJECTIVE: This study aimed to define the diabetes-associated alterations in the host inflammatory response to mesh and correlate them with perioperative glucose management. STUDY DESIGN: Deidentified demographics and medical records of patients who underwent mesh removal and participated in a mesh biorepository study were reviewed (n=200). In patients with diagnosed diabetes (n=25), blood glucose management before initial mesh implantation and before and after mesh removal was assessed by blood glucose and hemoglobin A1c levels. Age- and body mass index-matched tissue samples excised from patients with and without diabetes were examined. Transcriptomic profiles of immune cell markers, immune mediators, key inflammatory regulators, cell senescence, and epigenetic enzymes were determined by multiplex transcriptomic assays (NanoString). Ratios of apoptotic cells to CD68+ macrophages were examined with immunofluorescence. Protein profiles of 12 molecules involved in apoptotic cell clearance were examined with a multiplex protein assay (Luminex). RESULTS: Demographic and clinical characteristics, including duration between mesh implantation and removal, reason for removal, and type of mesh, etc., were comparable between patients with and without diabetes, except for 11.6% higher body mass index in the former (P=.005). In patients with diabetes, suboptimal management of blood glucose following mesh implantation was observed, with 59% of the patients having loosely or poorly controlled glucose before and after the mesh removal. Ongoing chronic inflammatory response was observed in the excised mesh-tissue complexes in both groups, whereas markers for M2 macrophages (Mrc1 [mannose receptor C-type 1]) and helper T cells (Cd4 [CD4 molecule]) were increasingly expressed in the diabetic vs nondiabetic group (P=.023 and .047, respectively). Furthermore, the gene expressions of proinflammatory Ccl24 (C-C motif chemokine ligand 24) and Ccl13 (C-C motif chemokine ligand 13) were upregulated by 1.5- and 1.8-fold (P=.035 and .027, respectively), whereas that of Il1a (interleukin 1 alpha) was paradoxically downregulated by 2.2-fold (P=.037) in the diabetic vs nondiabetic group. Interestingly, strong positive correlations were found between the expression of Ccl13, Setdb2 (SET domain bifurcated histone lysine methyltransferase 2), and M2 macrophage markers, and between the expression of Il1a, Fosl1 (activator protein-1 transcription factor subunit), and dendritic cell markers, suggesting the involvement of macrophages and dendritic cells in the diabetes-dysregulated proinflammatory response. Supportively, apoptotic cell clearance, which is an important function of macrophages, appeared to be impaired in the diabetic group, with a significantly increased protein level of CALR (calreticulin), an "eat-me" signal on the surface of apoptotic cells (P=.031), along with an increase of AXL (AXL receptor tyrosine kinase) (P=.030), which mediates apoptotic cell clearance. CONCLUSION: Diabetes was associated with altered long-term inflammatory response in complicated mesh implantation, particularly involving innate immune cell dysfunction. Suboptimal blood glycemic control following mesh implantation may contribute to this immune dysregulation, necessitating further mechanistic studies.


Pelvic Organ Prolapse , Surgical Mesh , Urinary Incontinence, Stress , Humans , Female , Middle Aged , Urinary Incontinence, Stress/surgery , Aged , Pelvic Organ Prolapse/surgery , Pelvic Organ Prolapse/immunology , Blood Glucose/metabolism , Inflammation , Macrophages/metabolism , Macrophages/immunology , Apoptosis , Glycated Hemoglobin/metabolism , Diabetes Mellitus/immunology , Antigens, Differentiation, Myelomonocytic/metabolism , Postoperative Complications/immunology
11.
Nature ; 624(7992): 645-652, 2023 Dec.
Article En | MEDLINE | ID: mdl-38093014

People with diabetes feature a life-risking susceptibility to respiratory viral infection, including influenza and SARS-CoV-2 (ref. 1), whose mechanism remains unknown. In acquired and genetic mouse models of diabetes, induced with an acute pulmonary viral infection, we demonstrate that hyperglycaemia leads to impaired costimulatory molecule expression, antigen transport and T cell priming in distinct lung dendritic cell (DC) subsets, driving a defective antiviral adaptive immune response, delayed viral clearance and enhanced mortality. Mechanistically, hyperglycaemia induces an altered metabolic DC circuitry characterized by increased glucose-to-acetyl-CoA shunting and downstream histone acetylation, leading to global chromatin alterations. These, in turn, drive impaired expression of key DC effectors including central antigen presentation-related genes. Either glucose-lowering treatment or pharmacological modulation of histone acetylation rescues DC function and antiviral immunity. Collectively, we highlight a hyperglycaemia-driven metabolic-immune axis orchestrating DC dysfunction during pulmonary viral infection and identify metabolic checkpoints that may be therapeutically exploited in mitigating exacerbated disease in infected diabetics.


Dendritic Cells , Diabetes Complications , Diabetes Mellitus , Disease Susceptibility , Hyperglycemia , Lung , Virus Diseases , Animals , Mice , Acetyl Coenzyme A/metabolism , Acetylation , Chromatin/genetics , Chromatin/metabolism , Dendritic Cells/immunology , Dendritic Cells/metabolism , Dendritic Cells/pathology , Diabetes Complications/immunology , Diabetes Complications/metabolism , Diabetes Mellitus/genetics , Diabetes Mellitus/immunology , Diabetes Mellitus/metabolism , Glucose/metabolism , Histones/metabolism , Hyperglycemia/complications , Hyperglycemia/immunology , Hyperglycemia/metabolism , Lung/immunology , Lung/metabolism , Lung/virology , T-Lymphocytes/immunology , Virus Diseases/complications , Virus Diseases/immunology , Virus Diseases/mortality , Viruses/immunology , Disease Models, Animal , Humans
12.
Front Endocrinol (Lausanne) ; 13: 1020252, 2022.
Article En | MEDLINE | ID: mdl-36465606

Purpose: To investigate the expression of Glucagon-like peptide-1 receptor (GLP-1R), sodium-glucose co-transporter (SGLT) 1, SGLT2, Glucose transporter type 1 (GLUT1) and GLUT2 in patients with diabetic retinopathy (DR). Methods: We obtained peripheral blood mononuclear cells (PBMCs) and vitreous samples from 26 proliferative DR (PDR) patients, 25 non-proliferative DR (NPDR) patients, 25 non-DR (NDR) patients, and 26 nondiabetic patients with idiopathic epiretinal membranes (ERMs, control). The protein level and mRNA expression level of GLP-1R were quantified by immunoblot and qRT-PCR and the levels of SGLT1, SGLT2, GLUT1, and GLUT2 expression were determined by PCR. Their association with clinical parameters and PBMCs/vitreous cytokine was analyzed. Furthermore, immunofluorescence staining of GLP-1R and SGLT2 was carried out on samples of fibrovascular membranes (FVMs) retrieved from 26 patients with PDR and 26 patients with ERMs. Results: The transcriptional levels of GLP-1R and SGLT2 in PBMCs were significantly more decreased in PDR patients than in patients without DR and controls, which was simultaneously associated with an increased level of expression of tumor necrosis factor (TNF)-α and interferon (IFN)-γ. The expression levels of GLUT1 and GLUT2 were tightly correlated with their SGLT partners, respectively. Further, Immunofluorescence staining showed no positive staining of GLP-1R and SGLT2 was detected in the FVMs from PDR. Conclusions: GLP-1R and SGLT2 were significantly decreased in PDR patients which was associated with an increased level of expression of TNF-α and IFN-γ. These findings implicate that defective GLP-1R and SGLT2 signaling may potentially correlate with immune response cytokines in patients with PDR.


Diabetic Retinopathy , Glucagon-Like Peptide-1 Receptor , Glucose Transporter Type 1 , Sodium-Glucose Transporter 2 , Humans , Cytokines/analysis , Cytokines/immunology , Diabetes Mellitus/genetics , Diabetes Mellitus/immunology , Diabetic Retinopathy/genetics , Diabetic Retinopathy/immunology , Glucagon-Like Peptide-1 Receptor/biosynthesis , Glucagon-Like Peptide-1 Receptor/genetics , Glucose Transporter Type 1/biosynthesis , Glucose Transporter Type 1/genetics , Leukocytes, Mononuclear/immunology , Sodium-Glucose Transporter 2/biosynthesis , Sodium-Glucose Transporter 2/genetics , Tumor Necrosis Factor-alpha/biosynthesis , Tumor Necrosis Factor-alpha/genetics , Vitreous Body/chemistry , Vitreous Body/immunology
13.
Mutat Res Rev Mutat Res ; 790: 108442, 2022.
Article En | MEDLINE | ID: mdl-36089265

Diabetes, one of the most common multifactorial metabolic disorders, is a jeopardizing cause of human health worldwide. MicroRNAs (miRNAs) are a group of small non-coding RNAs that have been contributed to the regulation of gene expression through post-transcriptional mechanisms. The potential role of miRNAs has been studied in the most of biological processes and mechanisms underlying the progression of variety diseases including diabetes. In this review, we focus on the role of miRNAs in regulating pivotal molecular and cellular mechanisms associated with immune system that progress diabetic disorders.


Diabetes Mellitus , Immune System , MicroRNAs , Humans , Diabetes Mellitus/genetics , Diabetes Mellitus/immunology , MicroRNAs/genetics
14.
Nature ; 606(7915): 776-784, 2022 06.
Article En | MEDLINE | ID: mdl-35614212

Chronic non-healing wounds are a major complication of diabetes, which affects 1 in 10 people worldwide. Dying cells in the wound perpetuate the inflammation and contribute to dysregulated tissue repair1-3. Here we reveal that the membrane transporter SLC7A11 acts as a molecular brake on efferocytosis, the process by which dying cells are removed, and that inhibiting SLC7A11 function can accelerate wound healing. Transcriptomics of efferocytic dendritic cells in mouse identified upregulation of several SLC7 gene family members. In further analyses, pharmacological inhibition of SLC7A11, or deletion or knockdown of Slc7a11 using small interfering RNA enhanced efferocytosis in dendritic cells. Slc7a11 was highly expressed in dendritic cells in skin, and single-cell RNA sequencing of inflamed skin showed that Slc7a11 was upregulated in innate immune cells. In a mouse model of excisional skin wounding, inhibition or loss of SLC7A11 expression accelerated healing dynamics and reduced the apoptotic cell load in the wound. Mechanistic studies revealed a link between SLC7A11, glucose homeostasis and diabetes. SLC7A11-deficient dendritic cells were dependent on aerobic glycolysis using glucose derived from glycogen stores for increased efferocytosis; also, transcriptomics of efferocytic SLC7A11-deficient dendritic cells identified increased expression of genes linked to gluconeogenesis and diabetes. Further, Slc7a11 expression was higher in the wounds of diabetes-prone db/db mice, and targeting SLC7A11 accelerated their wound healing. The faster healing was also linked to the release of the TGFß family member GDF15 from efferocytic dendritic cells. In sum, SLC7A11 is a negative regulator of efferocytosis, and removing this brake improves wound healing, with important implications for wound management in diabetes.


Amino Acid Transport System y+ , Dendritic Cells , Diabetes Mellitus , Phagocytosis , Wound Healing , Amino Acid Transport System y+/antagonists & inhibitors , Animals , Dendritic Cells/cytology , Dendritic Cells/immunology , Diabetes Mellitus/immunology , Gluconeogenesis , Glucose , Glycolysis , Growth Differentiation Factor 15 , Mice
15.
Int J Mol Sci ; 23(5)2022 Mar 06.
Article En | MEDLINE | ID: mdl-35270015

Almost two years have passed since the outbreak reported for the first time in Wuhan of coronavirus disease 2019 (COVID-19), due to severe acute respiratory syndrome (SARS)-CoV-2 coronavirus, rapidly evolved into a pandemic. This infectious disease has stressed global health care systems. The mortality rate is higher, particularly in elderly population and in patients with comorbidities such as hypertension, diabetes mellitus, cardiovascular disease, chronic lung disease, chronic renal disease, and malignancy. Among them, subjects with diabetes have a high risk of developing severe form of COVID-19 and show increased mortality. How diabetes contributes to COVID-19 severity remains unclear. It has been hypothesized that it may be correlated with the effects of hyperglycemia on systemic inflammatory responses and immune system dysfunction. Vitamin D (VD) is a modulator of immune-response. Data from literature showed that vitamin D deficiency in COVID-19 patients increases COVID-19 severity, likely because of its negative impact on immune and inflammatory responses. Therefore, the use of vitamin D might play a role in some aspects of the infection, particularly the inflammatory state and the immune system function of patients. Moreover, a piece of evidence highlighted a link among vitamin D deficiency, obesity and diabetes, all factors associated with COVID-19 severity. Given this background, we performed an overview of the systematic reviews to assess the association between vitamin D supplementation and inflammatory markers in patients with diabetes; furthermore, vitamin D's possible role in COVID-19 patients was assessed as well. Three databases, namely MEDLINE, PubMed Central and the Cochrane Library of Systematic Reviews, were reviewed to retrieve the pertinent data. The aim of this review is to provide insight into the recent advances about the molecular basis of the relationship between vitamin D, immune response, inflammation, diabetes and COVID-19.


COVID-19/immunology , Diabetes Mellitus/immunology , Immune System/immunology , Inflammation/immunology , Obesity/immunology , Vitamin D/immunology , COVID-19/virology , Humans , Immune System/drug effects , Meta-Analysis as Topic , SARS-CoV-2/physiology , Systematic Reviews as Topic , T-Lymphocytes, Regulatory/drug effects , T-Lymphocytes, Regulatory/immunology , Vitamin D/administration & dosage , Vitamins/administration & dosage , Vitamins/immunology
16.
Mol Biol Rep ; 49(4): 3349-3356, 2022 Apr.
Article En | MEDLINE | ID: mdl-35064406

The COVID-19 patients, both infected and recovered are rapidly contracting mucormycetes infections due to the 'Mucorales' order, under Zygomycetes class of fungi. The mucorales fungi commonly known to exist in our natural surroundings including soil, but the frequency of incidences was never rampant. This sudden spike in infections, is locally known as 'black fungus,' and is affecting various organs, including- eyes, sinuses, nose, brain, skin, intestine, lungs, etc. The severity of situation is ascertainable from the fact that, in certain cases surgical eye/jaws removal persists as the only viable option to avert mortality, as therapeutic interventions are limited. This epidemic situation intrigued experts to investigate the probable reason behind this unpredicted escalation in reported cases, including in recuperated COVID-19 patients, as person-to-person spread of infection is not common. The comparison of physiological parameters in healthy and COVID-19 afflicted patients highlights that the underlying conditions including diabetes mellitus, steroidal therapy, lymphopenia (decreased CD4+ and CD8+ lymphocytes), deregulated cytokine release storm, elevated free iron levels (hemosiderosis) in blood and insulin insensitivity are playing major roles in deteriorating conditions in rarely pathogenic fungal infections. This review is an attempt to explain the rationalities that makes people vulnerable to mucormycetes infection.


Mucorales/immunology , Mucormycosis , SARS-CoV-2/immunology , COVID-19/complications , COVID-19/microbiology , COVID-19/mortality , COVID-19/therapy , Diabetes Mellitus/immunology , Diabetes Mellitus/mortality , Humans , Mucormycosis/etiology , Mucormycosis/immunology , Mucormycosis/mortality , Mucormycosis/therapy
17.
J Diabetes Complications ; 36(3): 108133, 2022 03.
Article En | MEDLINE | ID: mdl-35090823

IL-38 is a recently discovered, novel anti-inflammatory cytokine, which belongs to the IL-1ß family. The role played by this cytokine in diabetes-tuberculosis nexus is not known. Serum levels of IL-38, TNF-α, IL-6, and IL-1ß in Normal Glucose Tolerance (NGT) and chronic Diabetes (DM) subjects, both with and without latent tuberculosis (LTB) (n = 256) were quantified by ELISA. While, serum levels of IL-38 were significantly reduced, the levels of TNF-α, IL-6, and IL-1ß were not altered, in LTB infected diabetes patients. While no significant secretion of IL-38 was detected in the quantiferon supernatant, secretion of TNF-α, IL-6, and IL-1ß was significantly reduced in LTB infected diabetes patients. The decreased systemic levels of IL-38 and reduced in vitro secretion of other pro-inflammatory cytokines might represent a crucial pathway associated with diabetes-tuberculosis nexus.


Cytokines , Diabetes Mellitus , Interleukins , Latent Tuberculosis , Cytokines/blood , Diabetes Complications/immunology , Diabetes Mellitus/blood , Diabetes Mellitus/immunology , Enzyme-Linked Immunosorbent Assay , Humans , Interleukins/blood , Interleukins/immunology , Latent Tuberculosis/blood , Latent Tuberculosis/complications , Latent Tuberculosis/immunology , Tumor Necrosis Factor-alpha
18.
Int Urol Nephrol ; 54(3): 637-646, 2022 Mar.
Article En | MEDLINE | ID: mdl-34216339

PURPOSE: We conducted this observational study to examine the impact of antibody inductions administered at kidney transplant (KT) on outcomes of 5 year exposure to post-transplant diabetes (PTDM) in adult deceased-donor kidney transplant recipients (DDKTRs). We also studied the risk of PTDM associated with antibody inductions. METHODS: Using 2000-2016 Organ Procurement Transplantation Network data, we employed multivariable Cox models to determine the adjusted hazard ratios (HR) of death, and overall and death-censored graft loss (OAGL, DCGL; respectively) at the 5 year landmark period in antibody induction cohorts with and without PTDM at the 1 year post-transplant index time point. We used multivariable logistic regression in determining the risk factors for PTDM. All multivariable analyses were adjusted for the potential confounding effects of maintenance immunosuppression, steroid regimens, and other relevant covariates. RESULTS: 48,031 adult DDKTRs were classified into cohorts based on antibody induction at transplant: (anti-thymocyte globulin) ATG (n = 26, 788); (alemtuzumab) ALM (n = 5916); and interleukin-2 receptor antagonist (IL-2RA) (n = 15,327). PTDM was a risk factor for 5 year OAGL and death, not DCGL [(HR = 1.25, CI = 1.16-1.36), (HR = 1.13, CI = 1.06-1.21), and (HR = 1.05, CI = 0.96-1.16); respectively]. Induction regimens were not risk factors for 5 year outcomes in DDKTRs with and without PTDM. Risk factors for PTDM included DDKTR obesity, age > / = 50 years, acute rejection, and ATG induction, among others. CONCLUSIONS: In adult DDKTRs, after controlling the confounding effects of clinically relevant variables including maintenance and steroid regimens, PTDM at 1 year post-transplant is associated with death and OAGL, not DCGL in the following 5 years: induction received at KT did not modify these associations.


Alemtuzumab/adverse effects , Antilymphocyte Serum/adverse effects , Diabetes Mellitus/chemically induced , Diabetes Mellitus/immunology , Immunologic Factors/adverse effects , Kidney Transplantation , Postoperative Complications/chemically induced , Postoperative Complications/immunology , Receptors, Interleukin-2/antagonists & inhibitors , Adolescent , Adult , Antibodies , Diabetes Mellitus/epidemiology , Humans , Middle Aged , Postoperative Complications/epidemiology , Registries , Risk Assessment , Young Adult
20.
J Allergy Clin Immunol ; 149(2): 550-556.e2, 2022 02.
Article En | MEDLINE | ID: mdl-34800432

BACKGROUND: Severe coronavirus disease 2019 (COVID-19) is characterized by impaired type I interferon activity and a state of hyperinflammation leading to acute respiratory distress syndrome. The complement system has recently emerged as a key player in triggering and maintaining the inflammatory state, but the role of this molecular cascade in severe COVID-19 is still poorly characterized. OBJECTIVE: We aimed at assessing the contribution of complement pathways at both the protein and transcriptomic levels. METHODS: To this end, we systematically assessed the RNA levels of 28 complement genes in the circulating whole blood of patients with COVID-19 and healthy controls, including genes of the alternative pathway, for which data remain scarce. RESULTS: We found differential expression of genes involved in the complement system, yet with various expression patterns: whereas patients displaying moderate disease had elevated expression of classical pathway genes, severe disease was associated with increased lectin and alternative pathway activation, which correlated with inflammation and coagulopathy markers. Additionally, properdin, a pivotal positive regulator of the alternative pathway, showed high RNA expression but was found at low protein concentrations in patients with a severe and critical disease, suggesting its deposition at the sites of complement activation. Notably, low properdin levels were significantly associated with the use of mechanical ventilation (area under the curve = 0.82; P = .002). CONCLUSION: This study sheds light on the role of the alternative pathway in severe COVID-19 and provides additional rationale for the testing of drugs inhibiting the alternative pathway of the complement system.


COVID-19/immunology , Complement Activation/genetics , Complement Pathway, Alternative/genetics , Complement System Proteins/genetics , Disseminated Intravascular Coagulation/immunology , SARS-CoV-2/pathogenicity , COVID-19/genetics , COVID-19/therapy , COVID-19/virology , Cardiovascular Diseases/genetics , Cardiovascular Diseases/immunology , Cardiovascular Diseases/therapy , Cardiovascular Diseases/virology , Case-Control Studies , Comorbidity , Complement System Proteins/immunology , Diabetes Mellitus/genetics , Diabetes Mellitus/immunology , Diabetes Mellitus/therapy , Diabetes Mellitus/virology , Disseminated Intravascular Coagulation/genetics , Disseminated Intravascular Coagulation/therapy , Disseminated Intravascular Coagulation/virology , Female , Gene Expression Regulation , Humans , Hypertension/genetics , Hypertension/immunology , Hypertension/therapy , Hypertension/virology , Lectins/genetics , Lectins/immunology , Male , Middle Aged , Neoplasms/genetics , Neoplasms/immunology , Neoplasms/therapy , Neoplasms/virology , Properdin/genetics , Properdin/immunology , Respiration, Artificial , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Severity of Illness Index
...