Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 125
Filter
1.
Acta Cir Bras ; 39: e395324, 2024.
Article in English | MEDLINE | ID: mdl-39109782

ABSTRACT

PURPOSE: To assess the effect of Amorphophallus campanulatus tuber (Ac) extract in the protection of diabetic nephropathy in streptozotocin (STZ) induced diabetic nephropathy (DN) rat model. METHODS: Diabetes was induced with STZ (60 mg/kg, i.p.), and DN was confirmed after six weeks of STZ administration with the estimation of kidney function test. Further rats were treated with Ac 250 and 500 mg/kg p.o. for next four week. Oxidative stress and level of inflammatory cytokines were estimated in the kidney tissue of DN rats. Histopathology of kidney tissue was performed using hematoxylin and eosin staining. RESULTS: There was improvement in the body weight of Ac treated groups than DN group of rats. Blood glucose level was observed to be reduced in Ac treated groups than DN group on 42nd and 70th day of protocol. Treatment with Ac ameliorated the altered level of kidney function tests (creatinine and BUN), enzymes of liver function (aspartate aminotransferase and alanine aminotransferase), and lipid profile in the serum of DN rats. Oxidative stress parameters (malondialdehyde and reactive oxygen species enhances and reduction in the level of glutathione and superoxide dismutase) and inflammatory cytokines such as interleukin-6, tumour necrosis factor-α, and monocyte chemoattractant protein-1 reduces in the tissue of Ac treated group than DN group. Treatment with Ac also attenuates the altered histopathological changes in the kidney tissue of DN rats. CONCLUSIONS: The report suggests that Ac protects renal injury in DN rats by regulating inflammatory cytokines and oxidative stress.


Subject(s)
Diabetes Mellitus, Experimental , Diabetic Nephropathies , Oxidative Stress , Plant Extracts , Tumor Necrosis Factor-alpha , Animals , Oxidative Stress/drug effects , Diabetic Nephropathies/drug therapy , Diabetic Nephropathies/prevention & control , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/drug therapy , Male , Streptozocin , Rats , Rats, Wistar , Kidney/drug effects , Kidney/pathology , Blood Glucose/drug effects , Blood Glucose/analysis , Disease Models, Animal , Reproducibility of Results , Plant Tubers/chemistry
2.
Biol Res ; 57(1): 47, 2024 Jul 20.
Article in English | MEDLINE | ID: mdl-39033184

ABSTRACT

BACKGROUND: MiRNA-146a and miRNA-223 are key epigenetic regulators of toll-like receptor 4 (TLR4)/tumor necrosis factor-receptor-associated factor 6 (TRAF6)/NOD-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome pathway, which is involved in diabetic nephropathy (DN) pathogenesis. The currently available oral anti-diabetic treatments have been insufficient to halt DN development and progression. Therefore, this work aimed to assess the renoprotective effect of the natural compound 6-gingerol (GR) either alone or in combination with metformin (MET) in high-fat diet/streptozotocin-induced DN in rats. The proposed molecular mechanisms were also investigated. METHODS: Oral gavage of 6-gingerol (100 mg/kg) and metformin (300 mg/kg) were administered to rats daily for eight weeks. MiRNA-146a, miRNA-223, TLR4, TRAF6, nuclear factor-kappa B (NF-κB) (p65), NLRP3, caspase-1, and hypoxia-inducible factor-1 alpha (HIF-1α) mRNA expressions were measured using real-time PCR. ELISA was used to measure TLR4, TRAF6, NLRP3, caspase-1, tumor necrosis factor-alpha (TNF-α), and interleukin-1-beta (IL-1ß) renal tissue levels. Renal tissue histopathology and immunohistochemical examination of fibronectin and NF-κB (p65) were performed. RESULTS: 6-Gingerol treatment significantly reduced kidney tissue damage and fibrosis. 6-Gingerol up-regulated miRNA-146a and miRNA-223 and reduced TLR4, TRAF6, NF-κB (p65), NLRP3, caspase-1, TNF-α, IL-1ß, HIF-1α and fibronectin renal expressions. 6-Gingerol improved lipid profile and renal functions, attenuated renal hypertrophy, increased reduced glutathione, and decreased blood glucose and malondialdehyde levels. 6-Gingerol and metformin combination showed superior renoprotective effects than either alone. CONCLUSION: 6-Gingerol demonstrated a key protective role in DN by induction of miRNA-146a and miRNA-223 expression and inhibition of TLR4/TRAF6/NLRP3 inflammasome signaling. 6-Gingerol, a safe, affordable, and abundant natural compound, holds promise for use as an adjuvant therapy with metformin in diabetic patients to attenuate renal damage and stop the progression of DN.


Subject(s)
Catechols , Diabetes Mellitus, Experimental , Diabetic Nephropathies , Diet, High-Fat , Inflammasomes , Metformin , MicroRNAs , Animals , Male , Rats , Catechols/pharmacology , Diabetes Mellitus, Experimental/metabolism , Diabetic Nephropathies/metabolism , Diabetic Nephropathies/drug therapy , Diabetic Nephropathies/prevention & control , Drug Therapy, Combination , Fatty Alcohols/pharmacology , Hypoglycemic Agents/pharmacology , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Inflammasomes/drug effects , Inflammasomes/metabolism , Kidney/drug effects , Kidney/metabolism , Kidney/pathology , Metformin/pharmacology , Metformin/administration & dosage , MicroRNAs/metabolism , MicroRNAs/drug effects , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Rats, Sprague-Dawley , Signal Transduction/drug effects , Streptozocin , Toll-Like Receptor 4/metabolism
3.
Acta Cir Bras ; 38: e385623, 2023.
Article in English | MEDLINE | ID: mdl-38055383

ABSTRACT

PURPOSE: Diabetes mellitus is a serious health problem worldwide, and diabetic nephropathy is the complication. The diabetic nephropathy considerably enhances the oxidative stress, glycation, lipid parameters and inflammatory reaction. Ellipticine has potent free radical scavenging and anti-inflammatory effect. METHODS: In the current study, our objectives were to thoroughly examine the renal protective effects of ellipticine in a rat model of streptozotocin (STZ)-induced diabetic nephropathy (DN) and to elucidate the underlying mechanisms involved. For the induction of diabetic nephropathy, streptozotocin (50 mg/kg) was used, and rats were separated into groups and given varying doses of ellipticine (2.5, 5 and 7.5 mg/kg). The body weight, and renal weight were estimated. The inflammatory cytokines, renal biomarkers, inflammatory antioxidant, and urine parameters were estimated. RESULTS: Result showed that ellipticine considerably enhanced the body weight and reduced the renal tissue weight. Ellipticine treatment significantly (P < 0.001) repressed the level of blood urea nitrogen, serum creatinine, uric acid, blood glucose and altered the lipid parameters. Ellipticine significantly (P < 0.001) repressed the level of malonaldehyde and boosted the glutathione, catalase, superoxide dismutase, and glutathione peroxidase. Ellipticine treatment significantly (P < 0.001) reduced the inflammatory cytokines and inflammatory mediators. CONCLUSIONS: Ellipticine could be a renal protective drug via attenuating the inflammatory reaction, fibrosis and oxidative stress in streptozotocin induced rats.


Subject(s)
Diabetes Mellitus , Diabetic Nephropathies , Ellipticines , Rats , Animals , Diabetic Nephropathies/drug therapy , Diabetic Nephropathies/prevention & control , Diabetic Nephropathies/metabolism , Streptozocin/metabolism , Streptozocin/pharmacology , Streptozocin/therapeutic use , Ellipticines/metabolism , Ellipticines/pharmacology , Ellipticines/therapeutic use , Kidney , Oxidative Stress , Cytokines/metabolism , Inflammation Mediators/metabolism , Body Weight , Diabetes Mellitus/metabolism
4.
Can J Physiol Pharmacol ; 101(7): 349-360, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-36947855

ABSTRACT

We have studied the effects of naringin (NAR), a flavonoid from citric fruits, on morphology, ultrastructure and function of the kidney in streptozotocin (STZ)-induced diabetic rats. Two groups of animals were used: (1) control rats and (2) STZ rats (60 mg STZ/kg b.w.). At 3 days after induction, one group of STZ-treated rats received 40 mg NAR/kg b.w. daily. NAR blocked completely alterations in the biochemical renal markers in STZ rats except the increase in serum urea that was partially avoided by the flavonoid. NAR ameliorated the kidney morphological lesions from STZ rats. STZ treatment induced round and smaller mitochondria, which was avoided by NAR. Citrate synthase, isocitrate and malate dehydrogenases, enzyme activities of the Krebs cycle, were decreased in STZ rats. NAR abolished this decrease in the latter proteins. NAR also prevented a decrease in the ATP synthase activity of the mitochondria from renal cortex by about 49% in STZ rats, returning the enzyme activity to control values. The nephroprotection caused by NAR is mediated through counteraction of oxidative stress in mitochondria of proximal tubules. NAR might be a therapeutic strategy to reduce the complication of diabetic nephropathy in type 1 diabetic patients.


Subject(s)
Diabetes Mellitus, Experimental , Diabetic Nephropathies , Flavanones , Rats , Animals , Diabetic Nephropathies/drug therapy , Diabetic Nephropathies/prevention & control , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/metabolism , Oxidative Stress , Flavanones/pharmacology , Flavanones/therapeutic use , Flavanones/metabolism , Kidney , Streptozocin/pharmacology , Mitochondria/metabolism
5.
Sci Rep ; 12(1): 17546, 2022 10 20.
Article in English | MEDLINE | ID: mdl-36266308

ABSTRACT

In the present study, we aimed to evaluate the therapeutic effect of Passiflora edulis fruit peel aqueous (AFA) extract as an adjuvant to insulin to confer nephroprotection against streptozotocin-induced diabetes. Male Wistar rats were divided into four groups based on treatment received for 60 days: diabetic (DB), control (CTL), insulin (INS), and insulin + AFA extract (INS + AFA). mRNA and protein expression levels of podocyte (nephrin, podocin, and WT1) and tubular (megalin) proteins were measured in kidney tissue specimens and urine. Biochemical parameters and kidney histopathology were also examined. Herein, the INS + AFA group showed superior glycemic control, which resulted in the reduction of urinary albumin/creatinine ratio, maintenance of baseline levels of Nphs1, Nphs2, Wt1, and Lrp2 mRNA expression, prevention of protein loss from the kidney tissue into the urinary space, along with the maintenance of glomerular basement membrane thickness, hyalinization, glomerular and tubulointerstitial fibrosis at values approximating those of the CTL group and significantly lower than those in the DB group. Therefore, these results suggest that, as an anti-diabetic agent, the AFA extract adjuvant to insulin could reduce and potentially prevent diabetic kidney disease.


Subject(s)
Diabetes Mellitus, Experimental , Diabetic Nephropathies , Passiflora , Male , Rats , Animals , Passiflora/genetics , Streptozocin/pharmacology , Low Density Lipoprotein Receptor-Related Protein-2/metabolism , Creatinine/urine , Rats, Wistar , Diabetes Mellitus, Experimental/metabolism , Diabetic Nephropathies/drug therapy , Diabetic Nephropathies/prevention & control , Diabetic Nephropathies/metabolism , Kidney/metabolism , Insulin/metabolism , Plant Extracts/therapeutic use , RNA, Messenger/genetics , Albumins/metabolism
6.
Int. j. morphol ; 40(3): 808-816, jun. 2022. ilus
Article in English | LILACS | ID: biblio-1385645

ABSTRACT

SUMMARY: Diabetic nephropathy (DN) is the most common complication of diabetes. Several studies have been done in a trial to protect against this problem at the ultrastructure level. This study investigates the protective effect of oral administration of Acacia senegal (AS) against the development of DN. Sixty male albino rats were randomly divided into six groups: control, Acacia senegal control, Diabetic untreated, diabetic insulin-treated, Diabetic AS treated, and Diabetic insulin and AS combined treated groups. Plasma glucose, HbA1c, serum Albumin, creatinine, urine creatinine was measured using specific kits. Determinations of creatinine clearance and blood pressure were done. The renal tissues of both kidneys were prepared to investigate under both light (LM) and electron microscope (EM). Ultrastructure examination of renal rats tissue of diabetic untreated rats showed the destruction of the glomerular basement membrane and endothelial cells together with hemorrhage in glomerular capsules (Bowman's capsules). On the other side, both LM and EM revealed improving the endothelial cells and the other glomerular capsules structures, especially with the combined treated group, which confirmed the improvement of the biochemical investigation in the study. In conclusion, from the present study, using the oral AS together with SC insulin could be protected against the development of DN.


RESUMEN: La nefropatía diabética (ND) es la complicación más común de la diabetes. Se han realizado varios estudios de ensayo para abordar esta dificultad a nivel de ultraestructura. Este estudio investiga el efecto protector de la administración oral de Acacia senegal (AS) contra el desarrollo de la ND. Se dividieron sesenta ratas albinas machos aleatoriamente en seis grupos: control, control de Acacia senegal, diabéticos no tratados, diabéticos tratados con insulina, diabéticos tratados con AS y grupos tratados con compuesto de insulina diabética + AS. Se midieron utilizando kits específicos, glucosa plasmática, HbA1c, albúmina sérica, creatinina en sangre y en orina. Se registraron la creatinina y la presión arterial. Los tejidos renales de ambos riñones se prepararon para investigar tanto con microscopio óptico (MO) como electrónico (ME). El examen de la ultraestructura del tejido renal de ratas diabéticas no tratadas mostró la destrucción de la membrana basal glomerular y las células endoteliales junto con hemorragia en las cápsulas glomerulares (cápsulas de Bowman). Por otro lado, tanto MO como ME revelaron una mejora de las células endoteliales y las estructuras capsulares glomerulares, en el grupo tratado con el compuesto, lo que confirmó la mejora de la investigación bioquímica. En conclusión, el uso de AS oral en combinación con insulina podría proteger contra el desarrollo de ND.


Subject(s)
Animals , Rats , Diabetic Nephropathies/prevention & control , Acacia , Gum Arabic/administration & dosage , Kidney/drug effects , Microscopy, Electron , Biomarkers , Administration, Oral , Rats, Sprague-Dawley , Disease Models, Animal , Kidney/ultrastructure
7.
Int. j. morphol ; 38(4): 1003-1009, Aug. 2020. tab, graf
Article in English | LILACS | ID: biblio-1124889

ABSTRACT

This study was set to investigate the effect of gum Arabic (G.A.) on diabetic kidney disease. We divided sixty male Sprague rats randomly into six groups. Normal control, normal rats treated with G.A., untreated diabetic rats, diabetic rats treated with insulin, diabetic rats treated with G.A., and diabetic rats treated with both insulin and G.A. Diabetes was induced by a single intraperitoneal injection of STZ. Forty eight hr post injections. Insulin was injected subcutaneously (1.6/IU/100g/day). We provided G.A. in drinking water (10 %w/ v).). At the end of the twelve weeks, blood was drawn for measurement of blood glucose, glycosylated hemoglobin (HbA1C), serum lipids, serum creatinine, and blood urea. Renal tissue oxidative stress (O.S.) was assessed by measuring the activities of superoxide dismutase (SOD) and catalase (CAT), and the concentrations of reduced glutathione (GSH) and malondialdehyde (MDA). For histological assessments, sections from segments of kidneys were processed and stained with hematoxylin and eosin (H&E) for assessment under the light microscope. STZinduced diabetes caused an elevation of blood glucose, HbA1c, urea and creatinine, triglycerides LDL and cholesterol, MDA with reduction of HDL, GSH level, and CAT and SOD activities. Histologically, kidneys from diabetic rats showed marked glomerular and tubular changes. Administration of G.A. alone to diabetic rats had a significant hypoglycemic, hypolipidemic, and antioxidant effect, although the levels achieved remained significantly abnormal compared with the untreated group with no effect on urea and creatinine levels. Co-administration of G.A. with insulin reversed the impact of D.M. on all parameters evaluated including the histological changes and led to normal urea and creatinine levels. We concluded that G.A., in combination with insulin, improves chemically-induced diabetes and its renal complications, possibly by modulation of oxidative stress.


En este estudio se evaluó el efecto de la goma arábiga (GA) en la enfermedad renal diabética. Dividimos sesenta ratas macho Sprague Dawley al azar en seis grupos. Control normal, ratas normales tratadas con GA, ratas diabéticas no tratadas, ratas diabéticas tratadas con insulina, ratas diabéticas tratadas con GA y ratas diabéticas tratadas con insulina y GA. La diabetes fue inducida por una sola inyección intraperitoneal de STZ. Cuarenta y ocho horas después se inyectó insulina por vía subcutánea (1,6 / UI / 100 g / día). A los animales se les dió GA en agua potable (10 % p / v)). Al final de las doce semanas, se extrajo sangre para medir la glucosa, la hemoglobina glicosilada (HbA1C), los lípidos en suero, la creatinina en suero y la urea en sangre. El estrés oxidativo del tejido renal (SO) se evaluó midiendo las actividades de la enzima superóxido dismutasa (SOD) y la catalasa (CAT), y las concentraciones de glutatión reducido (GSH) y malondialdehído (MDA). Para las evaluaciones histológicas, se procesaron secciones de segmentos de riñones y se tiñeron con hematoxilina y eosina (H & E) para análisis bajo microscopio óptico. La diabetes inducida por STZ causó una elevación de la glucosa en sangre, HbA1c, urea y creatinina, triglicéridos LDL y colesterol, MDA con reducción de las actividades de HDL, GSH y CAT y SOD. Histológicamente, los riñones de ratas diabéticas mostraron marcados cambios glomerulares y tubulares. La administración de GA solo en las ratas diabéticas tuvo un efecto hipoglucémico, hipolipidémico y antioxidante significativo, aunque los niveles alcanzados permanecieron significativamente anormales en comparación con el grupo no tratado, sin ningún efecto sobre los niveles de urea y creatinina. La dministración conjunta de GA con insulina revirtió el impacto de DM en todos los parámetros evaluados, incluidos los cambios histológicos y condujeron a niveles normales de urea y creatinina. Concluimos que GA en combinación con insulina, mejora la diabetes inducida químicamente y sus complicaciones renales, posiblemente mediante la modulación del estrés oxidativo.


Subject(s)
Animals , Male , Rats , Diabetic Nephropathies/prevention & control , Gum Arabic/administration & dosage , Antioxidants/administration & dosage , Rats, Sprague-Dawley , Oxidative Stress/drug effects , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/pathology , Diabetes Mellitus, Experimental/drug therapy , Diabetic Nephropathies/pathology , Gum Arabic/pharmacology , Injections, Intraperitoneal , Kidney/drug effects , Antioxidants/pharmacology
8.
Diabetes ; 69(3): 291-299, 2020 03.
Article in English | MEDLINE | ID: mdl-32079705

ABSTRACT

The results of the Diabetes Control and Complications Trial (DCCT) have given rise to much encouragement in the battle to stave off the complications of type 1 diabetes, showing dramatic declines in the development of severe retinopathy, nephropathy, and neuropathy in those treated intensively compared with conventional therapy. Particularly encouraging has been the continuing difference between the two groups despite both having similar HbA1c (∼8%) since the end of DCCT, when 96% of participants entered the observational Epidemiology of Diabetes Interventions and Complications (EDIC) study. This continuing relative benefit has been termed "metabolic memory," which implies altered metabolic regulation. Based on evidence from both the Epidemiology of Diabetes Complications (EDC) prospective cohort study of childhood-onset type 1 diabetes and DCCT/EDIC, we show that the metabolic memory effect can be largely explained by lower cumulative glycemic exposure in the intensive therapy group, and, on average, the development of complications increases with greater glycemic exposure, irrespective of whether this results from a high exposure for a short time or a lower exposure for a longer time. Thus, there is no need for a concept like "metabolic memory" to explain these observations. Potential mechanisms explaining the cumulative glycemic effect are also briefly discussed.


Subject(s)
Blood Glucose/metabolism , Diabetes Complications/prevention & control , Diabetes Mellitus, Type 1/drug therapy , Glycated Hemoglobin/metabolism , Hypoglycemic Agents/therapeutic use , Insulin/therapeutic use , Cohort Studies , Diabetes Complications/metabolism , Diabetes Mellitus, Type 1/complications , Diabetes Mellitus, Type 1/metabolism , Diabetic Nephropathies/metabolism , Diabetic Nephropathies/prevention & control , Diabetic Neuropathies/metabolism , Diabetic Neuropathies/prevention & control , Diabetic Retinopathy/metabolism , Diabetic Retinopathy/prevention & control , Humans , Patient Care Planning , Prospective Studies , Randomized Controlled Trials as Topic , Time Factors
9.
Rev Assoc Med Bras (1992) ; 66Suppl 1(Suppl 1): s17-s24, 2020 Jan 13.
Article in English | MEDLINE | ID: mdl-31939531

ABSTRACT

Type 2 diabetes mellitus is an important public health problem, with a significant impact on cardiovascular morbidity and mortality and an important risk factor for chronic kidney disease. Various hypoglycemic therapies have proved to be beneficial to clinical outcomes, while others have failed to provide an improvement in cardiovascular and renal failure, only reducing blood glucose levels. Recently, sodium-glucose cotransporter-2 (SGLT2) inhibitors, represented by the empagliflozin, dapagliflozin, and canagliflozin, have been showing satisfactory and strong results in several clinical trials, especially regarding the reduction of cardiovascular mortality, reduction of hospitalization due to heart failure, reduction of albuminuria, and long-term maintenance of the glomerular filtration rate. The benefit from SGLT2 inhibitors stems from its main mechanism of action, which occurs in the proximal tubule of the nephron, causing glycosuria, and a consequent increase in natriuresis. This leads to increased sodium intake by the juxtaglomerular apparatus, activating the tubule glomerular-feedback and, finally, reducing intraglomerular hypertension, a frequent physiopathological condition in kidney disease caused by diabetes. In addition, this class of medication presents an appropriate safety profile, and its most frequently reported complication is an increase in the incidence of genital infections. Thus, these hypoglycemic agents gained space in practical recommendations for the management of type 2 diabetes mellitus and should be part of the initial therapeutic approach to provide, in addition to glycemic control, cardiovascular outcomes, and the renoprotection in the long term.


Subject(s)
Cardiovascular Diseases/prevention & control , Diabetes Mellitus, Type 2/drug therapy , Hypoglycemic Agents/pharmacology , Kidney Diseases/prevention & control , Sodium-Glucose Transporter 2 Inhibitors/pharmacology , Sodium-Glucose Transporter 2/pharmacology , Benzhydryl Compounds/therapeutic use , Canagliflozin/therapeutic use , Cardiovascular Diseases/etiology , Cardiovascular Diseases/mortality , Diabetes Mellitus, Type 2/complications , Diabetic Nephropathies/etiology , Diabetic Nephropathies/metabolism , Diabetic Nephropathies/prevention & control , Glomerular Filtration Rate , Glucose/metabolism , Glucosides/therapeutic use , Humans , Hypoglycemic Agents/therapeutic use , Kidney/drug effects , Kidney/metabolism , Kidney/physiopathology , Kidney Diseases/etiology , Kidney Diseases/metabolism , Sodium-Glucose Transporter 2/therapeutic use , Sodium-Glucose Transporter 2 Inhibitors/therapeutic use
10.
Rev. Assoc. Med. Bras. (1992, Impr.) ; Rev. Assoc. Med. Bras. (1992, Impr.);66(supl.1): s17-s24, 2020. tab, graf
Article in English | LILACS | ID: biblio-1057108

ABSTRACT

SUMMARY Type 2 diabetes mellitus is an important public health problem, with a significant impact on cardiovascular morbidity and mortality and an important risk factor for chronic kidney disease. Various hypoglycemic therapies have proved to be beneficial to clinical outcomes, while others have failed to provide an improvement in cardiovascular and renal failure, only reducing blood glucose levels. Recently, sodium-glucose cotransporter-2 (SGLT2) inhibitors, represented by the empagliflozin, dapagliflozin, and canagliflozin, have been showing satisfactory and strong results in several clinical trials, especially regarding the reduction of cardiovascular mortality, reduction of hospitalization due to heart failure, reduction of albuminuria, and long-term maintenance of the glomerular filtration rate. The benefit from SGLT2 inhibitors stems from its main mechanism of action, which occurs in the proximal tubule of the nephron, causing glycosuria, and a consequent increase in natriuresis. This leads to increased sodium intake by the juxtaglomerular apparatus, activating the tubule glomerular-feedback and, finally, reducing intraglomerular hypertension, a frequent physiopathological condition in kidney disease caused by diabetes. In addition, this class of medication presents an appropriate safety profile, and its most frequently reported complication is an increase in the incidence of genital infections. Thus, these hypoglycemic agents gained space in practical recommendations for the management of type 2 diabetes mellitus and should be part of the initial therapeutic approach to provide, in addition to glycemic control, cardiovascular outcomes, and the renoprotection in the long term.


Subject(s)
Humans , Cardiovascular Diseases/prevention & control , Diabetes Mellitus, Type 2/drug therapy , Sodium-Glucose Transporter 2/pharmacology , Sodium-Glucose Transporter 2 Inhibitors/pharmacology , Hypoglycemic Agents/pharmacology , Kidney Diseases/prevention & control , Benzhydryl Compounds/therapeutic use , Cardiovascular Diseases/etiology , Cardiovascular Diseases/mortality , Diabetes Mellitus, Type 2/complications , Diabetic Nephropathies/etiology , Diabetic Nephropathies/metabolism , Diabetic Nephropathies/prevention & control , Sodium-Glucose Transporter 2/therapeutic use , Canagliflozin/therapeutic use , Sodium-Glucose Transporter 2 Inhibitors/therapeutic use , Glomerular Filtration Rate , Glucose/metabolism , Glucosides/therapeutic use , Hypoglycemic Agents/therapeutic use , Kidney/drug effects , Kidney/physiopathology , Kidney/metabolism , Kidney Diseases/etiology , Kidney Diseases/metabolism
11.
Int J Mol Sci ; 20(18)2019 Sep 13.
Article in English | MEDLINE | ID: mdl-31540220

ABSTRACT

Diabetic nephropathy (DN) is the main cause of end-stage renal disease, which remains incurable. The progression of DN is associated with progressive and irreversible renal fibrosis and also high levels of adenosine. Our aim was to evaluate the effects of ADORA3 antagonism on renal injury in streptozotocin-induced diabetic rats. An ADORA3 antagonist that was administered in diabetic rats greatly inhibited the levels of inflammatory interleukins IL-1ß and IL-18, meanwhile when adenosine deaminase was administered, there was a non-selective attenuation of the inflammatory mediators IL-1ß, IL-18, IL-6, and induction of IL-10. The ADORA3 antagonist attenuated the high glucose-induced activation of caspase 1 in HK2 cells in vitro. Additionally, ADORA3 antagonisms blocked the increase in caspase 1 and the nuclear localization of NFκB in the renal tubular epithelium of diabetic rats, both events that are involved in regulating the production and activation of IL-1ß and IL-18. The effects of the A3 receptor antagonist resulted in the attenuation of kidney injury, as evidenced by decreased levels of the pro-fibrotic marker α-SMA at histological levels and the restoration of proteinuria in diabetic rats. We conclude that ADORA3 antagonism represents a potential therapeutic target that mechanistically works through the selective blockade of the NLRP3 inflammasome.


Subject(s)
Adenosine A3 Receptor Antagonists/administration & dosage , Caspase 1/metabolism , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/drug therapy , Diabetic Nephropathies/prevention & control , Adenosine A3 Receptor Antagonists/pharmacology , Adenosine Deaminase/adverse effects , Animals , Cell Line , Diabetes Mellitus, Experimental/enzymology , Diabetic Nephropathies/chemically induced , Disease Models, Animal , Gene Expression Regulation/drug effects , Humans , Injections, Intraperitoneal , Interleukin-18/metabolism , Interleukin-1beta/metabolism , Kidney Tubules/drug effects , Kidney Tubules/enzymology , Male , Rats , Streptozocin
12.
Lancet ; 394(10193): 131-138, Jul. 2019. graf, tab
Article in English | Sec. Est. Saúde SP, SESSP-IDPCPROD, Sec. Est. Saúde SP | ID: biblio-1046322

ABSTRACT

Background Two glucagon-like peptide-1 (GLP-1) receptor agonists reduced renal outcomes in people with type 2 diabetes at risk for cardiovascular disease. We assessed the long-term effect of the GLP-1 receptor agonist dulaglutide on renal outcomes in an exploratory analysis of the REWIND trial of the effect of dulaglutide on cardiovascular disease. Methods REWIND was a multicenter, randomized, double-blind, placebo-controlled trial at 371 sites in 24 countries. Men and women aged at least 50 years with type 2 diabetes who had either a previous cardiovascular event or cardiovascular risk factors were randomly assigned (1:1) to either weekly subcutaneous injection of dulaglutide (1·5 mg) or placebo and followed up at least every 6 months for outcomes. Urinary albumin-to-creatinine ratios (UACRs) and estimated glomerular filtration rates (eGFRs) were estimated from urine and serum values measured in local laboratories every 12 months. The primary outcome (first occurrence of the composite endpoint of non-fatal myocardial infarction, non-fatal stroke, or death from cardiovascular causes), secondary outcomes (including a composite microvascular outcome), and safety outcomes of this trial have been reported elsewhere. In this exploratory analysis, we investigate the renal component of the composite microvascular outcome, defined as the first occurrence of new macroalbuminuria (UACR >33·9 mg/mmol), a sustained decline in eGFR of 30% or more from baseline, or chronic renal replacement therapy. Analyses were by intention to treat. This trial is registered with ClinicalTrials.gov, number NCT01394952. Findings Between Aug 18, 2011, and Aug 14, 2013, 9901 participants were enrolled and randomly assigned to receive dulaglutide (n=4949) or placebo (n=4952). At baseline, 791 (7·9%) had macroalbuminuria and mean eGFR was 76·9 mL/min per 1·73 m² (SD 22·7). During a median follow-up of 5·4 years (IQR 5·1­5·9) comprising 51 820 person years, the renal outcome developed in 848 (17·1%) participants at an incidence rate of 3·5 per 100 person-years in the dulaglutide group and in 970 (19·6%) participants at an incidence rate of 4·1 per 100 person-years in the placebo group (hazard ratio [HR] 0·85, 95% CI 0·77­0·93; p=0·0004). The clearest effect was for new macroalbuminuria (HR 0·77, 95% CI 0·68­0·87; p<0·0001), with HRs of 0·89 (0·78­1·01; p=0·066) for sustained decline in eGFR of 30% or more and 0·75 (0·39­1·44; p=0·39) for chronic renal replacement therapy. (AU)


Subject(s)
Male , Middle Aged , Creatinine/urine , Diabetes Mellitus, Type 2/drug therapy , Diabetic Nephropathies/prevention & control , Albuminuria/prevention & control , Hypoglycemic Agents/administration & dosage
13.
Exp Biol Med (Maywood) ; 244(9): 758-769, 2019 06.
Article in English | MEDLINE | ID: mdl-31042072

ABSTRACT

IMPACT STATEMENT: To date, no studies have been found evaluating the effects of physical exercise on renal function and structure changes in ovariectomized rats with type 1 diabetes. Therefore, this work emerges with an important tool for strengthening and expanding innovative research on exercise with potential for the prevention of renal diseases in ovariectomized diabetic rats, and future development of studies that seek to increase scientific knowledge about the beneficial effects of physical exercise on renal diseases in humans.


Subject(s)
Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Type 1/complications , Diabetic Nephropathies/prevention & control , Ovariectomy , Physical Conditioning, Animal , Animals , Blood Glucose/analysis , Creatinine/blood , Estradiol/blood , Exercise Therapy , Female , Ovariectomy/adverse effects , Rats , Rats, Wistar
14.
Acta Cir Bras ; 34(1): e20190010000001, 2019 Feb 14.
Article in English | MEDLINE | ID: mdl-30785502

ABSTRACT

PURPOSE: To investigate the effects of exenatide on renal injury in streptozotocin-induced diabetic rats. METHODS: Fifty SD rats were randomly divided into normal control, model, exenatide-1, exenatide-2 and exenatide-3 groups, 10 rats in each group. The diabetic nephropathy model was constructed in later 4 groups. Then, the later 3 groups were treated with 2, 4 and 8 µg/kg exenatide for 8 weeks, respectively. The serum and urine biochemical indexes and oxidative stress and inflammatory indexes in renal tissue were determined. RESULTS: Compared to the model group, in exenatide-3 group the serum fasting plasma glucose and hemoglobin A1c levels were significantly decreased, the fasting insulin level was significantly increased, the renal index and blood urea nitrogen, serum creatinine and 24 h urine protein levels were significantly decreased, the renal tissue superoxide dismutase and glutathione peroxidase levels were significantly increased, the malondialdehyde level was significantly decreased, and the renal tissue tumor necrosis factor alpha, interleukin 6, hypersensitive C-reactive protein and chemokine (C-C motif) ligand 5 levels were significantly decreased P<0.05). CONCLUSIONS: Exenatide can mitigate the renal injury in diabetic rats. The mechanisms may be related to its resistance of oxidative stress and inflammatory response in renal tissue.


Subject(s)
Diabetes Mellitus, Experimental/drug therapy , Diabetic Nephropathies/drug therapy , Exenatide/therapeutic use , Animals , Diabetes Mellitus, Experimental/physiopathology , Diabetic Nephropathies/prevention & control , Disease Models, Animal , Kidney/drug effects , Male , Oxidative Stress , Random Allocation , Rats , Rats, Sprague-Dawley
15.
Acta cir. bras ; Acta cir. bras;34(1): e20190010000001, 2019. tab, graf
Article in English | LILACS | ID: biblio-983689

ABSTRACT

Abstract Purpose: To investigate the effects of exenatide on renal injury in streptozotocin-induced diabetic rats. Methods: Fifty SD rats were randomly divided into normal control, model, exenatide-1, exenatide-2 and exenatide-3 groups, 10 rats in each group. The diabetic nephropathy model was constructed in later 4 groups. Then, the later 3 groups were treated with 2, 4 and 8 μg/kg exenatide for 8 weeks, respectively. The serum and urine biochemical indexes and oxidative stress and inflammatory indexes in renal tissue were determined. Results: Compared to the model group, in exenatide-3 group the serum fasting plasma glucose and hemoglobin A1c levels were significantly decreased, the fasting insulin level was significantly increased, the renal index and blood urea nitrogen, serum creatinine and 24 h urine protein levels were significantly decreased, the renal tissue superoxide dismutase and glutathione peroxidase levels were significantly increased, the malondialdehyde level was significantly decreased, and the renal tissue tumor necrosis factor alpha, interleukin 6, hypersensitive C-reactive protein and chemokine (C-C motif) ligand 5 levels were significantly decreased P<0.05). Conclusions: Exenatide can mitigate the renal injury in diabetic rats. The mechanisms may be related to its resistance of oxidative stress and inflammatory response in renal tissue.


Subject(s)
Animals , Male , Rats , Diabetes Mellitus, Experimental/drug therapy , Diabetic Nephropathies/drug therapy , Exenatide/therapeutic use , Random Allocation , Rats, Sprague-Dawley , Oxidative Stress , Diabetes Mellitus, Experimental/physiopathology , Diabetic Nephropathies/prevention & control , Disease Models, Animal , Kidney/drug effects
16.
J Nutr Biochem ; 60: 47-60, 2018 10.
Article in English | MEDLINE | ID: mdl-30193155

ABSTRACT

Diabetic nephropathy (DN) is the leading cause of renal failure worldwide and its complications have become a public health problem. Inflammation, oxidative stress and fibrosis play central roles in the progression of DN that lead to renal failure. Potential deleterious effect of inflammation in early evolution of DN is not fully disclosed. Therefore, it is relevant to explore therapies that might modulate this process in order to reduce DN progression. We explored the beneficial effect of all-trans retinoic acid (ATRA) in early inflammation in glomeruli, proximal and distal tubules in streptozotocin (STZ)-induced diabetes. ATRA was administered (1 mg/kg daily by gavage) on days 3 to 21 after STZ administration. It was found that 21 days after STZ injection, diabetic rats exhibited proteinuria, increased natriuresis and loss of body weight. Besides, diabetes induced an increase in interleukins [IL-1ß, IL-1α, IL-16, IL-13, IL-2; tumor necrosis factor alpha (TNF-α)] and transforming growth factor-beta 1 (TGF-ß1), chemokines (CCL2, CCL20, CXCL5 and CXCL7), adhesion molecules (ICAM-1 and L-selectin) and growth factors (GM-CSF, VEGF, PDGF) in glomeruli and proximal tubules, whereas ATRA treatment remarkably ameliorated these alterations. To further explore the mechanisms through which ATRA decreased inflammatory response, the NF-κB/p65 signaling mediated by TLR4 was studied. We found that ATRA administration attenuates the TLR4/NF-κB inflammatory signaling and prevents NF-κB nuclear translocation in glomeruli and proximal tubules.


Subject(s)
Diabetes Mellitus, Experimental/complications , Diabetic Nephropathies/prevention & control , Inflammation/prevention & control , NF-kappa B/antagonists & inhibitors , Toll-Like Receptor 4/antagonists & inhibitors , Tretinoin/administration & dosage , Animals , Cell Adhesion Molecules/analysis , Chemokines/analysis , Diabetic Nephropathies/chemically induced , Female , Inflammation/physiopathology , Intercellular Signaling Peptides and Proteins/analysis , Interleukins/analysis , Kidney Glomerulus/chemistry , Kidney Tubules/chemistry , NF-kappa B/physiology , Rats , Rats, Wistar , Toll-Like Receptor 4/physiology
17.
Int J Mol Sci ; 19(8)2018 Aug 19.
Article in English | MEDLINE | ID: mdl-30126255

ABSTRACT

Chemerin, acting through its receptor ChemR23, is an adipokine associated with inflammatory response, glucose and lipid metabolism and vascular function. Although this adipokine has been associated with the development and progression of kidney disease, it is not clear whether the chemerin/ChemR23 system plays a role in renal function in the context of diabetes. Therefore, we sought to determine whether ChemR23 receptor blockade prevents the development and/or progression of diabetic nephropathy and questioned the role of oxidative stress and Nrf2 in this process. Renal redox state and function were assessed in non-diabetic lean db/m and diabetic obese db/db mice treated with vehicle or CCX832 (ChemR23 antagonist). Renal reactive oxygen species (ROS) production, which was increased in diabetic mice, was attenuated by CCX832. This was associated with an increase in Nox 4 expression. Augmented protein oxidation in db/db mice was not observed when mice were treated with CCX832. CCX832 also abrogated impaired Nrf2 nuclear activity and associated downregulation in antioxidants expression in kidneys from db/db mice. Our in vivo findings highlight the role of the redox signaling and Nrf2 system as renoprotective players during chemerin receptor blockade in diabetic mice. The chemerin/ChemR23 system may be an important target to limit renal dysfunction associated with obesity-related diabetes.


Subject(s)
Diabetes Mellitus, Experimental/complications , Diabetic Nephropathies/prevention & control , Kidney/drug effects , NF-E2-Related Factor 2/metabolism , Oxidative Stress/drug effects , Receptors, G-Protein-Coupled/antagonists & inhibitors , Animals , Diabetic Nephropathies/metabolism , Diabetic Nephropathies/pathology , Kidney/metabolism , Kidney/pathology , Male , Mice , Mice, Inbred C57BL , Oxidation-Reduction/drug effects , Receptors, G-Protein-Coupled/metabolism
18.
Nitric Oxide ; 78: 22-31, 2018 08 01.
Article in English | MEDLINE | ID: mdl-29778909

ABSTRACT

The diabetes mellitus (DM) induces several changes, with substantial increase of reactive oxygen species (ROS). The ROS cause damage to systemic and renal microvasculature, which could be one of the mechanisms involved in the development of diabetic nephropathy (DN). The ROS modulate other substances like the nitric oxide (NO), a vasodilator with important role in the renal function. N-acetylcysteine (NAC) is an antioxidant that acts replenishing intracellular cysteine levels, which is essential for glutathione formation. The aim of this study was to evaluate the effect of early or late NAC treatment on oxidative/nitrosative stress in DN progression. All rats were submitted to unilateral nephrectomy and diabetes was induced with streptozotocin. The animals were allocated into six groups: controls that received water (CTL) or NAC (CTL + NAC); diabetic groups that received early or late, water (DM-E; DM-L) or NAC (DM + NAC-E; DM + NAC-L), started on 5th day (early) or 4th week (late) after diabetes induction, during 8 weeks. After NAC treatment, the rats were placed in individual metabolic cages to obtain urine and blood samples for analysis of metabolic profile, renal function, thiobarbituric acid reactive substances (TBARS) and NO. At the end of the protocol, the renal cortex was removed for TBARS, NOS evaluation, antioxidants markers and histology. The DM-E group compared to CTL showed a significant increase in glycemia and proteinuria and impaired renal function; there was a significant increase of TBARS in plasma, urine and renal tissue, and also a significant decrease in plasma NO, which were reverted after early NAC treatment. The eNOS was decreased and iNOS was increased in DM-E vs. CTL, p < 0.05. The early NAC treatment in DM rats reduced proteinuria, creatinine, urea, TBARS and iNOS and, increased creatinine clearance, NO and eNOS, increasing significantly the antioxidant defenses, promoting elevated catalase and glutathione compared to DM-E group, all p < 0.05. The late NAC treatment in diabetic rats vs.DM-E showed reduced proteinuria and TBARS excretion and higher values of creatinine clearance and NO, all statistically significant. Histological analysis of the animals in DM-E or DM-L showed significant tubular changes with degeneration and vacuolization in tubular cells, dilated tubular lumen, intense glycosidic degeneration, and discreet mesangial expansion with interstitial fibrosis area. The DM + NAC-E group showed moderate glycosidic degeneration, however, did not present tubular degeneration or fibrosis. The DM + NAC-L group showed severe glycosidic degeneration, moderate tubular cell degeneration, light and focal dilatation of the tubules, with no fibrosis. Our study showed that NAC protected the diabetic rats against renal injury, probably due to the control of oxidative stress via recovery of the NO bioavailability, showing that early NAC was more effective than late treatment. All these data suggest that NAC may be useful in the adjuvant treatment in a safe way, in the early phase of the disease. Eventually, prolonged treatment, even if it is started later, could change the natural history of the disease, delaying the complications of diabetes in renal tissue.


Subject(s)
Acetylcysteine/therapeutic use , Diabetic Nephropathies/prevention & control , Nitric Oxide/metabolism , Nitrosative Stress/drug effects , Oxidative Stress/drug effects , Protective Agents/therapeutic use , Animals , Catalase/metabolism , Diabetes Mellitus, Experimental/chemically induced , Diabetes Mellitus, Experimental/complications , Diabetic Nephropathies/etiology , Glutathione/metabolism , Kidney/pathology , Male , Nitric Oxide Synthase Type II/metabolism , Nitric Oxide Synthase Type III/metabolism , Rats, Wistar , Streptozocin , Thiobarbituric Acid Reactive Substances/metabolism
19.
Eur J Nutr ; 57(2): 817-832, 2018 Mar.
Article in English | MEDLINE | ID: mdl-28105508

ABSTRACT

PURPOSE: Euterpe oleracea Mart. (açaí) seed extract (ASE), through its anti-hypertensive, antioxidant and anti-inflammatory properties, may be useful to treat or prevent human diseases. Several evidences suggest that oxidative stress and inflammation contribute to the pathogenesis of diabetic nephropathy; therefore, we tested the hypothesis that ASE (200 mg/kg-1day-1) prevents diabetes and hypertension-related oxidative stress and inflammation, attenuating renal injury. METHODS: Male rats with streptozotocin (STZ)-induced diabetes (D), and spontaneously hypertensive rats with STZ-induced diabetes (DH) were treated daily with tap water or ASE (D + ASE and DH + ASE, respectively) for 45 days. The control (C) and hypertensive (H) animals received water. RESULTS: The elevated serum levels of urea and creatinine in D and DH, and increased albumin excretion in HD were reduced by ASE. Total glomeruli number in D and DH, were increased by ASE that also reduced renal fibrosis in both groups by decreasing collagen IV and TGF-ß1 expression. ASE improved biomarkers of renal filtration barrier (podocin and nephrin) in D and DH groups and prevented the increased expression of caspase-3, IL-6, TNF-α and MCP-1 in both groups. ASE reduced oxidative damage markers (TBARS, carbonyl levels and 8-isoprostane) in D and DH associated with a decrease in Nox 4 and p47 subunit expression and increase in antioxidant enzyme activity in both groups (SOD, catalase and GPx). CONCLUSION: ASE substantially reduced renal injury and prevented renal dysfunction by reducing inflammation, oxidative stress and improving the renal filtration barrier, providing a nutritional resource for prevention of diabetic and hypertensive-related nephropathy.


Subject(s)
Antioxidants/therapeutic use , Diabetic Nephropathies/prevention & control , Dietary Supplements , Euterpe/chemistry , Plant Extracts/therapeutic use , Renal Insufficiency/prevention & control , Seeds/chemistry , Animals , Anti-Inflammatory Agents, Non-Steroidal/therapeutic use , Antihypertensive Agents/therapeutic use , Apoptosis , Biomarkers/blood , Biomarkers/metabolism , Biomarkers/urine , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/diet therapy , Diabetes Mellitus, Experimental/immunology , Diabetic Nephropathies/complications , Diabetic Nephropathies/metabolism , Diabetic Nephropathies/pathology , Fibrosis , Glomerular Filtration Barrier/immunology , Glomerular Filtration Barrier/metabolism , Glomerular Filtration Barrier/pathology , Glomerular Filtration Barrier/physiopathology , Hypertension/complications , Hypertension/diet therapy , Hypertension/immunology , Hypertension/physiopathology , Inflammation Mediators/blood , Inflammation Mediators/metabolism , Kidney/immunology , Kidney/metabolism , Kidney/pathology , Kidney/physiopathology , Oxidative Stress , Rats, Inbred SHR , Renal Insufficiency/complications , Renal Insufficiency/etiology , Renal Insufficiency/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL