Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 7.481
Filter
1.
Int J Mol Sci ; 25(13)2024 Jun 26.
Article in English | MEDLINE | ID: mdl-39000086

ABSTRACT

Currently, pharmacotherapy provides successful seizure control in around 70% of patients with epilepsy; however, around 30% of cases are still resistant to available treatment. Therefore, effective anti-epileptic therapy still remains a challenge. In our study, we utilized two mouse lines selected for low (LA) and high (HA) endogenous opioid system activity to investigate the relationship between down- or upregulation of the opioid system and susceptibility to seizures. Pentylenetetrazole (PTZ) is a compound commonly used for kindling of generalized tonic-clonic convulsions in animal models. Our experiments revealed that in the LA mice, PTZ produced seizures of greater intensity and shorter latency than in HA mice. This observation suggests that proper opioid system tone is crucial for preventing the onset of generalized tonic-clonic seizures. Moreover, a combination of an opioid receptor antagonist-naloxone-and a GABA receptor agonist-diazepam (DZP)-facilitates a significant DZP-sparing effect. This is particularly important for the pharmacotherapy of neurological patients, since benzodiazepines display high addiction risk. In conclusion, our study shows a meaningful, protective role of the endogenous opioid system in the prevention of epileptic seizures and that disturbances in that balance may facilitate seizure occurrence.


Subject(s)
Pentylenetetrazole , Seizures , Animals , Pentylenetetrazole/toxicity , Mice , Seizures/metabolism , Seizures/drug therapy , Seizures/chemically induced , Male , Naloxone/pharmacology , Disease Models, Animal , Diazepam/pharmacology , Disease Susceptibility , Anticonvulsants/pharmacology , Anticonvulsants/therapeutic use , Narcotic Antagonists/pharmacology
2.
PLoS One ; 19(6): e0305409, 2024.
Article in English | MEDLINE | ID: mdl-38875245

ABSTRACT

BACKGROUND AND OBJECTIVE: Pulmonary fibrosis caused by lung injury is accompanied by varying degrees of inflammation, and diazepam can reduce the levels of inflammatory factors. Therefore, the purpose of this study was to determine whether diazepam can inhibit inflammation and ameliorate pulmonary fibrosis by regulating the let-7a-5p/myeloid differentiation factor 88 (MYD88) axis. METHODS: Lipopolysaccharide (LPS) was used to induce cell pyroptosis in an animal model of pulmonary fibrosis. After treatment with diazepam, changes in cell proliferation and apoptosis were observed, and the occurrence of inflammation and pulmonary fibrosis in the mice was detected. RESULTS: The results showed that LPS can successfully induce cell pyroptosis and inflammatory responses and cause lung fibrosis in mice. Diazepam inhibits the expression of pyroptosis-related factors and inflammatory factors; moreover, it attenuates the occurrence of pulmonary fibrosis in mice. Mechanistically, diazepam can upregulate the expression of let-7a-5p, inhibit the expression of MYD88, and reduce inflammation and inhibit pulmonary fibrosis by regulating the let-7a-5p/MYD88 axis. CONCLUSION: Our findings indicated that diazepam can inhibit LPS-induced pyroptosis and inflammatory responses and alleviate pulmonary fibrosis in mice by regulating the let-7a-5p/MYD88 axis.


Subject(s)
Diazepam , Inflammation , Lipopolysaccharides , MicroRNAs , Myeloid Differentiation Factor 88 , Pulmonary Fibrosis , Pyroptosis , Animals , Pyroptosis/drug effects , Mice , Diazepam/pharmacology , Pulmonary Fibrosis/drug therapy , Pulmonary Fibrosis/pathology , Pulmonary Fibrosis/metabolism , Myeloid Differentiation Factor 88/metabolism , Myeloid Differentiation Factor 88/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , Inflammation/drug therapy , Inflammation/pathology , Inflammation/metabolism , Male , Mice, Inbred C57BL , Disease Models, Animal , Signal Transduction/drug effects
3.
Biomed Pharmacother ; 176: 116939, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38870629

ABSTRACT

BACKGROUND: Sclareol (SCL), a labdane diterpene compound found in Salvia sclarea L., exhibited therapeutic effects. This study investigated the potential interaction between SCL and diazepam (DZP) in modulating sedation in the thiopental sodium-induced sleeping animal model, supported by in-silico molecular docking analysis. METHODS: The control, sclareol (5, 10 and 20 mg/kg), and the reference drugs [diazepam: 3 mg/kg and Caffeine (CAF): 10 mg/kg] were used in male albino mice. Then, sodium thiopental (40 mg/kg, i.p.) was administrated to induce sleep. The latent period, percentage of sleep incidence and modulation of latency were measured. Further, homology modeling of human γ-aminobutyric acid (GABA) was conducted examine the binding mode of GABA interaction with SCL, DZP, and CAF compounds RESULTS: SCL (low dose) slightly increased the sleep latency, while the higher dose significantly prolonged sleep latency. DZP, a GABAA receptor agonist, exhibited strong sleep-inducing properties, reducing sleep latency, and increasing sleeping time. Caffeine (CAF) administration prolonged sleep latency and reduced sleeping time, consistent with its stimulant effects. The combination treatments involving SCL, DZP, and CAF showed mixed effects on sleep parameters. The molecular docking revealed good binding affinities of SCL, DZP, and CAF for GABAA receptor subunits A2 and A5. CONCLUSIONS: Our findings highlighted the complex interplay between SCL, DZP, and CAF in regulating sleep behaviors and provided insights into potential combination therapies for sleep disorders.


Subject(s)
Diazepam , Hypnotics and Sedatives , Molecular Docking Simulation , Sleep , Thiopental , Animals , Male , Hypnotics and Sedatives/pharmacology , Mice , Diazepam/pharmacology , Sleep/drug effects , Thiopental/pharmacology , Diterpenes/pharmacology , Caffeine/pharmacology , Computer Simulation , Receptors, GABA-A/metabolism , Humans , Dose-Response Relationship, Drug , Sleep Latency/drug effects
4.
Neuropharmacology ; 257: 110035, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-38876310

ABSTRACT

We previously showed that the PDE4 inhibitor apremilast reduces ethanol consumption in mice by protein kinase A (PKA) and GABAergic mechanisms. Preventing PKA phosphorylation of GABAA ß3 subunits partially blocked apremilast-mediated decreases in drinking. Here, we produced Gabrb1-S409A mice to render GABAA ß1 subunits resistant to PKA-mediated phosphorylation. Mass spectrometry confirmed the presence of the S409A mutation and lack of changes in ß1 subunit expression or phosphorylation at other residues. ß1-S409A male and female mice did not differ from wild-type C57BL/6J mice in expression of Gabrb1, Gabrb2, or Gabrb3 subunits or in behavioral characteristics. Apremilast prolonged recovery from ethanol ataxia to a greater extent in Gabrb1-S409A mice but prolonged recovery from zolpidem and propofol to a similar extent in both genotypes. Apremilast shortened recovery from diazepam ataxia in wild-type but prolonged recovery in Gabrb1-S409A mice. In wild-type mice, the PKA inhibitor H89 prevented apremilast modulation of ataxia by ethanol and diazepam, but not by zolpidem. In Gabrb1-S409A mice, inhibiting PKA or EPAC2 (exchange protein directly activated by cAMP) partially reversed apremilast potentiation of ethanol, diazepam, and zolpidem ataxia. Apremilast prevented acute tolerance to ethanol ataxia in both genotypes, but there were no genotype differences in ethanol consumption before or after apremilast. In contrast to results in Gabrb3-S408A/S409A mice, PKA phosphorylation of ß1-containing GABAA receptors is not required for apremilast's effects on acute tolerance or on ethanol consumption but is required for its ability to decrease diazepam intoxication. Besides PKA we identified EPAC2 as an additional cAMP-dependent mechanism by which apremilast regulates responses to GABAergic drugs.


Subject(s)
Cyclic AMP-Dependent Protein Kinases , Ethanol , Mice, Inbred C57BL , Phosphodiesterase 4 Inhibitors , Receptors, GABA-A , Thalidomide , Animals , Thalidomide/pharmacology , Thalidomide/analogs & derivatives , Cyclic AMP-Dependent Protein Kinases/metabolism , Phosphodiesterase 4 Inhibitors/pharmacology , Male , Female , Ethanol/pharmacology , Mice , Receptors, GABA-A/genetics , Receptors, GABA-A/metabolism , Receptors, GABA-A/drug effects , Gene Knock-In Techniques , Phosphorylation/drug effects , Ataxia/genetics , Alcohol Drinking/drug therapy , Alcohol Drinking/genetics , Mice, Transgenic , Diazepam/pharmacology
5.
Pharmacol Biochem Behav ; 241: 173792, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38806117

ABSTRACT

Formosan wood mice (Apodemus semotus) are endemic rodents in Taiwan. Recently Formosan wood mice exhibit similar locomotor behaviors in the laboratory environment as in the field environment has shown. Contemporaneously, Formosan wood mice have higher moving distances of and central dopaminergic (DAergic) activities than C57BL/6 mice in behavioral test. This study tried to compare the behavioral responses between male Formosan wood mice and male C57BL/6 mice in the light-dark exploration tests. We also measured the levels of DA and 3,4-dihydroxyphenylacetic acid (DOPAC), the primary metabolite of DA, to assess the dopaminergic activity of the medial prefrontal cortex, striatum, and nucleus accumbens. Our data show that Formosan wood mice revealed higher exploration and central DAergic activities than did C57BL/6 mice in the light-dark exploration tests, and diazepam (an anxiolytics) treatment reduced the exploratory activity and central dopaminergic activities in Formosan wood mice, but not in C57BL/6 mice. After repeated exposure to light-dark exploration tests, the latency to dark zone was increased, and the duration in light zone as well as the central DAergic activity were decreased in C57BL/6 mice. This study provides comparative findings; Formosan wood mice showed the higher exploratory activities than C57BL/6 mice did, and their central DAergic activities were related to the behavioral responses in these two mice. This could potentially shed light on the reasons behind the prevalence of higher exploration and central dopaminergic activities. Using Formosan wood mice as a model to study human diseases related to hyperactivity adds significant value to the potential research.


Subject(s)
Behavior, Animal , Dopamine , Exploratory Behavior , Mice, Inbred C57BL , Murinae , Animals , Male , Mice , Dopamine/metabolism , Exploratory Behavior/drug effects , Behavior, Animal/drug effects , 3,4-Dihydroxyphenylacetic Acid/metabolism , Diazepam/pharmacology , Anti-Anxiety Agents/pharmacology , Nucleus Accumbens/metabolism , Nucleus Accumbens/drug effects , Prefrontal Cortex/metabolism , Prefrontal Cortex/drug effects , Corpus Striatum/metabolism , Corpus Striatum/drug effects , Motor Activity/drug effects
6.
Neurol Res ; 46(8): 752-762, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38719201

ABSTRACT

BACKGROUND: Anxiety is an adaptive response to potentially threatening conditions. Excessive and uncontrolled anxiety responses become nonadaptive and cause anxiety disorders. To better understand the anxiety-modulating effects of Mg sulfate, behavioral test batteries in the assessment of anxiety and learning and memory functions were performed simultaneously over a time period. This study also examines the effects of Mg sulfate compared to diazepam, an anxiolytic drug with amnestic effects on anxiety-like behavior, as well as possible oxidative-nitrosative stress and hippocampal changes in male rats exposed to predator odor. METHODS: Young adult Sprague-Dawley male rats were used. The rats were assessed using a comprehensive neurobehavioral test battery consisting of novel object recognition, open field, and successive alleys tasks. Anxiety was induced by cat odor, and diazepam and Mg were used as study drugs. Of the frontal cortex and hippocampus, the state of total oxidant and antioxidant and NO levels and histological examination of hippocampal CA1, CA2, CA3, and DG regions were performed. RESULTS: Diazepam- and Mg-treated rats showed an improvement in anxiety-related behavior to predator odors. Furthermore, Mg treatment alleviated some of the increasing oxidative stress in the frontal cortex and hippocampus of rats, while diazepam treatment in particular enhanced hippocampal oxidant and antioxidant activity. In addition, brain NO increase induced by animal odor exposure or diazepam treatment was ameliorated by Mg administration. CONCLUSIONS: Overall, our work suggests that Mg had a partial anxiolytic effect on anxiety-like behaviors, although not as much as diazepam, and this effect varied depending on the dose. Mg treatment might counteract increased oxidative stress and elevated NO levels in the brain.


Subject(s)
Anti-Anxiety Agents , Anxiety , Diazepam , Disease Models, Animal , Magnesium Sulfate , Rats, Sprague-Dawley , Animals , Male , Anxiety/drug therapy , Diazepam/pharmacology , Anti-Anxiety Agents/pharmacology , Anti-Anxiety Agents/therapeutic use , Magnesium Sulfate/pharmacology , Hippocampus/drug effects , Hippocampus/metabolism , Oxidative Stress/drug effects , Rats , Memory/drug effects , Nitric Oxide/metabolism , Odorants
7.
Biomed Pharmacother ; 176: 116771, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38795639

ABSTRACT

Anxiety-like conditions can interfere with daily activities as the adaptive mechanism fails to cope with stress. These conditions are often linked with increased oxidative stress, and abrupt neurotransmission and electroencephalography (EEG) wave pattern. Geraniol, a monoterpenoid, has antioxidant and anti-inflammatory activities, as well as brain-calming effects. Therefore, in this study, geraniol was tested for the potential anxiolytic effects in a rat model of anxiety. The rats were exposed to an electric foot shock (1 mA for 1 s) to develop anxiety-like symptoms. Treatment was carried out using geraniol (10 and 30 mg/kg) and the standard diazepam drug. The behavior of the rats was analyzed using the open field test, light-dark test, and social interaction test. Afterward, the rats were decapitated to collect samples for neurochemical and biochemical analyses. The cortical-EEG wave pattern was also obtained. The study revealed that the electric foot shock induced anxiety-like symptoms, increased oxidative stress, and altered hippocampal neurotransmitter levels. The power of low-beta and high-beta was amplified with the increased coupling of delta-beta waves in anxiety group. However, the treatment with geraniol and diazepam normalized cortical-EEG wave pattern and hippocampal serotonin and catecholamines profile which was also reflected by reduced anxious behavior and normalized antioxidant levels. The study reports an anxiolytic potential of geraniol, which can be further explored in future.


Subject(s)
Acyclic Monoterpenes , Anti-Anxiety Agents , Anxiety , Behavior, Animal , Electroencephalography , Hippocampus , Oxidative Stress , Rats, Wistar , Synaptic Transmission , Animals , Acyclic Monoterpenes/pharmacology , Oxidative Stress/drug effects , Anxiety/drug therapy , Male , Hippocampus/drug effects , Hippocampus/metabolism , Anti-Anxiety Agents/pharmacology , Rats , Synaptic Transmission/drug effects , Behavior, Animal/drug effects , Electroshock , Antioxidants/pharmacology , Terpenes/pharmacology , Diazepam/pharmacology , Disease Models, Animal , Brain Waves/drug effects
8.
Bull Exp Biol Med ; 176(5): 585-590, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38724813

ABSTRACT

Leukocyte elastase is a marker of inflammation. Previously, a relationship was found between the severity of mental disorders in patients and elastase-like activity of blood plasma. The effect of various neurotropic drugs on leukocyte elastase activity was analyzed in an in vitro experiment. We revealed an inhibitory effect of the benzodiazepine tranquilizers diazepam and bromodihydrochlorophenylbenzodiazepine and immunomodulators aminodihydrophthalazinedione and diclofenac on the plasma elastase-like activity of healthy donors and pure human neutrophil elastase. The antipsychotics chlorpromazine and alimemazine, as well as the nootropic vinpocetine increased elastase-like activity in a dose-dependent manner. The activating effect of chlorpromazine and vinpocetine, but not alimemazine, was reproduced in neutrophil elastase. We hypothesized that these drugs can affect the development of inflammatory reactions in the complex therapy of mental disorders.


Subject(s)
Antipsychotic Agents , Chlorpromazine , Diazepam , Leukocyte Elastase , Humans , Leukocyte Elastase/metabolism , Chlorpromazine/pharmacology , Diazepam/pharmacology , Antipsychotic Agents/pharmacology , Diclofenac/pharmacology , Nootropic Agents/pharmacology , Tranquilizing Agents/pharmacology , Immunologic Factors/pharmacology , Vinca Alkaloids
9.
Toxicol Lett ; 397: 103-116, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38703967

ABSTRACT

Animal research continues to serve a critical role in the testing and development of medical countermeasures. The Göttingen minipig, developed for laboratory research, may provide many benefits for addressing research questions within chemical defense. Targeted development of the Göttingen minipig model could reduce reliance upon non-human primates, and improve study design, statistical power, and throughput to advance medical countermeasures for regulatory approval and fielding. In this vein, we completed foundational pharmacokinetics and physiological safety studies of intramuscularly administered atropine sulfate, pralidoxime chloride (2-PAM), and diazepam across a broad range of doses (1-6 autoinjector equivalent) using adult male Göttingen minipigs (n=11; n=4-8/study) surgically implanted with vascular access ports and telemetric devices to monitor cardiovascular, respiratory, arterial pressure, and temperature signals. Pharmacokinetic data were orderly and the concentration maximum mirrored available human data at comparably scaled doses clearly for atropine, moderately for 2-PAM, and poorly for diazepam. Time to peak concentration approximated 2, 7, and 20 min for atropine, 2-PAM, and diazepam, respectively, and the elimination half-life of these drugs approximated 2 hr (atropine), 3 hr (2-PAM), and 8 hr (diazepam). Atropine sulfate dose-dependently increased the magnitude and duration of tachycardia and decreased the PR and ST intervals (consistent with findings obtained from other species). Mild hypothermia was observed at the highest diazepam dose. Göttingen minipigs appear to provide a ready and appropriate large animal alternative to non-human primates, and further development and evaluation of novel nerve agent medical countermeasures and treatment strategies in this model are justified.


Subject(s)
Atropine , Diazepam , Swine, Miniature , Animals , Swine , Male , Diazepam/pharmacokinetics , Diazepam/pharmacology , Atropine/pharmacokinetics , Atropine/pharmacology , Nerve Agents/pharmacokinetics , Nerve Agents/toxicity , Dose-Response Relationship, Drug , Injections, Intramuscular , Half-Life , Heart Rate/drug effects , Telemetry , Models, Animal , Pralidoxime Compounds
10.
Drug Res (Stuttg) ; 74(5): 220-226, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38729181

ABSTRACT

Combinations of medications are frequently employed when their effects are similar. Beyond aiding in the reduction of medication dosages, this approach may yield additional positive outcomes. Studies have shown that zinc can mitigate anxiety-related behavior in laboratory animals. This study aimed to investigate the potential stabilizing effects of zinc chloride and diazepam in Wistar albino rats.Five groups, each comprising six animals. Test groups included two combinations of zinc chloride and diazepam, each with two different doses of diazepam (1 and 2 mg/kg) and 10 mg/kg of zinc chloride. Four established anxiety models-the Elevated Plus Maze (EPM), the hole board, the light and dark box, and the mirror chamber-were employed to assess the anxiolytic effects. The combination of zinc chloride and diazepam proved to be more effective than the individual doses of zinc chloride and diazepam, indicating enhanced anxiolytic effects.


Subject(s)
Anti-Anxiety Agents , Anxiety , Behavior, Animal , Chlorides , Diazepam , Drug Synergism , Rats, Wistar , Zinc Compounds , Animals , Anti-Anxiety Agents/pharmacology , Anti-Anxiety Agents/administration & dosage , Diazepam/pharmacology , Zinc Compounds/pharmacology , Zinc Compounds/administration & dosage , Rats , Anxiety/drug therapy , Male , Behavior, Animal/drug effects , Maze Learning/drug effects , Disease Models, Animal , Drug Therapy, Combination , Dose-Response Relationship, Drug
11.
Neurol Res ; 46(8): 717-726, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38679045

ABSTRACT

Introduction: The close relationship between inflammatory processes and epileptic seizures is already known, although the exact pathophysiological mechanism is unclear. In this study, the anticonvulsant capacity of piroxicam, an anti-inflammatory drug, was evaluated. A rat pentylenetetrazole kindling model was used.Methods: Male Wistar rats, 8-9 weeks old, received piroxicam (0.15 and 0.30 mg/kg), diazepam (2 mg/kg) or saline for 14 days, and PTZ, on alternate days. Intraperitoneal was chosen as the route of administration. The intensity of epileptic seizures was assessed using a modified Racine scale. The open field test and object recognition analysis were performed at the beginning of the study to ensure the safety of the drugs used. At the end of the protocol, the animals were euthanized to measure the levels of inflammatory (TNF-a and IL-6) and anti-inflammatory (IL-10) cytokines in the cortex, hippocampus, and serum.Results:There were no changes in the open field test and object recognition analysis. Piroxicam was found to decrease Racine scale scores at both concentrations. The reported values for IL-6 levels remained steady in all structures, whereas the TNF-alpha level in the cortex was higher in animals treated with piroxicam than in the saline and diazepam subjects. Finally, animals treated with the anti-inflammatory drug presented reduced IL-10 levels in the cortex and hippocampus.onclusions: Using inflammation as a guiding principle, the anticonvulsant effect of PIRO could be associated with the hippocampal circuits, since this structure showed no increase in inflammatory cytokines.


Subject(s)
Anticonvulsants , Disease Models, Animal , Kindling, Neurologic , Piroxicam , Rats, Wistar , Animals , Piroxicam/pharmacology , Male , Kindling, Neurologic/drug effects , Anticonvulsants/pharmacology , Rats , Pentylenetetrazole , Seizures/drug therapy , Cytokines/metabolism , Diazepam/pharmacology , Hippocampus/drug effects , Hippocampus/metabolism , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Anti-Inflammatory Agents, Non-Steroidal/administration & dosage , Dose-Response Relationship, Drug , Epilepsy/drug therapy
12.
Neuropsychopharmacology ; 49(9): 1448-1458, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38658738

ABSTRACT

Elevated hippocampal perfusion has been observed in people at clinical high risk for psychosis (CHR-P). Preclinical evidence suggests that hippocampal hyperactivity is central to the pathophysiology of psychosis, and that peripubertal treatment with diazepam can prevent the development of psychosis-relevant phenotypes. The present experimental medicine study examined whether diazepam can normalize hippocampal perfusion in CHR-P individuals. Using a randomized, double-blind, placebo-controlled, crossover design, 24 CHR-P individuals were assessed with magnetic resonance imaging (MRI) on two occasions, once following a single oral dose of diazepam (5 mg) and once following placebo. Regional cerebral blood flow (rCBF) was measured using 3D pseudo-continuous arterial spin labeling and sampled in native space using participant-specific hippocampus and subfield masks (CA1, subiculum, CA4/dentate gyrus). Twenty-two healthy controls (HC) were scanned using the same MRI acquisition sequence, but without administration of diazepam or placebo. Mixed-design ANCOVAs and linear mixed-effects models were used to examine the effects of group (CHR-P placebo/diazepam vs. HC) and condition (CHR-P diazepam vs. placebo) on rCBF in the hippocampus as a whole and by subfield. Under the placebo condition, CHR-P individuals (mean [±SD] age: 24.1 [±4.8] years, 15 F) showed significantly elevated rCBF compared to HC (mean [±SD] age: 26.5 [±5.1] years, 11 F) in the hippocampus (F(1,41) = 24.7, pFDR < 0.001) and across its subfields (all pFDR < 0.001). Following diazepam, rCBF in the hippocampus (and subfields, all pFDR < 0.001) was significantly reduced (t(69) = -5.1, pFDR < 0.001) and normalized to HC levels (F(1,41) = 0.4, pFDR = 0.204). In conclusion, diazepam normalized hippocampal hyperperfusion in CHR-P individuals, consistent with evidence implicating medial temporal GABAergic dysfunction in increased vulnerability for psychosis.


Subject(s)
Cerebrovascular Circulation , Cross-Over Studies , Diazepam , Hippocampus , Magnetic Resonance Imaging , Psychotic Disorders , Humans , Diazepam/pharmacology , Hippocampus/drug effects , Hippocampus/diagnostic imaging , Hippocampus/blood supply , Male , Double-Blind Method , Female , Cerebrovascular Circulation/drug effects , Cerebrovascular Circulation/physiology , Young Adult , Psychotic Disorders/drug therapy , Psychotic Disorders/diagnostic imaging , Psychotic Disorders/physiopathology , Adult , Adolescent
13.
Eur J Pharmacol ; 972: 176561, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38580182

ABSTRACT

Neuronal depression in the thalamus underlies anesthetic-induced loss of consciousness, while the precise sub-thalamus nuclei and molecular targets involved remain to be elucidated. The present study investigated the role of extrasynaptic GABAA receptors in the central medial thalamic nucleus (CM) in anesthesia induced by gaboxadol (THIP) and diazepam (DZP) in rats. Local lesion of the CM led to a decrease in the duration of loss of righting reflex induced by THIP and DZP. CM microinjection of THIP but not DZP induced anesthesia. The absence of righting reflex in THIP-treated rats was consistent with the increase of low frequency oscillations in the delta band in the medial prefrontal cortex. CM microinjection of GABAA receptor antagonist SR95531 significantly attenuated the anesthesia induced by systemically-administered THIP, but not DZP. Moreover, the rats with declined expression of GABAA receptor δ-subunit in the CM were less responsive to THIP or DZP. These findings explained a novel mechanism of THIP-induced loss of consciousness and highlighted the role of CM extrasynaptic GABAA receptors in mediating anesthesia.


Subject(s)
Anesthesia , Isoxazoles , Receptors, GABA-A , Animals , Receptors, GABA-A/metabolism , Male , Rats , Isoxazoles/pharmacology , Diazepam/pharmacology , Rats, Sprague-Dawley , Mediodorsal Thalamic Nucleus/drug effects , Mediodorsal Thalamic Nucleus/metabolism , Mediodorsal Thalamic Nucleus/physiology , Reflex, Righting/drug effects , Synapses/drug effects , Synapses/metabolism , Thalamus/drug effects , Thalamus/metabolism
14.
Acta Pharmacol Sin ; 45(7): 1381-1392, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38514863

ABSTRACT

Status epilepticus (SE), a serious and often life-threatening medical emergency, is characterized by abnormally prolonged seizures. It is not effectively managed by present first-line anti-seizure medications and could readily develop into drug resistance without timely treatment. In this study, we highlight the therapeutic potential of CZL80, a small molecule that inhibits caspase-1, in SE termination and its related mechanisms. We found that delayed treatment of diazepam (0.5 h) easily induces resistance in kainic acid (KA)-induced SE. CZL80 dose-dependently terminated diazepam-resistant SE, extending the therapeutic time window to 3 h following SE, and also protected against neuronal damage. Interestingly, the effect of CZL80 on SE termination was model-dependent, as evidenced by ineffectiveness in the pilocarpine-induced SE. Further, we found that CZL80 did not terminate KA-induced SE in Caspase-1-/- mice but partially terminated SE in IL1R1-/- mice, suggesting the SE termination effect of CZL80 was dependent on the caspase-1, but not entirely through the downstream IL-1ß pathway. Furthermore, in vivo calcium fiber photometry revealed that CZL80 completely reversed the neuroinflammation-augmented glutamatergic transmission in SE. Together, our results demonstrate that caspase-1 inhibitor CZL80 terminates diazepam-resistant SE by blocking glutamatergic transmission. This may be of great therapeutic significance for the clinical treatment of refractory SE.


Subject(s)
Anticonvulsants , Caspase 1 , Mice, Inbred C57BL , Status Epilepticus , Animals , Status Epilepticus/drug therapy , Caspase 1/metabolism , Mice , Male , Anticonvulsants/pharmacology , Anticonvulsants/therapeutic use , Kainic Acid/pharmacology , Mice, Knockout , Glutamic Acid/metabolism , Caspase Inhibitors/pharmacology , Caspase Inhibitors/therapeutic use , Diazepam/pharmacology , Diazepam/therapeutic use , Synaptic Transmission/drug effects
15.
Neuropharmacology ; 251: 109918, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38527652

ABSTRACT

Acute poisoning with organophosphorus cholinesterase inhibitors (OPs), such as OP nerve agents and pesticides, can cause life threatening cholinergic crisis and status epilepticus (SE). Survivors often experience significant morbidity, including brain injury, acquired epilepsy, and cognitive deficits. Current medical countermeasures for acute OP poisoning include a benzodiazepine to mitigate seizures. Diazepam was long the benzodiazepine included in autoinjectors used to treat OP-induced seizures, but it is now being replaced in many guidelines by midazolam, which terminates seizures more quickly, particularly when administered intramuscularly. While a direct correlation between seizure duration and the extent of brain injury has been widely reported, there are limited data comparing the neuroprotective efficacy of diazepam versus midazolam following acute OP intoxication. To address this data gap, we used non-invasive imaging techniques to longitudinally quantify neuropathology in a rat model of acute intoxication with the OP diisopropylfluorophosphate (DFP) with and without post-exposure intervention with diazepam or midazolam. Magnetic resonance imaging (MRI) was used to monitor neuropathology and brain atrophy, while positron emission tomography (PET) with a radiotracer targeting translocator protein (TSPO) was utilized to assess neuroinflammation. Animals were scanned at 3, 7, 28, 65, 91, and 168 days post-DFP and imaging metrics were quantitated for the hippocampus, amygdala, piriform cortex, thalamus, cerebral cortex and lateral ventricles. In the DFP-intoxicated rat, neuroinflammation persisted for the duration of the study coincident with progressive atrophy and ongoing tissue remodeling. Benzodiazepines attenuated neuropathology in a region-dependent manner, but neither benzodiazepine was effective in attenuating long-term neuroinflammation as detected by TSPO PET. Diffusion MRI and TSPO PET metrics were highly correlated with seizure severity, and early MRI and PET metrics were positively correlated with long-term brain atrophy. Collectively, these results suggest that anti-seizure therapy alone is insufficient to prevent long-lasting neuroinflammation and tissue remodeling.


Subject(s)
Brain Injuries , Status Epilepticus , Rats , Animals , Diazepam/pharmacology , Midazolam/pharmacology , Midazolam/therapeutic use , Isoflurophate/pharmacology , Organophosphates , Neuroinflammatory Diseases , Neuroprotection , Rats, Sprague-Dawley , Brain/metabolism , Benzodiazepines/pharmacology , Status Epilepticus/chemically induced , Status Epilepticus/diagnostic imaging , Status Epilepticus/drug therapy , Positron-Emission Tomography , Carrier Proteins/metabolism , Magnetic Resonance Imaging , Brain Injuries/metabolism , Atrophy/pathology
16.
Exp Neurol ; 376: 114749, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38467356

ABSTRACT

Despite special challenges in the medical treatment of women with epilepsy, in particular preclinical animal studies were focused on males for decades and females have only recently moved into the focus of scientific interest. The intrahippocampal kainic acid (IHKA) mouse model of temporal lobe epilepsy (TLE) is one of the most studied models in males reproducing electroencephalographic (EEG) and histopathological features of human TLE. Hippocampal paroxysmal discharges (HPDs) were described as drug resistant focal seizures in males. Here, we investigated the IHKA model in female mice, in particular drug-resistance of HPDs and the influence of antiseizure medications (ASMs) on the power spectrum. After injecting kainic acid (KA) unilaterally into the hippocampus of female mice, we monitored the development of epileptiform activity by local field potential (LFP) recordings. Subsequently, we evaluated the effect of the commonly prescribed ASMs lamotrigine (LTG), oxcarbazepine (OXC) and levetiracetam (LEV), as well as the benzodiazepine diazepam (DZP) with a focus on HPDs and power spectral analysis and assessed neuropathological alterations of the hippocampus. In the IHKA model, female mice replicated key features of human TLE as previously described in males. Importantly, HPDs in female mice did not respond to commonly prescribed ASMs in line with the drug-resistance in males, thus representing a suitable model of drug-resistant seizures. Intriguingly, we observed an increased occurrence of generalized seizures after LTG. Power spectral analysis revealed a pronounced increase in the delta frequency range after the higher dose of 30 mg/kg LTG. DZP abolished HPDs and caused a marked reduction over a wide frequency range (delta, theta, and alpha) of the power spectrum. By characterizing the IHKA model of TLE in female mice we address an important gap in basic research. Considering the special challenges complicating the therapeutic management of epilepsy in women, inclusion of females in preclinical studies is imperative. A well-characterized female model is a prerequisite for the development of novel therapeutic strategies tailored to sex-specific needs and for studies on the effect of epilepsy and ASMs during pregnancy.


Subject(s)
Anticonvulsants , Disease Models, Animal , Epilepsy, Temporal Lobe , Hippocampus , Kainic Acid , Seizures , Animals , Kainic Acid/toxicity , Female , Anticonvulsants/pharmacology , Mice , Hippocampus/drug effects , Hippocampus/pathology , Seizures/chemically induced , Seizures/drug therapy , Seizures/pathology , Epilepsy, Temporal Lobe/chemically induced , Epilepsy, Temporal Lobe/drug therapy , Epilepsy, Temporal Lobe/pathology , Epilepsy, Temporal Lobe/physiopathology , Mice, Inbred C57BL , Electroencephalography , Diazepam/pharmacology
17.
Biomed Pharmacother ; 172: 116212, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38364734

ABSTRACT

Plant polysaccharides have biological activities in the brain and those obtained from Genipa americana leaves present antioxidant and anticonvulsant effects in the mice model of pentylenetetrazole (PTZ)-induced acute seizures. This study aimed to evaluate the polysaccharide-rich extract of Genipa americana leaves (PRE-Ga) in the models of acute seizures and chronic epilepsy (kindling) induced by PTZ. In the acute seizure model, male Swiss mice (25-35 g) received PRE-Ga (1 or 9 mg/kg; intraperitoneal- IP), alone or associated with diazepam (0.01 mg/kg), 30 min before induction of seizures with PTZ (70 mg/kg; IP). In the chronic epilepsy model, seizures were induced by PTZ (40 mg/kg) 30 min after treatment and in alternated days up to 30 days and evaluated by video. Brain areas (prefrontal cortex, hippocampus, striatum) were assessed for inflammatory and oxidative stress markers. Diazepam associated to PRE-Ga (9 mg/kg; i.p.) increased the latency of seizures in acute (222.4 ± 47.57 vs. saline: 62.00 ± 4.709 s) and chronic models (6.267 ± 0.502 vs. saline: 4.067 ± 0.407 s). In hippocampus, PRE-Ga (9 mg/kg) inhibited TNF-α (105.9 ± 5.38 vs. PTZ: 133.5 ± 7.62 pmol/g) and malondialdehyde (MDA) (473.6 ± 60.51) in the chronic model. PTZ increased glial fibrillar acid proteins (GFAP) and Iba-1 in hippocampus, which was reversed by PRE-Ga (GFAP: 1.9 ± 0.23 vs PTZ: 3.1 ± 1.3 and Iba-1: 2.2 ± 0.8 vs PTZ: 3.2 ± 1.4). PRE-Ga presents neuroprotector effect in the mice model of epilepsy induced by pentylenetetrazole reducing seizures, gliosis, inflammatory cytokines and oxidative stress.


Subject(s)
Epilepsy , Pentylenetetrazole , Animals , Mice , Epilepsy/chemically induced , Epilepsy/drug therapy , Epilepsy/prevention & control , Seizures/chemically induced , Seizures/drug therapy , Seizures/prevention & control , Oxidative Stress , Diazepam/pharmacology , Diazepam/therapeutic use , Disease Models, Animal , Glial Fibrillary Acidic Protein , Plant Extracts/pharmacology , Plant Extracts/therapeutic use
18.
Biophys J ; 123(14): 2085-2096, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-38400541

ABSTRACT

GABAA receptors (GABAARs) are neurotransmitter-gated ion channels critical for inhibitory synaptic transmission as well as the molecular target for benzodiazepines (BZDs), one of the most widely prescribed class of psychotropic drugs today. Despite structural insight into the conformations underlying functional channel states, the detailed molecular interactions involved in conformational transitions and the physical basis for their modulation by BZDs are not fully understood. We previously identified that alanine substitution at the central residue in the α1 subunit M2-M3 linker (V279A) enhances the efficiency of linkage between the BZD site and the pore gate. Here, we expand on this work by investigating the effect of alanine substitutions at the analogous positions in the M2-M3 linkers of ß2 (I275A) and γ2 (V290A) subunits, which together with α1 comprise typical heteromeric α1ß2γ2 synaptic GABAARs. We find that these mutations confer subunit-specific effects on the intrinsic pore closed-open equilibrium and its modulation by the BZD diazepam (DZ). The mutations α1(V279A) or γ2(V290A) bias the channel toward a closed conformation, whereas ß2(I275A) biases the channel toward an open conformation to the extent that the channel becomes leaky and opens spontaneously in the absence of agonist. In contrast, only α1(V279A) enhances the efficiency of DZ-to-pore linkage, whereas mutations in the other two subunits have no effect. These observations show that the central residue in the M2-M3 linkers of distinct subunits in synaptic α1ß2γ2 GABAARs contribute asymmetrically to the intrinsic closed-open equilibrium and its modulation by DZ.


Subject(s)
Diazepam , Ion Channel Gating , Protein Subunits , Receptors, GABA-A , Receptors, GABA-A/metabolism , Receptors, GABA-A/chemistry , Receptors, GABA-A/genetics , Diazepam/pharmacology , Diazepam/chemistry , Ion Channel Gating/drug effects , Protein Subunits/metabolism , Protein Subunits/chemistry , Protein Subunits/genetics , Humans , Animals , Mutation , HEK293 Cells
19.
Neurochem Int ; 175: 105704, 2024 May.
Article in English | MEDLINE | ID: mdl-38395152

ABSTRACT

This study aimed to investigate the anticonvulsant effects of citronellal (CIT) and possible underlying mechanisms through an isoniazid (INH)-induced seizure (convulsion) via in vivo and in silico studies. For this, convulsions were induced by the oral administration of INH (300 mg/kg) to the mice. The animals were treated orally with different doses of CIT (50, 100, and 200 mg/kg). Vehicle served as a negative control (NC), while diazepam (DZP) (2 mg/kg) and carbamazepine (CAR) (80 mg/kg) were provided (p.o.) as positive controls (PC). A combination therapy of CIT (middle dose) with DZP and CAR was also given to two separate groups of animals to estimate the synergistic or antagonistic effects. Molecular docking and visualization of ligand-receptor interactions are also estimated through different computational tools. The results of the in vivo study showed that CIT dose-dependently significantly (p < 0.05) exhibited a higher onset of seizures while reducing the frequency and duration of seizures in mice compared to the NC group. Besides these, in combination therapy, CIT significantly antagonized the activity of CAR and DZP, leading to a reduction in the onset of seizures and an increase in their frequency and duration compared to treatment with CAR and DZP alone. Additionally, molecular docking revealed that the CIT exhibited a moderate binding affinity (-5.8 kcal/mol) towards the GABAA receptor and a relative binding affinity (-5.3 kcal/mol) towards the voltage-gated sodium channel receptor by forming several bonds. In conclusion, CIT showed moderate anticonvulsant activity in INH-induced convulsion animals, possibly by enhancing GABAA receptor activity and inhibiting the voltage-gated sodium channel receptor.


Subject(s)
Acyclic Monoterpenes , Aldehydes , Anticonvulsants , Receptors, GABA-A , Mice , Animals , Anticonvulsants/pharmacology , Anticonvulsants/therapeutic use , Molecular Docking Simulation , Diazepam/pharmacology , Diazepam/therapeutic use , Seizures/chemically induced , Seizures/drug therapy , Benzodiazepines
20.
Phytother Res ; 38(5): 2198-2214, 2024 May.
Article in English | MEDLINE | ID: mdl-38414297

ABSTRACT

Quercetin is the most common polyphenolic flavonoid present in fruits and vegetables demonstrating versatile health-promoting effects. This study aimed to examine the effects of quercetin (QR) and sclareol (SCL) on the thiopental sodium (TS)-induced sleeping and forced swimming test (FST) mouse models. SCL (1, 5, and 10 mg/kg, p.o.) or QR (50 mg/kg, p.o.) and/or diazepam (DZP) (3 mg/kg, i.p.) were employed. After 30 min of TS induction, individual or combined effects on the animals were checked. In the FST test, the animals were subjected to forced swimming after 30 min of administration of the test and/or controls for 5 min. In this case, immobility time was measured. In silico studies were conducted to evaluate the involvement of GABA receptors. SCL (5 and 10 mg/kg) significantly increased the latency and decreased sleeping time compared to the control in the TS-induced sleeping time study. DZP (3 mg/kg) showed a sedative-like effect in animals in both sleeping and FST studies. QR (50 mg/kg) exhibited a similar pattern of activity as SCL. However, its effects were more prominent than those of SCL groups. SCL (10 mg/kg) altered the DZP-3-mediated effects. SCL-10 co-treated with QR-50 significantly (p < 0.05) increased the latency and decreased sleep time and immobility time, suggesting possible synergistic antidepressant-like effects. In silico studies revealed that SCL and QR demonstrated better binding affinities with GABAA receptor, especially α2, α3, and α5 subunits. Both compounds also exhibited good ADMET and drug-like properties. In animal studies, the both compounds worked synergistically to provide antidepressant-like effects in a slightly different fashion. As a conclusion, the combined administration of SCL and QR may be used in upcoming neurological clinical trials, according to in vivo and in silico findings. However, additional investigation is necessary to verify this behavior and clarify the potential mechanism of action.


Subject(s)
Antidepressive Agents , Diazepam , Quercetin , Sleep , Thiopental , Animals , Mice , Antidepressive Agents/pharmacology , Male , Quercetin/pharmacology , Diazepam/pharmacology , Sleep/drug effects , Thiopental/pharmacology , Swimming , Disease Models, Animal , Molecular Docking Simulation , Hypnotics and Sedatives/pharmacology , Receptors, GABA-A/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL